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Abstract

Background: Artificial neural networks (ANNSs) are widely studied for evaluating diseases. This paper discusses the
intelligence mode of an ANN in grading the diagnosis of liver fibrosis by duplex ultrasonogaphy.

Methods: 239 patients who were confirmed as having liver fibrosis or cirrhosis by ultrasound guided liver biopsy
were investigated in this study. We quantified ultrasonographic parameters as significant parameters using a data
optimization procedure applied to an ANN. 179 patients were typed at random as the training group; 60 additional
patients were consequently enrolled as the validating group. Performance of the ANN was evaluated according to
accuracy, sensitivity, specificity, Youden's index and receiver operating characteristic (ROC) analysis.

Results: 5 ultrasonographic parameters; i.e, the liver parenchyma, thickness of spleen, hepatic vein (HV) waveform,
hepatic artery pulsatile index (HAPI) and HV damping index (HVDI), were enrolled as the input neurons in the ANN

model. The sensitivity, specificity and accuracy of the ANN model for quantitative diagnosis of liver fibrosis were
95.0%, 85.0% and 88.3%, respectively. The Youden’s index (YI) was 0.80.

Conclusions: The established ANN model had good sensitivity and specificity in quantitative diagnosis of hepatic
fibrosis or liver cirrhosis. Our study suggests that the ANN model based on duplex ultrasound may help non-
invasive grading diagnosis of liver fibrosis in clinical practice.
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Background

Hepatic fibrosis is a common feature leading to liver cir-
rhosis as the result of chronic hepatitis or chronic liver
injury. Regardless of the causes, liver fibrosis is charac-
terized by increased extracellular matrix forming hepatic
scars [1]. Liver fibrosis is a reversible pathology process.
If timely and effective treatment is adopted during the fi-
brosis stage, it will prevent the liver from developing
hepatic cirrhosis. Liver biopsy is considered as the gold
standard for final diagnosis of hepatic fibrosis, but the
drawbacks, such as sampling errors, pain and complica-
tions of invasive procedures [2-4], limits its conven-
tional use in clinical practice. Considering the need for
repeated confirmation of the condition of the liver
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during treatment, a non-invasive modality for grading
liver fibrosis or cirrhosis is urgently needed. Imaging
technology has an advantage in being noninvasive and
allowing repeated maneuverability. Among other meth-
ods, ultrasound scanning is the most frequently used
with the superiority of inexpensive, real-time imaging
and hemodynamic evaluation ability. Many researchers
have been committed to establishing a system for liver
fibrosis diagnosis or fibrotic stage evaluation by ultra-
sound [5,6].

In recent years, artificial neural networks (ANNSs) have
appeared as tools for clinical decision-making [7] and
are potentially more successful than traditional statistical
models in predicting clinical outcomes [8,9]. ANNs can
learn experiential knowledge expressed through internal
connections in a similar way to how natural neurons
function in the brain and this knowledge can be made
available for wuse [10]. According to the lesion
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characteristics of liver fibrosis or cirrhosis, one single
ultrasonographic index is incapable of reflecting the
whole problem. An ANN is suitable for a “multi-
parameter” diagnosing mode. In previous studies, liver
fibrosis or cirrhosis was graded by an ANN based on
laboratory results [11,12]. The results showed that a
three-layer ANN could effectively identify the risk for
liver fibrosis in chronic hepatitis B (CHB) patients with
positive HBsAg. An ANN consisting of an input layer, an
output layer and one or more hidden layer could be ad-
equate as a universal approximator of any nonlinear
function [11,13]. The input layer comprises the data
available for analyzing and the output layer comprises
the outcome such as diagnosis, prognosis and evaluation.
In this study, we established an ANN model based on
the ultrasonographic changes in patients with liver fibro-
sis for the first time and aimed to predict the risk of
early liver cirrhosis. We also assessed the early warning
ability of the ANN from an ultrasonographic angle.

Methods

Ethical approval of the study protocol

All subjects included in the study provided written
informed consent. The study protocol was approved by
the ethics committee of the Fourth Military Medical
University Tangdu Hospital (Xi'an, China).

Patient selection

Between July 2008 to June 2010, 308 patients infected by
hepatitis B virus (HBV) or hepatitis C virus (HCV) and
confirmed by laboratory tests at Tangdu Hospital of
Fourth Military Medical University, were investigated in
this study. The pathological changes in these patients to
fibrosis or cirrhosis were evaluated by ultrasound-guided
liver biopsy. Finally, 239 patients with liver pathological
changes were enrolled in the study. Of these patients,
170 were affected by HBV and 69 by chronic HCV. Sub-
jects with hematonosis and heart disease were excluded
from the study. The patients were randomly divided into
a training group (179 cases; 75%) and a validation group
(60 cases; 25%).

Liver pathologic evaluation

Ultrasound-guided liver biopsy was performed after
ultrasound examination. Three pathologists that had no
clinical information about the patients evaluated the
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degree of hepatic fibrosis. Fibrosis was staged from FO to
F4 according to the METAVIR system: FO, no fibrosis;
F1, portal fibrosis without septa; F2, few septa; F3, nu-
merous septa without cirrhosis; and F4, cirrhosis [12]. In
the present study, fibrosis was defined as F1 to F3 stages;
cirrhosis was considered as F4 stage.

Ultrasound examination

Duplex ultrasonographic examinations were conducted
with the Acuson Sequrie 512 (Siemens Acuson Co.,
Mountain View, California) using a 3.5 MHz phased
array transducer and a 10 MHz high-resolution trans-
ducer. All studied subjects fasted overnight before the
examination. Grey-scale parameters including the liver
parenchyma, liver envelope, the size of the spleen, ascite
and Doppler parameters of intrahepatic blood vascular
such as hepatic artery pulsatile index (HAPI), portal vein
velocity (PVVel), hepatic vein damping index (HVDI)
were assessed. The liver parenchyma and liver envelope
were observed by a high-resolution transducer. Four
variables such as the liver parenchyma, liver envelope,
ascite and hepatic vein waveform were graded from 0 to
2 according to the severity of pathological changes, as
shown in Table 1. Measurements of each param-
eter were made during suspended respiration in the
same area.

The Doppler gate was placed in the porta hepatis to
measure the relevant parameters of the portal vein and
hepatic artery. Velocity measurements were conducted
at 30— 60°. The mean velocity of PVVel and HAPI were
calculated automatically by the machine after the wave-
form trace for three cardiac cycles were obtained. Dop-
pler hepatic vein (HV) waveforms were recorded for at
least 5 s with end-expiration breath holding. The middle
HV was measured because it has the most consistent tri-
phasic flow in healthy subjects and the most favorable
Doppler angle. The Doppler gate was placed in the ves-
sel 2-3 cm away from the inferior vena cava (IVC) to
measure the HV waveform. HV waveforms were classi-
fied as ‘triphasic’ (reversed flow in at least one phase),
‘biphasic’ (no reversed flow with or without decreased
phasic oscillation), or ‘monophasic’ (flat with or without
fluttering). Two examiners (Yilin Yang and Guozhen
Yan) classified the recorded HV Doppler waveform tra-
cings. The damping index (DI) was calculated by the

Table 1 Grading standard for the evaluation of ultrasonographic changes on liver fibrosis

2

Variables 0
Liver envelope Smooth
Liver parenchyma Homogeneous

Ascites no or <500 ml

HV waveform Triphasic

slightly coarse

obviously coarse or like wavy changes

Heterogenous coarsened
500 ml~ 3000 ml > 3000 ml
Biphasic monophasic
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minimum velocity/maximum velocity of downward
HV flow.

Doppler examinations were undertaken by one author
(Li Zhang) without prior knowledge of the clinical and
biochemical status of the study population. The reprodu-
cibility of this method was evaluated with repeated ultra-
sound measurements of portal venous blood flow
velocity in 10 healthy subjects over 5 consecutive days
[14]. In order to minimize inter-observer variation, at
the beginning we unified the method of measuring each
index, and all parameters were measured by the
same observer who had no knowledge of the patients’
conditions on the same machine. Each index was calcu-
lated as the mean of three consistent measurements.
The Doppler parameters we measured were consistent
in all subjects.

Development of an ANN model

ANN models were constructed by using neural-network
software (Statistic Neural Networks, version 4.0). The
architecture of the ANN consisted of three layers; i.e.,
the input, hidden and output layers. Each layer con-
tained 5 neurons, 11 neurons and 1 neuron, respectively.
Neurons were tied together with weighted connections.
The number of the network layers, hidden neurons and
the stopping criteria were determined through a trial-
and-error process. The input layer simply fed informa-
tion, as well as related predictive factors, into the net-
work, while nodes in the hidden and output layers
processed information. The input data selected for the
development of the neural network were ultrasongraphic
parameters. The output layers contained one neuron (0,
fibrosis; 1, cirrhosis).

The training rule that was used was back-propagation
of error. During the training, the corresponding known
outputs of the system were held in the output nodes to
compare with the results produced by the network. The
nodes in the hidden layer had no prescribed initial
values and helped to allow complex relationships be-
tween the input and output nodes to evolve. Information
was transported from the input layer to the output layer
by calculating the sum at each node, which was derived
from combining all the nodes in the previous layer.
Training was terminated when the sum of square errors
was at a minimum. At the end of each training session,
the network was tested and the prediction accuracy was
calculated. We then selected the best network in terms
of accuracy.

Statistical analysis

Continuous variables were expressed as mean * standard
deviation (SD). Categorical variables were compared
using x> analysis and continuous variables were com-
pared by the Mann—Whitney U Test, or Kruskal-Wallis
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Test. Performance of the ANN prediction was tested
using receiver operating characteristic (ROC) curve ana-
lysis. The ANN predictions for the diagnosis of liver
fibrosis stage were expressed in terms of accuracy, sensi-
tivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV) and Youden’s index (YI) for
several considered cut-off values. A value of p<0.05 was
considered significant in all the analyses.

Results

Of the initial 308 subjects, 69 patients, who were con-
firmed to be without fibrosis were excluded from the
study. The fibrosis group contained 157 subjects, 53
(33.7%) had portal fibrosis without septa (F1), 30 (19.1%)
had few septa (F2), and 74 (47.1%) had numerous septa
without cirrhosis (F3); the cirrhosis group contained 82
subjects, respectively. The main clinical and pathological
data for the patients according to the fibrosis stage and
study group at the beginning are presented in Table 2.
We randomly divided the 239 patients who underwent
liver biopsy into 2 groups: a training group and a validat-
ing group.

After statistical analysis, 5 ultrasonographic variables;
i.e., the liver parenchymal, thickness of the spleen, the
HV waveform, HAPI and DI, were found to be signifi-
cantly different between the fibrosis group and cirrhosis
group, and were subsequently selected as the input neu-
rons (Table 3).

Table 4 shows the ANN performance in diagnosing
cirrhosis in chronic HBV patients, compared to the gold
standard liver biopsy. Some predictive performance

Table 2 The distribution and clinical characteristics of
239 subjects

Fibrosis (F1-F3) Cirrhosis (F4)

Age (median/range) 45(30-63) 47(26-59)

Gender (F/M) 62/117 15/45

Post-hepatitis B 128 42

Post-hepatitis C 51 18

Training group 146 33

Validating group 33 27
Training Group Validating Group

Age (median/range) 43(35-57) 45(26-63)

Gender (F/M) 57121 20/51

Post-hepatitis B 120 50

Post-hepatitis C 62 7

Stage of Liver Fibrosis

F1 40 13

F2 22 8

F3 55 19

F4 62 20
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Table 3 Statistical comparison of the ultrasonographic
viriables between the fibrosis group and the cirrhosis

group
Variable Fibrosis group  Cirrhosis group P value
Live parenchymal 0.645 +£0.055 0816+£0.129 0.022*
Liver envelope 0.639+0.054 0.709+£0.112 0.224
Thickness of Spleen (cm)  3.279+0.439 4058 +0.672 0.003*
Ascites 0413+0.035 0516+0.082 0976
HV waveform(0/v/) ° 128/8/3 28/6/6 <0.0001*
PWel (cm/s) 18.16(1.273) 15.827(6.301) 0.114
HAPI 1.247 £0.155 1.147£0.283 0.009*
HARI 0.697 £0.050 0.711£0.052 0.910
DI 0458 £0.131 0.574+0.111 0.030*

* Significant differences (P < 0.05).
@ Absolute number.

indices such as sensitivity, specificity, misdiagnosis rate
(MR), PPV (positive predictive value), NPV (negative
predictive value), accuracy, YI (Youden’s index) and
AUC are listed in Table 5. ROC curves for the ANN
model are shown in Figure 1.

Discussion

Currently, with the development of laboratory and im-
aging means for staging the fibrotic evolution of chronic
liver diseases, clinical validation has highlighted the fact
that, overall, liver biopsy is probably an imperfect gold
standard [15]. Actually, even a 25 mm long liver biopsy
has a 25% rate of discordance for fibrosis staging [16].
Therefore, liver biopsy is prone to sampling errors and
to intraobserver and interobserver variability [17,18].
Also, when the specimen size is adequate, the level of
experience of the pathologist may even be more import-
ant [19]. Invasive procedures are not suitable for regular
clinical monitoring of disease progression. Even though
there is a high prevalence of chronic liver disease world-
wide and it represents a significant public health prob-
lem, liver biopsy is obviously not appropriate for
screening liver fibrosis and cirrhosis.

Liver fibrosis is a kind of diffuse lesion involved in
multiple structures of the liver. Several factors are taken
into account, either by imaging or laboratory tests, be-
fore the diagnosis of liver fibrosis or cirrhosis can be
made. When multiple and diverse factors are likely to

Table 4 Ultrasound diagnosis of neural network used in
the results of liver fibrosis

Pathology
ANN Fibrosis (F1-F3) Cirrhosis(F4) Total
Fibrosis (F1-F3) 38 3 41
Cirrhosis(F4) 2 17 19

Total 40 20 60
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Table 5 Predictive performance of ANN (artificial
neural network)

sensitivity specificity MR PPV NPV  Accuracy YI AUC
ANN 95.0 % 85.0 % 83% 926 % 894 % 883 % 080 0922

influence decision making, computer-based decision
support systems, such as neural networks, are capable of
handling large amounts of data and are helpful in arriv-
ing at or supplementing a correct decision by clinicians
[20,21]. ANNs have been used in medicine for various
purposes, including prediction of mortality of patients
with cirrhosis of the liver [22,23]. An intelligent mode
was also compared to MELD scoring, Child-Pugh’s scor-
ing and other conventional logistic regression models
and performance of an ANN was significantly better
than those of the models.

Real time ultrasonography has become an integral part
of the non-invasive evaluation of chronic liver disease in
many clinical settings while the search for a non-
invasive imaging marker for staging liver fibrosis or cir-
rhosis is inactive. The performance of ultrasonographic
imaging as a non-invasive diagnostic or prognostic mo-
dality for liver fibrosis or cirrhosis, as well as for correl-
ation with histological changes and functional disorders
of the liver, remains controversial and is still debated.
However, recent advances in ultrasound technology have
improved the diagnostic accuracy of fibrosis in patients
with chronic liver disease. Aube et al. [24] studied a
high-resolution ultrasound probe of the liver paren-
chyma, liver surface smoothness, spleen size and portal
vein blood flow rate, using 11 indicators in ultrasonic
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Figure 1 ROC (receiver operating characteristic) curves of ANN
(artificial neural network).
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testing, and found an accuracy of 82 ~88% for surface
nodular changes in the liver and spleen thickness in the
diagnosis of cirrhosis of the liver.

In the present study, we constructed a multi-parameter
dependent diagnostic model based on ultrasound in order
to avoid the shortcomings of a single-parameter decision
making model of ultrasonography. We took several ultra-
sonographic variables into consideration including grey-
scale and Doppler indexes such as the liver parenchyma,
liver edge, PVVel, and HAPIL Secondly, according to the
different treatment principles for liver fibrosis and liver
cirrhosis, we divided the patients into two groups: the
fibrotic group (F1-F3 stage) and the cirrhotic group
(F4 stage). Variables like the liver parenchyma, liver en-
velope, ascites and HV waveform were graded from 0 to
2 according to the imaging changes in different stages.
The variables were quantitatively described, for example,
as PVVel, HAPI, HARI and DI, and were compared by
the actual values. DI was used to quantitatively assess
the extent of the abnormal HV waveform. The relatively
large number of intra- and extra-hepatic variables was
considered in the study to work with the largest possible
amount of information. In fact, data collection was per-
formed by trying to include all variables that could have
a connection with the problem. However, some of these
variables may contain confusing information, or even
completely irrelevant information. Selecting the signifi-
cant variables after statistical analysis can increase diag-
nostic accuracy as well as sensitivity and specificity.
Some experts would consider non-invasive serum tests
of fibrosis with AUC-ROC values of 0.85 to 0.90 to be
as good as a liver biopsy for staging fibrosis [25]. In our
study, the diagnostic performance achieved by the
ultrasound-based ANN was considered as having AUC-
ROC values around 0.92.

Limitation of the study

This study has several limitations that must be taken
into account. Firstly, the ultrasound variables in the
present study did not fully cover all involved parameters,
although some of these variables could have contributed
to improvement of the ANN. The ANN model was con-
structed using 10 variables as the proposed input neu-
rons. This Secondly, the number of patients was
limiting. In an ANN model, each group should have 100
patients to avoid the risk of overfitting the data. This
was not fully achieved for the validation group (60 of
239 patients). Finally, we could not evaluate the accuracy
of pathological diagnosis caused by sampling error or
variation in the experience of the pathologists.

Conclusions
The study highlighted the construction and assessment
of an ANN for identifying the risk of liver cirrhosis by a
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non-invasive imaging modality. In the study, we
provided evidence that this intelligent model can
accurately predict liver cirrhosis by ultrasound. It could
be used to improve clinical decisions for patients with
chronic liver disease.
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