
Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59
http://www.biomedcentral.com/1472-6947/12/59
RESEARCH ARTICLE Open Access
Efficient algorithms for fast integration on large
data sets from multiple sources
Tian Mi1*, Sanguthevar Rajasekaran1* and Robert Aseltine2
Abstract

Background: Recent large scale deployments of health information technology have created opportunities for the
integration of patient medical records with disparate public health, human service, and educational databases to
provide comprehensive information related to health and development. Data integration techniques, which identify
records belonging to the same individual that reside in multiple data sets, are essential to these efforts. Several
algorithms have been proposed in the literatures that are adept in integrating records from two different datasets.
Our algorithms are aimed at integrating multiple (in particular more than two) datasets efficiently.

Methods: Hierarchical clustering based solutions are used to integrate multiple (in particular more than two)
datasets. Edit distance is used as the basic distance calculation, while distance calculation of common input errors is
also studied. Several techniques have been applied to improve the algorithms in terms of both time and space: 1)
Partial Construction of the Dendrogram (PCD) that ignores the level above the threshold; 2) Ignoring the
Dendrogram Structure (IDS); 3) Faster Computation of the Edit Distance (FCED) that predicts the distance with the
threshold by upper bounds on edit distance; and 4) A pre-processing blocking phase that limits dynamic
computation within each block.

Results: We have experimentally validated our algorithms on large simulated as well as real data. Accuracy and
completeness are defined stringently to show the performance of our algorithms. In addition, we employ a
four-category analysis. Comparison with FEBRL shows the robustness of our approach.

Conclusions: In the experiments we conducted, the accuracy we observed exceeded 90% for the simulated data in
most cases. 97.7% and 98.1% accuracy were achieved for the constant and proportional threshold, respectively, in a
real dataset of 1,083,878 records.
Background
Increased use of electronic medical record systems and
the development of health information exchanges have
enormous potential to expand our understanding of the
health of diverse patient populations. These efforts would
be greatly augmented by the capacity to integrate patient
medical records with disparate public health, human ser-
vice, and educational databases, which usually do not have
a universal identifier. For instance, health agencies may be
interested in the integrated patients’ records across mul-
tiple hospitals to track complete patients’ health histories,
to reveal mechanisms behind certain diseases, or to find
reasons for local diseases. Data integration techniques for
* Correspondence: tian.mi@engr.uconn.edu; rajasek@engr.uconn.edu
1Department of Computer Science and Engineering, University of
Connecticut Storrs, Connecticut, USA
Full list of author information is available at the end of the article

© 2012 Mi et al.; licensee BioMed Central Ltd.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
identifying records belonging to the same individual that
reside in multiple datasets, in the absence of any universal
identifier,can improve health observation [1], improve in-
jury surveillance systems, and health policy decisions [2]
etc. It is also applied in health care insurance claims [3]
and linkage of patients and health test results [4]. Data in-
tegration is also used in other areas, such as similarity de-
tection of digital files and document fingerprinting [5,6].
Typically, integration of datasets is done without the exist-
ence of a global identifier [State of Connecticut. Connecti-
cut Health Information Plan: A roadmap for improving
access to health data. 2009 May. (unpublished report)].
Since errors might have been introduced while entering
information, prediction of a record’s owner can never be
100% correct.
When there are only two data sets A and B, the data

integration problem is to decide if the records a and b
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:tian.mi@engr.uconn.edu
mailto:rajasek@engr.uconn.edu
http://creativecommons.org/licenses/by/2.0

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 2 of 12
http://www.biomedcentral.com/1472-6947/12/59
belong to the same person (for every a; bð Þ 2 A� BÞ .
Traditional approaches compare each record pair itera-
tively and generate a comparison vector. As a result,
each record pair is classified as a true match, possible
match, or true non-match. Usually a learning algorithm
is employed for this classification [7]. The data integra-
tion problem that we are facing is much more challen-
ging: 1) the records are from two or more sources; 2)
the total number of records is quite large (a million or
more) with very limited number of attributes to com-
pare, and 3) the same dataset may have multiple records
for individuals.
To apply the traditional method on multiple data sets

may have some difficulties when dealing with the above
challenges: 1) The cross-product of the datasets could
be prohibitively large. For instance, consider ten datasets
with two records in each. The number of 10-tuples is
210= 1024. If we have q datasets consisting of n1, n2, . . .,
nq records, respectively, then the total number of q-
tuples to be enumerated is n1 � n2 � . . . ;�nq . There-
fore, it is impractical to process large datasets. 2) One
may want to ignore tuples and still process based on
pairs. However this may lead to difficulties such as the
pair (A, B) are decided to be matched while the pairs (A,
C) and (B, C) being decided to be non-matched. 3) If
tuples being used, redundant computation happens fre-
quently when comparing records, for instance, records A
and B may appear many times in different tuples and
therefore in different tuples repeated computation on A
and B may be done. And memory could be a bottleneck
if we generate all possible tuples. Also, if pairs are used,
the classification may suffer from poor accuracy. For ex-
ample, a simplistic approach to matching three or more
data sets involves matching two data sets iteratively, with
the result of matching the first two data sets used as in-
put for matching with the third data set, and so on.
However, with this approach the final results are highly
sensitive to the ordering of the datasets. Because of these
disadvantages, the traditional probabilistic model seems
to be inadequate for integrating multiple data sets.
Therefore, in this paper, we propose a new model to

integrate multiple datasets. We employ hierarchical clus-
tering [8] and avoid the computation of cross-products.
Currently we use two methods to deal with common
errors in the input data, typing distance and sound dis-
tance. But other comparison methods can easily be
added into our model. Besides, our algorithms also take
care of the following types of errors: reversal of the first
and last names, nickname usage, and attribute trunca-
tion. Our algorithms are both time and space efficient.
The excellent results from our experiments show that
our clustering model is robust and promising when deal-
ing with large data. With our model, new records can be
easily inserted into old results without any re-
computations on the old data once the old data dendro-
gram from Hierarchical Clustering is stored.

Methods
Previous approaches
Traditional approaches mainly involve two steps: com-
parison of record pairs to generate comparison vectors,
and classification of record pairs into three sets of true
match, possible match, and true non-match based on
the comparison vectors [9,10]. A probabilistic model was
introduced by Fellegi and Sunter in 1969 [11], in which
comparison only considers match/non-match values. A
lot of studies have been done following the probabilistic
model [12-14]. Expectation maximization (EM) algo-
rithm has been used to get better decision rules when
maximum likelihood is reached in [15]. While a rela-
tional probability model was used for citation matching
[16], conditional models have been proposed to capture
the dependency features under certain background, for
instance, using conditional random fields in context
[17,18]. Based on such conditional models, deduplication
has been studied in relational databases of different data
types, e.g. information of an entire record is kept in dif-
ferent data tables [19,20]. This probabilistic model can
also support categorical comparison values [14]. Several
continuous-value comparisons also appear to deal with
typographic errors [21], such as Hamming Distance, Edit
Distance [22], Soundex Code and Metaphone (http://
www.sound-ex.com/alternative_zu_soundex), Jaro-Winkler
Comparison [23], Q-grams (or N-grams) [24], Longest
Common Substring [25], and so on.
Several software and packages have also been devel-

oped to solve this record linkage problem. FEBRL is one
of the excellent ones, which employs many existing tech-
niques and can handle datasets with several hundred
thousand records but with no clear accuracy and time
analysis [26-28], together with TAILOR [29], IntelliClean
[30], Merge/Purge [31] and so on. Most of these algo-
rithms pre-process the linkage with a blocking phase,
hashing by a blocking key [29], for instance. Sorted-
Neighborhood Method (SNM) [31,32] limits the com-
parison within a window after sorting the data, which is
used as blocking by FEBRL [26-28], TAILOR [29], and
IntelliClean [30]. Canopy Clustering [33] is also used as
a blocking method in FEBRL [26-28]. However, not
much work has been done to integrate multiple datasets.
We propose a novel technique based on hierarchical
clustering. Clustering partitions a set of observations
into subsets (called clusters) such that observations in
the same cluster are similar. Clustering has been applied
in many fields such as data mining [34,35], machine
learning [36], psychology [37], and even genetics [38-41].
Hierarchical clustering creates clusters in a tree struc-
ture (called a dendrogram) (see e.g., [42-45]). Various

http://www.sound-ex.com/alternative_zu_soundex
http://www.sound-ex.com/alternative_zu_soundex

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 3 of 12
http://www.biomedcentral.com/1472-6947/12/59
parallel algorithms for it have also appeared (see e.g.,
[46-48]). Given a set of n points to be clustered, the ag-
glomerative hierarchical clustering starts with n clusters
where each cluster has a single input point with a dis-
tance of 0. From there on, the algorithm proceeds in
stages. In each stage the two closest clusters are merged
into one and the distance of this new cluster is the dis-
tance between the merged clusters. The stages of mer-
ging happen until we are left with one cluster
(containing all the input points). We can cut the tree at
any desired threshold level. Note that each cluster is
associated with a distance. All the root clusters at the
threshold level will be output by the algorithm. Any
hierarchical clustering algorithm can be classified based
on the distance measure used. In this paper we use the
single linkage clustering. It has been shown that results
are similar using different linkage in Hierarchical Clus-
tering [49], and single linkages has the advantage in time
complexity [47].

Basic methodology
Our approach for data integration is to treat each record
in each data set as a point in a multi-dimensional space.
The dimension of this space is decided by the number of
attributes in the records. We then define an appropriate
distance measure for these points. Followed by this, we
cluster these points and the clusters lead us to the iden-
tification of common records.

Record distance calculation
In this paper, we consider attributes such as the first
name, last name, gender, zip code, etc. However, the
techniques described are generic and should be applic-
able for any set of attributes. We define the distance be-
tween two records in a number of ways by appropriately
combining attribute distances. We use RD(R1,R2) to de-
note the distance between two records R1 and R2. Given
R1 and R2 from any data sets, the common attributes of
the two records are used to calculate RD(R1,R2).
Definition 1: Assume that each of the two records R1

and R2 from any data set have n common attributes and
let d1, d2,. . ., and dn be the attribute distances between
these records. Then, RD(R1,R2) is defined as d1 + d2 +
. . .+ dn. Here di is the distance between the ith attribute
of R1 and the same attribute of R2. In this paper, the
combination operator we consider is addition for simpli-
city, but other methods, like giving different weights to
different attributes could be easily plugged in.
We consider two kinds of input errors, based on typing

errors and sound similarity. We use the edit distance as
the basic distance measure for the typing errors, while
Metaphone is used to deal with errors based on sound
similarity. The Edit Distance (also known as the Levensh-
tein Distance) between two strings is the minimum
number of operations, such as deletion, insertion, and ex-
change that are required to transform one string to the
other [22]. One lower bound on the edit distance between
two strings is the difference in the lengths of the two
strings. One could use dynamic programming to compute
the edit distance between two strings of length n and m,
respectively, in O(mn) time (see e.g., [50]). With the Four-
Russians speedup, which partitions the dynamic program-
ming table into blocks and looks up the distance of each
block from a pre-computed block offset function, the edit
distance can be computed in O(l2/log(l)) time when an ap-
propriate block size is chosen (where l is the length of the
two strings) [51]. In this paper, we assume a penalty of 1
for each of the operations insertion, deletion, and ex-
change. Given two attributes A1 and A2, the edit distance
of (A1,A2) is the attribute distance based on edit distance.
We incorporate into edit distance several methods to deal
with common typing errors, such as 1) Reversal of the first
name and the last name (reversal distance): In this case
we use the smaller of the distance between the names and
the distance between one name and the reversal of the
other; 2) The use of nicknames (nickname distance): In
this case we look up a nickname table (http://www.cc.
kyoto-su.ac.jp/~trobb/nicklist.html) and use the smallest
edit distance; and 3) Truncation of attributes (truncation
distance): only consider the first few letters. Given two
names, the name distance between them is defined as the
smallest distance obtained from the names’ edit distance,
reversal distance, nickname distance, and truncation dis-
tance. Errors based on pronunciation or sound similarity
is another main issue when data is input. Metaphone is a
phonetic algorithm to encode strings based on phonetic
similarity, which works more effectively than the Soundex
Coding. Phonetic distance between two attributes is
defined as: 1) zero, if the Metaphone codes of them are
the same; 2) edit distance of the Metaphone codes,
otherwise.

The basic algorithm
We employ hierarchical clustering to deal with the prob-
lem of integrating multiple (more than two) datasets.
Our basic algorithm (Algorithm 1) is to take every rec-
ord in each data set as a point (in an appropriate space).
Single linkage hierarchical clustering is applied on these
points. The clustering yields a dendrogram. A relevant
threshold is employed to cut this dendrogram to obtain
clusters of interest. In Step 2, a threshold is needed to
collect the required clusters. We provide two types of
thresholds - constant and proportional thresholds. The
constant threshold allows a certain number of errors oc-
curring in record comparisons, while the proportional
threshold requires the number of errors to be limited to
a percentage of the total record length.
Algorithm 1: Basic integration algorithm (BIA)

http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html
http://www.cc.kyoto-su.ac.jp/~trobb/nicklist.html

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 4 of 12
http://www.biomedcentral.com/1472-6947/12/59
Step 1. Construct the dendrogram using hierarchical
clustering.
Step 2. Cut the dendrogram at the level of a threshold.
Collect the root clusters at the threshold level and
output.

Ideally, each cluster will only have points correspond-
ing to the same person, i.e., all the versions of the same
record will be in one cluster and this cluster will not
have any other records. However in practice this may
not always be the case. Thus we characterize the per-
formance of this technique with an accuracy parameter
(See RESULTS Section).
If l is the maximum length of any record, the distance

between two records can be computed in O(l2) time.
Therefore, when the total number of records is n, Steps
1 and 2 need O(n2l2) time and O(n2) space.

Improved algorithms
Algorithm 1 takes too much time and space even on rea-
sonably small data sizes. Note that the time and space
requirements of Algorithm 1 are quadratic in the total
number of records. Data sets of practical interest have
millions of records. Table 1 displays the performance of
Algorithm 1 on small datasets. Extrapolating from the
numbers shown in this table, we can expect that Algo-
rithm 1 will take around 20 hours when the number of
records is 100,000. To overcome the shortcomings of Al-
gorithm 1, we have employed a series of techniques to
improve its performance. In this section we describe
these techniques.

Partial construction of the dendrogram
Instead of building the entire dendrogram and cutting at
the threshold level, the idea here is to construct only
portions of the tree that are below the threshold level.
The resultant algorithm is shown as Algorithm 2.
Algorithm 2: PCD

Step 1. Collect all the records in all the data sets. Each
such record is a cluster by itself at level 0 initially.
Step 2. Calculate the record distances between each
pair of clusters. Keep a nearest neighbor for each
cluster.
Step 3. Find the pair of clusters with the smallest
distance.
Step 4. If this distance is smaller than or equal to the
threshold, then merge the two clusters into a new
cluster with the distance as the new cluster’s level.
Otherwise, go to Step 7.
Step 5. Update the pairwise distances and the new
nearest neighbors’ information.
Step 6. Repeat Steps 3, 4, and 5 until we end up with a
single cluster.
Step 7. Collect and output the root clusters.

Although Algorithm 2 also takes O(n2l2) time, its
expected run time is better than that of Algorithm 1.
This is especially true if the error rate is low. If the
errors in the records occur with a low probability, then
the threshold value will be low and we only have to con-
struct a small portion of the dendrogram.

Ignoring the dendrogram structure
Since only certain clusters are collected as the output,
the structure of the dendrogram is not necessary. Algo-
rithm 3 shows the details of this technique.
Algorithm 3: IDS

Step 1. Collect all the records in all the data sets. Let
this collection be D.
Step 2. While D is not empty do

Pick one of the records in D arbitrarily. Let R be
this record. We will form a cluster CR corresponding
to R as follows. To begin with CR has only R in it. We
identify all the records in D that are at a distance of ≤
threshold from R. Let the collection of these records
be C’. Add all the records of C’ to CR. Followed by this
identify all the records of D that are at a distance of
≤ threshold from any of the records of C’. Let the col-
lection of these records be C”. Add all the records of
C’’ to CR. Continue this process of identifying neigh-
bors and adding them to CR until no new neighbors
can be found. At this point output CR. This is one of
the clusters of interest. Set D := D - CR.
Since Algorithm 3 does not generate a distance matrix,

its memory usage is only O(n) and the worst case run
time is still O(n2l2).

Faster computation of the edit distance
The general algorithm for edit distance computation
takes quadratic time (see e.g., [22,50]). Since we have to
calculate edit distances for a total of n2 times, a speedup
in edit distance calculation will improve the run time on
the entire data integration task. The four-Russians
speedup algorithm on edit distance runs in O(l2/log(l))
time, when a block size is chosen to be (log3σ (l))/2
(where σ is the alphabet size and l is the length of two
strings). However, unfortunately, it is inapplicable due to
the short length of the strings involved since in this
problem, σ= 26 and usually l ≤ 50.
Observation 1: The edit distance between two strings

is always larger than or equal to the difference in the
lengths of the two strings.
It is easy to see that even if one string S1 is a substring

of the other S2, it still needs |S2|-|S1| number of inserts
and/or deletes to transfer one to the other. This lower

Table 1 Experimental results on simulated data sets (constant threshold)

Algorithm Com Acc Time(ms) Com Acc Time(ms) Com Acc Time(ms)

BIA 99.4% 98.8% 14702 98.5% 97.0% 342411 - - -

PCD 99.4% 98.8% 12422 98.5% 97.0% 334583 - - -

RDED IDS 99.4% 98.8% 11562 98.5% 97.0% 291162 99.7% 99.3% 1200810

t = 30 IDS(FCED) 99.4% 98.8% 6031 98.5% 97.0% 164307 99.7% 99.3% 693665

TPA 92.2% 78.3% 406 90.7% 69.9% 7703 97.7% 91.8% 39843

TPA(FCED) 92.2% 78.3% 265 90.7% 69.9% 5266 97.7% 91.8% 21640

BIA 99.4% 98.8% 14453 98.3% 97.0% 354332 - - -

PCD 99.4% 98.8% 13812 98.3% 97.0% 360613 - - -

NDED IDS 99.4% 98.8% 13859 98.3% 97.0% 317052 99.6% 99.4% 1351910

t = 30 IDS(FCED) 99.4% 98.8% 9016 98.3% 97.0% 204071 99.6% 99.4% 861785

TPA 92.2% 78.3% 469 90.7% 70.0% 9484 97.7% 91.8% 42436

TPA (FCED) 92.2% 78.3% 359 90.7% 70.0% 6140 97.7% 91.8% 27155

BIA 98.8% 98.8% 11000 96.9% 96.4% 301960 - - -

PCD 98.8% 98.8% 11234 96.9% 96.4% 299756 - - -

PDED IDS 98.8% 98.8% 10547 96.9% 96.4% 254805 98.8% 98.9% 1046654

t = 30 IDS(FCED) 98.8% 98.8% 5390 96.9% 96.4% 145604 98.8% 98.9% 587013

TPA 92.4% 78.6% 391 90.7% 69.9% 7516 97.7% 91.8% 33499

TPA(FCED) 92.4% 78.6% 235 90.7% 69.9% 4313 97.7% 91.8% 20312

Size 1,000 5,000 10,000

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 5 of 12
http://www.biomedcentral.com/1472-6947/12/59
bound can help to see whether the edit distance between
two strings is larger than the threshold even before the
calculation of the edit distance. In this case we can omit
the calculation of the edit distance.
In summary, let t be a given a threshold. If the distance

between two strings S1 and S2 is less than or equal to t, then
we can compute this distance in O tlð Þtime;where l ¼
min S1j j; S2j jf g.
Dynamic programming is typically used to compute

the distance between two strings. This algorithm
employs a table of size l � l where l ¼ max S1j j; S2j jf gð Þto
compute partial distances (see e.g., [34]). If the edit dis-
tance between two strings is smaller than t, then the
trace-back path of the dynamic programming table
should be within a strip of size (2 t + 1) centered on the
diagonal. The diagonal is where we align the ith charac-
ter of one string to the same ith character of the other
string. Departure from the diagonal means insertion or
deletion, so when at most t inserts or deletions are
allowed, the trace-back path is of departure at most t
from the diagonal in a row. If the edit distance is smaller
than t, what we calculate is the accurate edit distance.
Otherwise, what we calculate is not accurate, but since
we know that the edit distance is more than t, it does
not matter that the edit distance computed is not accur-
ate. We refer to this technique of computing edit
distances as FCED (fast computation of edit distances).
This idea is also described in Gusfield's book ([52] 261–
262). In particular, in any row, column, or diagonal of
the dynamic programming table (for edit distance com-
putation), two adjacent cells can have values that differ
by at most one ([52] 305–306). Also, in any diagonal of
the dynamic programming matrix D (for edit distance
computation), either D i; j½ � ¼ D i� 1; j� 1½ �; or D i; j½ � ¼
D i� 1; j� 1½ � þ 1. (Matrix D is defined as follows. If we
are interested in computing the distance between two
strings X ¼ x1x2 . . . xn; and Y ¼ y1y2 . . . ym using dy-
namic programming, then a matrix of size n×m will be
employed. In particular, D[i,j] will be the distance be-
tween x1x2 . . . xi and y1y2 . . . yj (for all values of i and j)).
We can see that D i; j½ � 6¼ D i� 1; j� 1½ � � 1 , then D i; j½ �
is calculated from D i� 1; j½ � or D i; j� 1½ � . Without loss
of generality, assume that D i; j½ � ¼ D i� 1; j½ � þ 1: Then
D i� 1; j� 1½ � ¼ D i; j½ � � 2, which is a contradiction.
This fact implies that the values along the diagonal of

the dynamic programming table are non-decreasing.
Using Observation 1, we first check if the edit distance is

larger than the threshold. If not, we employ the O(tl) time
algorithm as described above. We keep checking the diag-
onal to see whether the allowed threshold t is broken
through. If the edit distance is seen to be larger than the
threshold, the algorithm terminates immediately. Other-
wise, the accurate edit distance is calculated and returned.
In this algorithm, the threshold is treated as the current

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 6 of 12
http://www.biomedcentral.com/1472-6947/12/59
distance allowed. While dynamically calculating the edit
distance, the diagonal value is compared with the threshold.
If the value is already larger than the threshold, no further
calculation is necessary and an infinite distance is given for
such comparisons. If there is another pair of attributes to
compare, a new distance allowed is computed as the
threshold minus the distance already used. This method is
implemented in Algorithm 3, and Algorithm 4 (in the next
section).
A two-phase algorithm
Now we describe a two-phase algorithm. In the first
phase (called a blocking phase), records sharing some-
thing in common are indexed into the same block.
Records in each block will be integrated later. Blocking
phase uses the last name attribute, which is considered
more accurate than the first name.
In each record, the last name is parsed into l-mers

(usually 3-mer or 4-mer), and this record is added into
blocks which are indexed by these l-mers. For instance,
in the case of l= 3, ``Rueckl" is indexed into 4 blocks:
``rue", ``uec", ``eck", and ``ckl". The total number of
possible blocks is 26l. Since one record may belong to
multiple blocks, after integration on each block, a post-
processing is done to merge clusters with duplicate
records. Details are shown as Algorithm 4.
Algorithm 4: TPA

Step 1. Collect all the records in all the datasets. Put
them into blocks based on l-mers of the last names.
Step 2. Integrate records in each block using the
algorithm IDS.
Step 3. Merge the clusters with the same records.

Assuming that there are b blocks, integrating each
block takes O((n/b)2 l2) time on an average. Over all the
b blocks the expected run time is O(n2l2/b). Note that b
is typically a large number. For 3-mer blocking,
b = 263 = 17576 and for 4-mer blocking b = 264 = 456976.
In summary, we have proposed four algorithms for

multiple-source integration, together with six distance
calculations: edit distance to handle common typos, re-
versal distance to handle the last and first names reversal
errors, nickname distance to handle the distances with
nicknames, truncation distance to handle the errors with
abbreviations, phonetic distance to handle the similarity
of sound, and name distance to capture all features of
edit, reversal, nickname, and truncation distances on
names. Without loss of generality, we validated our algo-
rithms on simulated data by 1) reversal distance for the
first or last names and edit distance for the other attri-
butes (RDED); 2) name distance in the first and last
names and edit distance in the other attributes (NDED)
where the truncation length is 5 for both the first and
the last names; and 3) phonetic distance in the first and
last names and edit distance in the other attributes
(PDED). For real data, because of the limited common
attributes (only first name, last name, and date of birth),
EDname calculates the edit distances based on the first
and the last names, EDall considers all the three attri-
butes, PDname calculates the phonetic distances based on
the first and the last names, and PDED calculates the
phonetic distances on the first and the last names and
edit distance on date of birth.

Results
We have implemented our technique in Java and tested
it on simulated data sets, as well as some real datasets.
Additional file 1 details the generation of the simulated
data sets. Also, the real data sets come from the Con-
necticut Health Information Network (CHIN), which
have a total of 1,083,878 records (Please see Additional
file 2 for details).

Results on simulated data
Since our algorithms collect all the records from all the
input datasets, the number of input datasets is not im-
portant. The performance of our algorithms depends
only on the total number of records (from all the data-
sets). Therefore, we generate a single input dataset for
each test. Three datasets of size 1,000, 5,000, and 10,000
respectively, are generated following [53] (Please see
Additional file 1 for details). The computer we have used
has a CPU of Intel(R) 2.83 GHz Core(TM)2 Quad Q9550,
with a memory of 4 GB.
The detailed results on simulated data are shown for

both constant thresholds and proportional thresholds, .
In Table 1 and Table 2, three comparison methods,
RDED, NDED, and PDED, have been used to calculate
the distances among records, and all the algorithms are
tested for each distance calculation. The first (Com.,
Acc., Time) is for data size 1,000, the next is for 5,000,
and the last for 10,000. We calculate the accuracy as fol-
lows. Let N be the number of output clusters and let C
be the number of correct clusters. A cluster is correct if
it has all the records pertaining to only one individual
and no other records. The accuracy (Acc.) is then com-
puted as C/N expressed as a percentage. Another metric
to evaluate the performance is completeness (Com.),
which is defined as follows. Let N* be the total number
of entities or persons in all the input data sets. Com-
pleteness is the value of C/N*, indicating how many en-
tities’ records are picked up correctly. In Table 1 and
Table 2, thresholds were picked up by training the data
set of size 1,000, and applied to the other two data sets.
The accuracy and completeness of those two data sets
suggests that picking up thresholds in this training and

Table 3 Accuracies in 5-fold cross validation on picking
up the threshold

model1 model2 model3 model4 model5

constant = 30 99.3% 99.3% 99.7% 99.6% 97.3%

proportion = 0.35 99.2% 99.1% 99.4% 99.0% 97.0%

Table 2 Experimental results on simulated data sets (proportional threshold)

Algorithm Com. Acc. Time(ms) Com. Acc. Time(ms) Com. Acc. Time(ms)

BIA 98.4% 96.9% 14593 97.7% 95.4% 345880 - - -

PCD 98.4% 96.9% 13515 97.7% 95.4% 345645 - - -

RDED IDS 98.4% 96.9% 11422 97.7% 95.4% 298069 99.5% 99.0% 1225476

t = 0.35 IDS(FCED) 98.4% 96.9% 7125 97.7% 95.4% 173932 99.5% 99.0% 673650

TPA 91.8% 77.7% 515 90.4% 69.5% 9203 97.6% 91.7% 38499

TPA(FCED) 91.8% 77.7% 281 90.4% 69.5% 4500 97.6% 91.7% 23374

BIA 98.4% 96.9% 14547 97.8% 95.6% 384222 - - -

PCD 98.4% 96.9% 14156 97.8% 95.6% 381191 - - -

NDED IDS 98.4% 96.9% 13671 44.6% 99.6% 343927 99.6% 99.1% 1416142

t = 0.35 IDS(FCED) 98.4% 96.9% 9078 44.6% 99.6% 222305 99.6% 99.1% 884472

TPA 91.8% 77.7% 485 42.5% 90.5% 10140 97.6% 91.7% 45436

TPA(FCED) 91.8% 77.7% 344 42.5% 90.5% 6484 97.6% 91.7% 29030

BIA 98.6% 97.2% 11890 97.8% 95.5% 314115 - - -

PCD 98.6% 97.2% 12046 97.8% 95.5% 313006 - - -

PDED IDS 98.6% 97.2% 11031 97.8% 96.0% 272085 99.6% 99.1% 1083059

t = 0.35 IDS(FCED) 98.6% 97.2% 5937 97.8% 96.0% 165495 99.6% 9.1% 610262

TPA 91.8% 77.7% 250 90.1% 70.0% 7843 97.6% 91.7% 32827

TPA(FCED) 91.8% 77.7% 171 90.1% 70.0% 4297 97.6% 91.7% 21046

Size 1,000 5,000 10,000

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 7 of 12
http://www.biomedcentral.com/1472-6947/12/59
learning method is pretty safe. From Table 1 and Table 2
(tests marked by”-” were terminated after waiting for 30
minutes), in general, most accuracies and completeness
exceed 90% which indicates our approach’s capability in
records matching. Especially algorithm TPA with FCED
technique has a dramatic improvement in the run time,
for instance, using RDED in 10,000 data size, IDS took
1201 s, and IDS(FCED) took 694 s, while TPA only took
40 s and TPA(FCED) took 22 s, which is roughly 30
times faster, though with some drop in the accuracy (e.g.
99.7% of IDS(FCED) to 97.7% TPA(FCED) in complete-
ness and 99.3% to 91.8% in accuracy) due to the fact
that in the blocking phase not all the records which per-
tain to the same person can be indexed into the same
block. This small drop in the accuracy may be worth-
while, especially when dealing with large data and if time
is a critical factor. As a result, we have employed TPA
and TPA (FCED) on real data sets.
To validate the thresholds chosen in training, a 5-fold

cross validation was used: partition the 10,000 records
into 5 equal sets and randomly pick four sets as the
training data to get the thresholds and the remaining as
the testing data, and repeat 5 times. Table 3 shows the
result of the 5-fold cross validation. Accuracies obtained
(around ~98%) suggest that the thresholds identified in
training are able to capture the general features of the
data and therefore separate records of the same person
from the others pretty well.
We also tested on a large dataset with 1,000,000
records. Results in Table 4 show the efficiency and ro-
bustness of the proposed algorithms.

Results on real data
We have a total of 1,083,878 records and multiple
records from one person in each of the four databases
are common (Please see Additional file 2 for detail). A
linkage gold- standard has shown that the attribute com-
bination of Social Security Number, phonetically com-
pressed first name, birth month, and gender is the best
one to find record linkage [54]. However, the common
attributes across all the 4 data sets were very limited:
first name, last name, and date of birth, which increased
the challenge to do the integration. EDname calculates
the edit distances based on the first and the last names,
EDall considers all the three attributes, PDname calculates
the phonetic distances based on the first and the last
names, and PDED calculates the phonetic distances on
the first and the last names and edit distance on date of
birth. The thresholds are obtained from training 4,000

Table 4 Experimental results on real data sets (N=1,083,878)

Time - TPA Time – TPA(FCED) Clusters Acc. Clusters Individuals Acc. Com.

EDname constant t = 1 1:52:41 0:27:29 94,381 87,756 108,800 93.0% 80.7%

EDall t = 1 3:11:17 0:29:33 101,864 99,562 108,800 97.8% 91.6%

PDname - 1:06:04 1:04:13 90,950 83,270 108,800 91.6% 76.5%

PDED t = 1 2:04:09 1:06:04 101,344 99,711 108,800 98.4% 91.6%

EDname proportional t = 0.1 1:55:24 0:30:56 94,521 87,966 108,800 93.1% 80.9%

EDall t = 0.1 3:14:37 0:44:05 101,254 99,346 108,800 98.1% 91.3%

PDname - 1:04:32 1:05:41 90,950 83,270 108,800 91.6% 76.5%

PDED t = 0.1 2:06:16 1:09:02 100,896 98,949 108,800 98.1% 90.9%

Table 5 Four-category analysis on real data sets
(N= 1,083,878)

Type I Type II Type III Type IV

EDname constant t = 1 93.0% 2.2% 0.0% 4.8%

EDall t = 1 97.7% 2.1% 0.0% 0.2%

PDname - 91.6% 1.7% 0.0% 6.7%

PDED t = 1 98.4% 1.3% 0.0% 0.3%

EDname proportional t = 0.1 93.1% 2.2% 0.0% 4.7%

EDall t = 0.1 98.1% 0.1% 0.0% 0.4%

PDname - 91.6% 1.7% 0.0% 6.7%

PDED t = 0.1 98.1% 1.3% 0.0% 0.6%

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 8 of 12
http://www.biomedcentral.com/1472-6947/12/59
records, 1,000 from each database. The detailed results
are shown in Table 4. Accuracy is estimated by the com-
bination of Social Security Number and the internally
assigned DDS identification number. Out of the total
1,083,878 records, 896,174 records have valid identifiers
so the analysis is based on the 896,174 records. While
looking into the details of the results of EDname, we
found that most of the inaccurate clusters resulted when
tautonyms exist, i.e., when there were records with
exactly the same first and last names pertaining to differ-
ent persons. 97.8% accuracy was achieved immediately
when edit distance was used on all the three attributes
for the constant threshold (98.1% for the proportional
threshold) within around 30 minutes (1 hour), and
98.4% accuracy was received for PDED (98.1% for the
proportional threshold) around 1 hour, where complete-
ness is above 90% when all the three attributes were
used, as shown in Table 4. In particular, the algorithm
TPA (FCED) was about four to six times as fast as the
algorithm TPA using edit distance, and even with edit
distance of one attribute TPA (FCED) still speeds up
about two times (PDED in Table 4). The notion of nega-
tive data is unclear to this multiple data integration
problem and hence sensitivity and specificity analysis
cannot be done. However, we perform a similar analysis
to look further into our results. A four-category analysis
is proposed. Any cluster of records is categorized into
four: 1) (Type I), if a cluster contains only one person's
records and contains all of this person's records; 2)
(Type II), if a cluster contains only one person's records
but not all of this person's records; 3) (Type III), if a
cluster contains all the records of one person but also
contains some other person's records; 4) other cases can
be seen as errors (Type IV). Table 5 shows the results of
this analysis. Type II clusters are nothing but incomplete
clusters which still play a valuable role to people. Type
III clusters are similar but a little less important. There-
fore, only Type IV clusters are “true incorrect”. When
using all the three attributes, this “true incorrect rate” is
limited within about 0.6%.
Comparison with the probabilistic model using FEBRL
FEBRL [26-28] is excellent for data linkage, which
exploits most of the current techniques of indexing/
blocking, comparison, and classification.
Linkage of two datasets is compared in Table 6. Since

any of the distance calculations of the proposed ap-
proach considers certain common errors, like insertion,
deletion, and so, to be fair, we chose to use a similar dis-
tance calculation, the edit distance, in FEBRL, and we
chose “FellegiSunter” from the classification methods as
the probabilistic model to compare. From the real data,
we randomly picked 1,000 vs. 1,000, 2,000 vs. 2,000, and
3,000 vs. 3,000 data sets as three groups of linkage tests.
We used IDS (FCED) as the non-blocking algorithm and
TPA (FCED) as a blocking algorithm in the comparison.
For each algorithm, we used EDname, EDall, and NDED
as the distance calculation. In FEBRL [26-28], only the
best result was selected for a non-blocking algorithm
and a blocking algorithm. It was found that the best
results could be reached with 0.5 as the edit distance
thresholds, respectively, and 0.3 and 0.8 as lower and
upper threshold for “FellegiSunter”, and with blocking
the fastest index method can be “CanopyIndex” with
canopy method “Jaccard” and global tight and loose
thresholds of 0.8 and 0.3 and 3 as the length of q-grams.
Table 6 shows that the two approaches have similar

Table 6 Performance comparison with FEBRL

Acc. Time(ms) Acc. Time(ms) Acc. Time(ms) Comments

100.0% 766 100.0% 3766 100.0% 8735 DSI(FCED) + EDname

99.0% 2125 100.0% 11171 100.0% 15922 DSI(FCED) + EDall

Our 99.0% 2563 98.2% 9172 97.7% 20391 DSI (FCED) + NDED

Algorithms 100.0% 187 100.0% 250 100.0% 469 TPA(FCED) + EDname

100.0% 234 100.0% 453 100.0% 828 TPA(FCED) + EDall

99.2% 203 98.4% 516 98.0% 1047 TPA (FCED) + NDED

FEBRL 100.0% 40438 100.0% 173597 - >15 min no blocking

100.0% 1284 100.0% 2284 100.0% 3265 s With blocking

Size 1000 vs. 1000 2000 vs. 2000 3000 vs. 3000

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 9 of 12
http://www.biomedcentral.com/1472-6947/12/59
accuracies. However, our approach takes less time for
both non-blocking and blocking algorithms demonstrat-
ing the robustness of our algorithms in handling large
input datasets. For FEBRL with no blocking on 3000 vs.
3000, we terminated the program after waiting for 15
minutes with no response, since all the other methods
can finish within around 20 seconds.

Discussion
To achieve a good accuracy, a good threshold value to cut
the dendrogram of the hierarchical clustering is needed.
Figure 1 Relationship between thresholds and accuracy/completenes
thresholds; (C) NDED with constant thresholds; (D) EDname with proportion
proportional thresholds.
We show the relationship between Accuracy/Completeness
and thresholds in Figure 1. A decent threshold is needed to
get a nice accuracy or completeness, which depends on
many parameters such as attributes compared, attribute
distances applied, combination operation used, and even
the specific data sets, and should be decided empirically. In
this paper we provide some guidelines for picking an ap-
propriate threshold value.
Using a training phase is always a good method to learn

the threshold. We can think of the entire process of data in-
tegration as consisting of two main processes. The first
s. (A) EDname with constant thresholds; (B) RDED with constant
al thresholds; (E) RDED with proportional thresholds; (F) NDED with

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 10 of 12
http://www.biomedcentral.com/1472-6947/12/59
process is the training phase wherein we will be given
records with identifiers to indicate which of them belong to
the same person. In this phase we learn the values of all the
underlying parameters (threshold, in particular). Once we
learn the values of the parameters, in the second phase we
can work on any (unknown) collection of datasets and inte-
grate them. If the dataset given in the training phase is truly
representative of the real world data, then the accuracy in
the second phase will be high. This is typically true for any
learning technique. The learning technique can only be as
good as the training dataset. For example, in our experi-
ments, for the simulated data test, the threshold was learned
from datasets of size 1,000 (Table 1 and Table 2), and for real
data test, the threshold was learned from 4,000 records,
1,000 from each of the four data sets. Both of these training
phases resulted in good results. Another way is to use the
knowledge about the input datasets to get a threshold empir-
ically. Generally speaking, the real world data may not have
too many errors and a small threshold is always suggested.
In our real data experiment, one million records are more
than enough to suggest that the constant threshold of 1 and
the proportional threshold of 0.1 would be promising.
Also, one may want to run the application multiple

times with different thresholds. With the nature of Hier-
archical Clustering, it is not necessary to re-calculate
everything. If the whole dendrogram is kept, different
thresholds are just different levels to cut the tree struc-
ture and the result can be immediately output. Although
a lot of studies have been made in record linkage, work
has seldom been done on multiple data sets as relatively
large as we discussed here. Merge/Purge is capable to
handle millions of records in the parallel implementation
[31]. Also, this is done by its simple clustering method
of two phases, of which the first phase clusters data on
an n-attribute key and the second phase applies the
sorted-neighbourhood method within each cluster. Then
further processes and decisions are made. Such simple
clustering method supports the capability of Merge/
Purge to handle large data sets fast. Though at very low
possibilities coincident of errors in these n-attribute keys
may risk the general accuracy, it does not harm the good
tradeoff between time and accuracy in Merge/Purge
since it may happen at very small probabilities. We use
distance calculations to plug in the hierarchical cluster-
ing method, in the expectation that different calculation
methods can be easily added into our approach and per-
formance can be improved by new excellent calculation
methods. And the efficiency is obtained by algorithm
improvement within hierarchical clustering and the dis-
tance calculation.

Conclusions
The ability to integrate diverse medical and public health
datasets, particularly in this time of burgeoning availability
of data from health information exchanges, offers unprece-
dented opportunities for health research and surveillance.
A prerequisite for this, however, are techniques that allow
for the simultaneous integration of multiple datasets that
lack a shared numeric identifier. In this paper, we have pre-
sented an approach for the integration of records from
multiple datasets. We improved our basic idea based on
several different methods and implemented and experimen-
tally validated our approach. In addition to the standard at-
tribute distance measures, we have also introduced
attribute distances based on prior knowledge of commonly
occurring mistakes. Hierarchical clustering is the basis of
our approach. The accuracy we have obtained is very good
indicating that our approach is promising.

Additional files

Additional file 1: Detailed generation of the simulated data [53].

Additional file 2: Introduction to the real data.

Competing interests
All authors declare that they have no competing interests.

Authors’ contributions
TM contributed to the implementation of the algorithms, testing and
analysis on the synthetic and real data, manuscript preparation, algorithms
development, and performance analysis. SR contributed to algorithms
development, analysis of the results, performance analysis, and manuscript
preparation. RA contributed to data preparation, results analysis, and
performance analysis. All authors read and approved the final manuscript.

Acknowledgements
This research has been supported in part by the NSF Grants 0326155 and
0829916 and the NIH Grant R01-LM010101, and the State of Connecticut. We
also want to thank Laurel Buchanan for the description of the real data in
Additional file 2.

Author details
1Department of Computer Science and Engineering, University of
Connecticut Storrs, Connecticut, USA. 2Institute for Public Health Research,
University of Connecticut, East Hartford, Connecticut, USA.

Received: 24 October 2011 Accepted: 28 June 2012
Published: 28 June 2012

References
1. Fayyad U, Piatetsky-shapiro G, Smyth P: From data mining to knowledge

discovery in databases. AI Mag 1996, 17:37–54.
2. Clark DE: Practical introduction to record linkage for injury research. Inj

Prev 2004, 10(3):186–191.
3. Victor TW, Mera R: Record linkage of health care insurance claims. J Am

Med Inform Assoc 2001, 8:281–288.
4. Maizlish N, Herrera L: A record linkage protocol for a diabetes registry at

ethnically diverse community health centers. J Am Med Inform Assoc 2005,
12:331–337.

5. Brin S, Davis J, Garcia-Molina H: Copy Detection Mechanisms for Digital
Documents. In Proceedings of the ACM SIGMOD Annual Conference: 22–25
May 1995; San Jose, CA. Edited by Carey Michael J, Schneider Donovan A.
New York: ACM; 1995:398–409.

6. Shivakumar N, Garcia-Molina H: Building a Scalable and Accurate Copy
Detection Mechanism. In Proceedings of the 1st ACM International
Conference on Digital Libraries: 20–23 March 1996; Bethesda, MD. Edited by
Edward A, Fox and Gary Marchionini. New York: ACM; 1996:160–168.

http://www.biomedcentral.com/content/supplementary/1472-6947-12-59-S1.doc
http://www.biomedcentral.com/content/supplementary/1472-6947-12-59-S2.doc

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 11 of 12
http://www.biomedcentral.com/1472-6947/12/59
7. Gu L, Baxter R, Vickers D, Rainsford C: Record linkage: current practice and
future directions. CSIRO Mathematical and Information Sciences Tech Rep
2003, 3(3):83.

8. Zhao Y, Karypis G: Evaluation of hierarchical clustering algorithms for
document datasets. In Proceedings of the 11th international conference on
Information and knowledge management: 4–9 November 2002; McLean, VA.
New York: ACM; 2002:515–524.

9. Christen P, Goiser K: Quality and complexity measures for data linkage
and deduplication. In Quality Measures in Data Mining. Volume 43. Edited
by Guillet F, Hamilton H. New York: Springer; 2007:127–151.

10. Winkler WE: Overview of Record Linkage and Current Research
Directions. [http://www.census.gov/srd/papers/pdf/rrs2006-02.pdf]

11. Fellegi IP, Sunter AB: A theory for record linkage. J Am Stat Assoc 1969, 64
(328):1183–1210.

12. Elmagarmid AK, Ipeirotis PG, Verykios VS: Duplicate Record Detection: A
Survey. IEEE Trans Knowl Data Eng 2007, 19:1–16.

13. Winkler WE: Matching and record linkage. In Business Survey Methods.
Edited by Brenda G, Cox, David A, Binder B, Nanjamma Chinnappa, Anders
Christianson, Michael J, Colledge, Phillip S, Kott. New York: Wiley; 1995:355–
384.

14. Winkler WE: The State of Record Linkage and Current Research Problems.
[http://www.census.gov/srd/papers/pdf/rr99-04.pdf]

15. Winkler WE: Improved Decision Rules In The Fellegi-Sunter Model Of
Record Linkage. In Proceedings of on Survey Research Methods, American
Statistical Association. Volume 1. Alexandria, VA: American Statistical
Association; 1993:274–279.

16. Pasula H, Marthi B, Milch B, Russell S, Shpitser I: Identity uncertainty and
citation matching. In Proceedings of the 2002 Conference on Advances in
Neural Information Processing Systems: 9–14 December 2002; Vancouver,
Canada. Edited by Becker S, Thrun S, Obermayer K. Cambridge, MA: MIT
Press; 2003:1401–1408.

17. McCallum A, Wellner B: Conditional models of identity uncertainty with
application to noun coreference. In Proceedings of the 2004 Conference on
Advances in Neural Information Processing Systems: 13–18 December 2004;
Vancouver, Canada. Edited by Saul L, Weiss Y, Bottou L. Cambridge, MA: MIT
Press; 2005:905–912.

18. Lafferty J, McCallum A, Pereira F: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of
18th International Conference on Machine Learning: June 28-July 1 2001;
Williamstown, MA. Edited by Brodley CE, Danyluk AP, Waltham MA.
Waltham, MA: Morgan Kaufmann; 2001:282–289.

19. Culotta A, McCallum A: Joint deduplication of multiple record types in
relational data. In Proceedings of the 14th ACM international conference on
Information and knowledge management: October 31-November 15 2005;
Bremen, Germany. Edited by Herzog O, Schek HJ, Fuhr N, Chowdhury A,
Teiken W. New York: ACM; 2005:257–258.

20. Parag, Domingos P: Multi-relational record linkage. In Proceedings of the
Tenth International Conference on Knowledge Discovery and Data Mining:
August 22–25 2004; Seattle. Edited by Kim W, Kohavi R, Gehrke J, DuMouchel
W. New York: ACM; 2004:31–48.

21. Christen P: A comparison of personal name matching: Techniques and
practical issues. In Proceedings of the Second International Workshop on
Mining Complex Data: December 18–22 2006. Hong Kong. Los Alamitos (CA):
IEEE Computer Society Press; 2006:290–294.

22. Levenshtein VI: Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Phys, Doklady 1966, 10(8):707–710.

23. Jaro MA: Advances in Record Linkage Methodology as Applied to Matching
the 1985 Census of Tampa, Florida. J Am Stat Assoc 1989, 84(406):414–420.

24. Kukich K: Techniques for automatically correcting words in text. ACM
Comput Surv 1992, 24(4):377–439.

25. Friedman C, Sideli R: Tolerating spelling errors during patient validation.
Compu Biomed Res 1992, 25:486–509.

26. Christen P, Churches T, Hegland M: Febrl - a parallel open source data
linkage system. Lect Notes Comput Sc 2004, 3056:638–647.

27. Christen P: In Proceedings of the 14th International Conference on Knowledge
Discovery and Data Mining: 24–27 August 2008; Las Vegas. Edited by Ying L,
Bing L, Sunita S. New York: ACM; 2008:1065–1068.

28. Christen P: Febrl - a freely available record linkage system with a
graphical user interface. In Proceedings of the second Australasian workshop
on Health data and knowledge management: 1–1 January 2008; Wollongong,
Australia. Edited by Warren JR, Yu P, Yearwood J, Patrick JD, Warren JR, Yu P,
Yearwood J, Patrick JD. Darlinghurst (Australia): Australian Computer Society,
Inc; 2008:17–25.

29. Elfekey M, Vassilios V, Elmagarmid A: Agrawal R, Dittrich KR, Ngu AHH. In
Proceedings of the 18th International Conference on Data Engineering: 26
February-1 March 2002; San Jose. Edited by Agrawal R, Dittrich KR, Ngu AHH.
Los Alamitos (CA): IEEE Computer Society Press; 2002:17–28.

30. Lee ML, Ling TW, Low WL: Intelliclean: A knowledge-based intelligent
data cleanser. In Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining: 20–23 August 2000. Boston. New
York: ACM; 2000:290–294.

31. Hernandez MA, Stolfo SJ: The Merge/Purge Problem for Large Databases.
In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data: 22–25 May 1995; San Jose. Edited by Carey MJ,
Schneider DA. New York: ACM; 1995:127–138.

32. Hernandez MA, Stolfo SJ: Real World Data is Dirty: Data Cleansing and the
Merge/Purge Problem. Data Min Knowl Disc 1998, 2(1):9–37.

33. McCallum A, Nigam K, Ungar LH: Efficient clustering of high-dimensional
data sets with application to reference matching. In Proceedings of the
Sixth International Conference on Knowledge Discovery and Data Mining: 20–
23 August 2000. Boston. New York: ACM; 2000:169–178.

34. Wong W, Liu W, Bennamoun M: Tree-Traversing Ant Algorithm for Term
Clustering based on Featureless Similarities. Data Min Knowl Disc 2007, 15
(3):349–381.

35. Ng RT, Han J: Efficient and effective clustering methods for spatial data
mining. In Proceedings of the 20th International Conference on Very Large
Data Bases: 12–15 September 1994; Santiago de Chile, Chile. Edited by Bocca
JB, Jarke M, Zaniolo C. San Francisco: Morgan Kaufmann Publishers Inc;
1994:144–155.

36. Vinh NX, Epps J, Bailey J: Information Theoretic Measures for Clusterings
Comparison: Is a Correction for Chance Necessary? In Proceedings of the
26th International Conference On Machine Learning: 14-18 June 2009;
Montreal, Quebec, Canada. Edited by Danyluk AP, Bottou L, Littman ML. New
York: ACM; 2009:1073–1080.

37. Clatworthy J, Buick D, Hankins M, Weinman J, Horne R: The use and
reporting of cluster analysis in health psychology: A review. Br J Health
Psychol 2005, 10(3):329–358.

38. Heyer LJ, Kruglyak S, Yooseph S: Exploring Expression Data: Identification
and Analysis of Coexpressed Genes. Genome Res 1999, 9(11):1106–1115.

39. Hawse JR, Hejtmancik JF, Huang Q, Sheets NL, Hosack DA, Lempicki RA, et
al: Identification and functional clustering of global gene expression
differences between human age-related cataract and clear lenses. Mol
Vis 2003, 9:515–537.

40. Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis
of large gene lists using DAVID Bioinformatics Resources. Nature Protoc
2009, 4(1):44–57.

41. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al: DAVID:
Database for Annotation, Visualization, and Integrated Discovery.
Genome Biol 2003, 4(5):3.

42. Sibson R: SLINK: An optimally efficient algorithm for the single-link
cluster method. Computer J 1973, 16:30–34.

43. Day WH, Edelsbrunner H: Efficient algorithms for agglomerative
hierarchical clustering methods. J Classification 1984, 1:7–24.

44. Murtagh F: A Survey of Recent Advances in Hierarchical Clustering
Algorithms. Computer J 1983, 26(4):354–359.

45. Kotsiantis SB, Pintelas PE: Recent advances in clustering: A brief survey.
WSEAS Trans Inf Sci Appl 2004, 1:73–81.

46. Li X: Parallel algorithms for hierarchical clustering and cluster validity.
IEEE Trans Pattern Anal Mach Intell 1990, 12(11):1088–1092.

47. Olson CF: Parallel algorithms for hierarchical clustering. Parallel Comput
1995, 21(8):1313–1325.

48. Rajasekaran S: Efficient parallel hierarchical clustering algorithms. IEEE
Trans Parallel Distrib Syst 2005, 16(6):497–502.

49. Mi T, Aseltine R, Rajasekaran S: Data Integration on Multiple Data Sets. In
Proceedings of the 2008 IEEE International Conference on Bioinformatics and
Biomedicine: 3–5 November 2008; Philadephia. Edited by Chen X, Hu X, Kim S.
Los Alamitos (CA): IEEE Computer Society Press; 2008:443–446.

50. Horowitz E, Sahni S, Rajasekaran S: Chapter 5, Dynamic Programming. In
Computer Algorithms. 2nd edition. Summit (NJ): Silicon Press; 2008:284–286.

51. Arlazarov L, Dinic EA, Kronrod MA, Faradzev IA: On economic construction
of the transitive closure of a directed graph. Soviet Math, Doklady 1970,
11:1209–1210.

http://www.census.gov/srd/papers/pdf/rrs2006-02.pdf
http://www.census.gov/srd/papers/pdf/rr99-04.pdf

Mi et al. BMC Medical Informatics and Decision Making 2012, 12:59 Page 12 of 12
http://www.biomedcentral.com/1472-6947/12/59
52. Gusfield D: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge (England): Cambridge Univ. Press; 2007.

53. Christen P, Pudjijono A: Accurate Synthetic Generation of Realistic
Personal Information. In Proceedings of the 13th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining: 27–30 April 2009;
Bangkok, Thailand. Edited by Theeramunkong T, Kijsirikul B, Cercone N, Ho
TB. Berlin Heidelberg: Springer; 2009:507–514.

54. Grannis S, Overhage JM, McDonald C: Analysis of identifier performance
using a deterministic linkage algorithm. In Proceedings of the Annual
Symposium of the American Medical Informatics Association: 9–13 November
2002; San Antonio, TX. Edited by Kohane IS. Philadelphia: Hanley & Belfus,
Inc; 2002:305–309.

doi:10.1186/1472-6947-12-59
Cite this article as: Mi et al.: Efficient algorithms for fast integration on
large data sets from multiple sources. BMC Medical Informatics and
Decision Making 2012 12:59.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Previous approaches
	Basic methodology
	Record distance calculation
	The basic algorithm
	Improved algorithms
	Partial construction of the dendrogram
	Ignoring the dendrogram structure
	Faster computation of the edit distance

	link_Tab1
	A &b_k;two-&e_k;&b_k;phase&e_k; algorithm

	Results
	Results on simulated data
	Results on real data

	link_Tab3
	link_Tab2
	Comparison with the probabilistic model using FEBRL

	link_Tab4
	link_Tab5
	Discussion
	link_Fig1
	link_Tab6
	Conclusions
	Additional files
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54

