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Abstract

Background: In this work, we propose a multilevel and multiparametric approach in order to model the growth
and progression of oral squamous cell carcinoma (OSCC) after remission. OSCC constitutes the major neoplasm of
the head and neck region, exhibiting a quite aggressive nature, often leading to unfavorable prognosis.

Methods: We formulate a Decision Support System assembling a multitude of heterogeneous data sources (clinical,
imaging tissue and blood genomic), aiming to capture all manifestations of the disease. Our primary aim is to
identify the factors that dictate OSCC progression and subsequently predict potential relapses of the disease. The
discrimination potential of each source of data is initially explored separately, and afterwards the individual
predictions are combined to yield a consensus decision achieving complete discrimination between patients with
and without a disease relapse. Moreover, we collect and analyze gene expression data from circulating blood cells
throughout the follow-up period in consecutive time-slices, in order to model the temporal dimension of the
disease. For this purpose a Dynamic Bayesian Network (DBN) is employed which is able to capture in a transparent
manner the underlying mechanism dictating the disease evolvement, and employ it for monitoring the status and
prognosis of the patients after remission.

Results: By feeding as input to the DBN data from the baseline visit we achieve accuracy of 86%, which is further
improved to complete discrimination when data from the first follow-up visit are also employed.

Conclusions: Knowing in advance the progression of the disease, i.e. identifying groups of patients with higher/
lower risk of reoccurrence, we are able to determine the subsequent treatment protocol in a more personalized
manner.
Background
Oral cancer refers to the cancer that arises in the head
and neck region, i.e. in any part of the oral cavity or oro-
pharynx. OSCC constitutes the 8th most frequent neo-
plasm in humans according to the worldwide cancer
incidence ranking, and has been primarily associated
with smoking and alcohol consumption [1]. In terms of
sex, men face twice the risk of being diagnosed with oral
cancer than women [1]. Moreover, sun exposure consti-
tutes a significant risk factor, particularly for the cancer
of the lip. There has also been suggested in the litera-
ture, that infection with the Human Pappilomavirus
(HPV) is associated with oral cancer, especially with
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occurrences in the back of the mouth (oropharynx, base
of tongue, tonsillar pillars and crypt, as well as the ton-
sils themselves) [2]. Although current advances in treat-
ment protocols [3] have led to high rates of successful
eradication of the disease (i.e. a state called remission), a
significant percentage, in the range of 25-48% [4], of re-
mittent patients suffer from locoregional relapses, owed
to the deeply infiltrative nature of these tumors, as well
as the significant potential for occult neck metastasis [5].
The accurate modeling of the disease progression and
consequently the timely identification of a potential re-
occurrence can provide patient-specific treatment.
In the literature, several studies have identified factors

affecting the oral cancer invasion, progression and me-
tastasis, both from a clinical and molecular perspective;
yet they still remain limited in number and efficacy,
leading to unsatisfactory results [6]. Specifically, [7,8] de-
rive a gene expression profile in order to diagnose lymph
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node metastasis originating from a primary head and
neck carcinoma; similarly, in [9], future metastases of
head and neck carcinoma are predicted. In [10-12], the
progression of tongue carcinoma is studied, and a subset
of genes is identified, able to predict potential metastasis
of the primary tumor is in the lymph nodes. Recently
Reis et al. [13] have performed a meta-analysis based on
five publicly available microarray datasets, and identified
a four-gene signature that is of prognostic value for oral
cancer reoccurrence. However, it should be noted that
all the aforementioned approaches do not take into ac-
count the temporal dimension of the disease and its ac-
tual evolution over time. Other approaches identified in
the broader field of biomedical engineering deal with
pairs of consecutive time-slices rather than representing
the follow-up as a whole [14].
The proposed approach encompasses in a complemen-

tary manner a multitude of heterogeneous data, varying in
scale and dimension, therefore, "framing" all possible man-
ifestations of the disease, from a clinical, imaging and gen-
omic point of view. Among the aims of this work is to
identify a limited subset of factors that are highly corre-
lated with oral cancer progression, thus, formulating the
disease profile. Based on this profile, we are able to calcu-
late the risk of relapse for each patient and subsequently
discriminate the patients in high and low risk groups.
Moreover, information derived from time-varying para-
meters (i.e. gene expression from circulating blood cells) is
employed in order to model the evolvement of the disease
over time, and capture the temporal dimension of the dis-
ease as well. The outcome of this analysis is the represen-
tation of the disease mechanism which is subsequently
used in order to conjecture if, when and why a patient is
prone to suffer a relapse of the disease. Having a timely
and accurate estimation of the relapse probability can be
proven quite helpful towards determining the most proper
treatment for a specific patient; i.e. patients in high risk
can be monitored more intensely, whereas, patients in low
risk are subject to less aggressive treatment.
In the sections that follow, we lay out our approach,

which is organized in two types of analyses, namely:
i) Baseline Data Analysis, which involves the analysis of
data collected during the baseline visit of each patient, and
are used to stratify the patient either at high or low risk of
developing a relapse; ii) Disease Evolution Monitoring,
which employs data varying over the follow-up period,
i.e. gene expression from circulating blood cells, in order
to assess the relapse probability coupled with the approxi-
mate timing that this relapse is more likely to occur.

Methods
Clinical scenario
In the current study, we consider 86 patients [NeoMark
project, FP7-ICT-2007-224483, ICT enabled prediction
of cancer reoccurrence - D6.1: Research protocol] that
have been enrolled from three major clinical centers res-
iding in Italy (University Hospital of Parma and National
Cancer Center Regina Elena) and Spain (MD Anderson
Cancer Center). The research for this paper has been
conducted in compliance with the Helsinki Declaration;
the protocol of the study has been edited in compliance
to the Good Clinical Practice and approved by the fol-
lowing Ethical Committees: Comitato Etico Unico per la
Provincia di Parma and Ethical Committee of Centro
Médico Oncológico MD Anderson España. Written,
informed consent was obtained from each patient prior
to study participation. All patients have been diagnosed
with OSCC and have reached remission, after successful
therapeutic intervention (i.e. surgery, chemo/radio-ther-
apy). Thereafter, we collect clinical, imaging and gene
expression data, both from the primary tumor as well as
from circulating blood cells, at the baseline state of the
patient. The clinical data contain standard measure-
ments and laboratory markers from the patient's medical
record as well as pathology and risk factor data referring
to the organism as a whole (Table 1).
The imaging data contain image-extracted information

after derived after processing the CT and MR imaging
modalities of the primary tumor mass and adjacent
lymph nodes of the head and neck area (Table 2). As for
the genomic data, these include gene expression infor-
mation both from the primary cancerous tissue speci-
men as well as from circulating blood cells. During the
follow-up period and for an 24-month time span [4],
blood genomic data are further gathered from the pa-
tient regularly, during scheduled visits planned in con-
secutive time intervals.
An overview of the employed clinical scenario is

depicted in Figure 1. Subsequently, patients are stratified
into two groups, namely relapsers and non-relapsers
based on the occurrence or not of a potential disease re-
lapse during the follow-up. More specifically, 26 patients
have already suffered a relapse, whereas the remaining
60 are still disease-free and constitute the control group
of patients in our study.

Baseline data analysis
The aim of the Baseline Data Analysis is to exploit the
information from the baseline data of patients in order
to compute the probability of a potential relapse, and
consequently stratify the patients into high and low risk
groups according to the reoccurrence probability. For
this purpose, four sources of data have been utilized;
specifically clinical, imaging, tissue genomic and blood
genomic data, aiming to identify the most significant
features that are effective in detecting a potential relapse.
Initially, each source of data is treated independently,
subject to the steps shown in Figure 2, in order to



Table 1 Clinical features examined in this work

Ecog status Mobile prosthesis Body mass index (BMI) Grade of differentiation

Weight Dental Cusps Substance Exposition Surgical Margins

Height Galvanic Current Precancerous Lesions Martinez-Gimeno Score

Diabetes Oral Hygiene Duration Anneroths Mod Score

Allergies Infection Immunosuppressor Treatments Presence D2_40Stain

Cholesterol Type Of Infection Immuno Duration P53_STAIN

Hypertension Physical Agents Immuno Type P16Ink4aStain

Family History Of Malignance Type Of Physical Agent Tumor Maximum Diameter EGFR Stain

Smoker Diet Deficit Tumor Thickness CyclinD1Stain

Smoking Habits Fe Haematic Concentration Depth Of Invasion Ki67Stain

Quantity Per Day Plummer Vinson Basaloid Features HPV_DNA

Smoking For Hb Haematic Concentration Lympho Plasmacytic Rection T Staging

Ex Smoker B12 Vitamins Haematic Concentration Lympho Plasmacytic Invasion N Staging

Quitted Smoking A Vitamins Haematic Concentration Perineural Invasion M Staging

Alcohol E Vitamins Haematic Concentration Degree Of Cells Keratinisation

Drinking Habits Folati Nuclear Pleomorphism

Mechanical Trauma Eating Habits Number of Mitoses per 10HPF
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estimate the probability of a potential relapse; next, a
consensus scheme is implemented that combines the in-
dividual predictions in a complementary manner, using a
weighted voting algorithm.
As shown in Figure 2, the flow of operations applied

upon each source of data includes a series of preproces-
sing steps; next, the resulting input vector is subject to
feature selection in order to maintain the most discrimin-
atory features, which are subsequently fed into a classifica-
tion algorithm that assigns each patient either as high risk
or low risk in terms of the calculated relapse probability.
Eventually, a multi-type classification scheme combines all
four individual single-classifier decisions, in order to yield
an overall outcome. The preprocessing steps, the feature
selection schemes as well as the classification algorithms
have been invoked through the Weka Machine Learning
software [15].

Preprocessing
During this step, we utilize a series of preprocessing steps in
order to enhance the quality of the input. Specifically,
Table 2 Imaging features employed in this work

Contrast take-up
rate

Necrosis Side of lymph nodes

Minor Axis Bigger
than 10mm

Central Necrosis Side Relative to Tumor

Extra Nodal
Spreading

Bone Infiltration Cluster

Shape Deviation Carotid Infiltration Number of Lymph Nodes

Texture Cuteneous Invasion Number of Lymph Nodes
Bigger than 3

Water Content Site of lymph nodes
features with high percentage (>90%) of missing values are
omitted from our analysis, whereas the values of the features
with less percentage of missing values are imputed with the
modes and means, in the case of nominal and numeric fea-
tures, respectively. Another important issue present in our
dataset is that the enrolled patients are unevenly distributed
in the classes of relapsers and non-relapsers, resulting in
considerable class imbalance. For this purpose, we employ
the Synthetic Minority Oversampling Technique (SMOTE)
[16], which utilizes a k-NN approach in order to oversample
the minority class. It should be noted that SMOTE neither
discards potentially useful samples nor merely replicates
existing samples, therefore, posing an advantageous solution
compared to sampling-based approaches. On the contrary,
undersampling of the majority class may lead to loss of sig-
nificant information, whereas, oversampling of the minority
class does not add any new information and may duplicate
possibly noisy or even erroneous instances.
Especially for the case of genomic data (both tissue and

blood ones), the initial feature vector consisting of 45,015
gene expression values, is subject to certain steps in order
to enhance the quality of the raw input data, that is subse-
quently employed for data analysis; to this end, redundant
and control genes are removed, as well as genes with low
data quality or high percentage of missing values. The out-
come is a set of 33,491 high quality genes that are further
analyzed in order to procure a limited subset of genes that
are mostly differentially expressed between relapsers and
non-relapsers. For this purpose we employ the Signifi-
cance Analysis of Microarrays (SAM) algorithm [17],
which performs multiple gene specific t-tests on permuta-
tions of the initial dataset, in order to account for the ini-
tially enormous number of input genes.



Figure 1 The clinical scenario.
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Feature selection
As soon as the feature vectors from each source of data are
assembled, we either feed them directly as input to the clas-
sification algorithms, or employ a feature selection algo-
rithm in order to discard redundant or correlated features
Figure 2 Baseline data analysis flowchart.
and maintain a more informative subset, thus, facilitating
the classification task as well. For this purpose two feature
selection algorithms have been employed, namely the
Correlation-based Feature Subset selection (CFS) [18] and
the wrapper algorithm [19] (with the default settings of the
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Weka software). CFS maintains features that exhibit low
correlation among them and high correlation with the class
attribute; on the other hand, the wrapper algorithm evalu-
ates all possible feature combinations and retains the best
performing subset, tailored to the target classification
algorithm.

Classification
Next, we examine the performance of six popular classi-
fication algorithms [20] towards the discrimination
between patients with and without disease relapse; spe-
cifically, we employ Bayesian Networks (BN), Naive
Bayes (NB), Artificial Neural Networks (ANN), Support
Vector Machines (SVM), Decision Trees (DT) and
Random Forests (RF).
For evaluation purposes, we employ two techniques,

namely 10-fold cross validation and leave-one-patient-out.
During 10-fold cross validation the dataset is split into 10
stratified sets, whereby 9/10 are used for training and the
remaining 1/10 is used for testing; after a full rotation, the
results over the 10 testing sets are averaged in order to
procure the overall performance of the algorithm. The
leave-one-patient-out technique is quite similar to 10-fold
cross validation, where the number of folds is equal to the
number of patients in the dataset. Specifically all patients
but one are used for training and the remaining one is
used for testing in a round-robin manner. The evaluation
metrics used to compare the employed classification
schemes are: sensitivity, specificity, accuracy, the Kappa
statistic, as well as the Area Under Curve (AUC), which is
an evaluation index obtained from the Receiver Operating
Curve (ROC) analysis.

Disease evolution monitoring
In the second part of our analysis (i.e. Disease Evolution
Monitoring), we aim to predict the probability of a patient
to develop a relapse during the follow-up period; hence,
we introduce the time dimension and estimate the ap-
proximate timing that a relapse is more likely to occur.
For this purpose, we employ time-course gene expression
data, extracted at predefined time-intervals during the
follow-up period from circulating blood cells. Data from
23 patients are analyzed, out of which 11 have already
been diagnosed with a disease relapse and the remaining
12 are disease free. The flowchart of the Disease Evolution
Monitoring analysis is depicted in Figure 3.
Initially, the gene expression data obtained from

45,015 genes are filtered in order to omit duplicate and
control genes as well as the ones that are of low quality;
it should be noted that all microarray experiments have
been conducted using the same platform, the same array
design and the same feature extraction software version
in order to exclude unwanted data perturbations other
than biological variability. Next, we identify the genes
that are mostly differentially expressed between relapsers
and non-relapsers; in addition, we extract a personalized
gene subset (i.e. Personalized Genetic Signature) aiming to
capture patient-specific perturbations of the disease pro-
gression within its molecular basis. Both the aforemen-
tioned inputs are fed as input to a Dynamic Bayesian
Network (DBN) [21] in order to model the disease evolu-
tion over the follow-up and predict potential relapses.

Identification of the most significant genes
After applying some basic filtering steps upon the gene ex-
pression data (i.e. omission of duplicate, control and low-
quality genes), we are left with a set of 33,491 genes, that
are fed to the next steps of our analysis. The SAM algo-
rithm [17] is subsequently employed, which analyzes dif-
ferentially unpaired time-course gene expression data
between two groups; specifically we perform the Wilcoxon
statistical test which identifies those genes that are mostly
differentially expressed between the two groups of patients
in all time-slices of the follow-up.

Personalized Genetic Signature
In addition, we extract a patient-specific genetic indica-
tor denoting the progression of the disease for a specific
patient; for each patient we compare the gene expression
values before treatment (cancerous profile) and during
the first stages of remission (cancer-free profile). The
outcome is a limited set of differentially expressed genes
representative for each patient, allowing for personalized
modeling of the disease evolvement. The expression of
these genes from all succeeding follow-up visits is com-
pared in turn with the cancerous and the cancer-free
profile, calculating the correlation and the Euclidean dis-
tance; these metrics provide, respectively, a qualitative
and quantitative measure of the patient's prognosis. In
the case of the Euclidean distance a weighted variant is
employed which takes into account the significance of
each gene in the personalized genetic signature. This
weighting factor is proportional to the differential ex-
pression of each gene between the cancerous and the
cancer-free profile.

Dynamic Bayesian Networks
In the next step of our analysis, we employ a DBN aim-
ing to identify potential relapses of the disease, as well as
the approximate time-frame of the relapse. DBNs are ba-
sically temporal extensions of Bayesian Networks, as
shown in the provisional DBN architecture of Figure 4.
In order to estimate the best performing DBN architec-

ture, i.e. the dependencies among the employed variables
within the same time-slice (intra-slice dependencies), as
well as across successive time-slices (inter-slice dependen-
cies), we employ two search algorithms, namely the
Greedy and the Simulated Annealing. Based on the trained



Figure 3 Disease evolution monitoring flowchart.
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model, we are able to conjecture the values of all variables
from future time-slices, including of course the probability
of reoccurrence, by using the junction tree algorithm for
inferencing from the DBN. In order to formulate and fine-
tune the DBN network, as well as for inferencing from the
trained model, the miniTUBA system has been used [22].
Due to the relatively limited number of patients available
for evaluating the Disease Evolution Monitoring, we em-
ploy the leave-one-patient-out technique which is rather
suited for making the most out of refined datasets.
Figure 4 Provisional architecture of a DBN. Each VarN in the oval shape
consecutive time slices.
Results
Baseline data analysis
In the sections that follow, we present the results
obtained in our effort to stratify the patients in high and
low risk groups based on the reoccurrence probability.
Initially, each source of data is treated independently
and subsequently all single-classifier decisions are com-
bined using a multi-type classifier. In the first step, each
source of data is subject to preprocessing, and then the
resulting feature vector is fed to the target classifier
corresponds to a specific variable/feature that has been recorded in



Exarchos et al. BMC Medical Informatics and Decision Making 2012, 12:136 Page 7 of 14
http://www.biomedcentral.com/1472-6947/12/136
either unaltered or after applying certain feature selec-
tion algorithms, i.e. CFS and wrapper. As for the actual
classification task, we have examined the performance of
the following classifiers: Bayesian Networks, Naive Bayes,
Artificial Neural Networks, Support Vector Machines,
Decision Trees and Random Forests.
Clinical-based classification
Table 3 presents the results obtained using solely the
clinical data, with all three features selection schemes,
i.e. without performing feature selection, using the CFS
algorithms and the wrapper algorithm, and feeding sub-
sequently the resulting feature vector as input to a series
of classification algorithms.
The employment of the CFS algorithm for feature se-

lection maintains the following features as most discrim-
inatory: smoker, tumor thickness, lymphoplasmacytic
rection, perineural invasion, num mitoses HPF, surgical
margins, p53 stain and N staging. The employment of
the wrapper algorithm has pinpointed the following fea-
tures for each classification algorithm: BN: ecog status,
cholesterol, grade differentiation and N staging; NB: al-
lergies, cholesterol, depth invasion, lympphoplasmacytic
rection and N staging; ANN: ecog status, cholesterol,
depth of invasion and N staging; SVM: ecog status,
smoking duration and N staging; DT: depth of invasion,
p16ink4a stain and N staging; RF: quantity of cigarettes,
galvanic current, eating habits, BMI, depth invasion and
N staging.
Table 3 Results obtained using the clinical data and all classi

Classification algorithm Acc. (%)

No feature selection

BN 73.7(±8.86)

NB 74.6(±15.54)

ANN 74.6(±15.65)

SVM 74.6(±11.84)

DT 81.6(±11.21)

RF 74.6(±13.98)

CFS

BN 73.7(±10.20)

NB 77.2(±9.73)

ANN 71.9(±10.03)

SVM 78.1(±10.26)

DT 77.2(±11.88)

RF 72(±14.12)

Wrapper

BN 74.6(±10.62)

NB 78.1(±10.59)

ANN 77.2(±14.39)

SVM 78.1(±11.62)

DT 83.3(±10.06)

RF 75.4(±8.60)

Acc.: Accuracy; Se.: Sensitivity; Sp.: Sensitivity; AUC: Area Under Curve.
Imaging-based classification
In Table 4 that follows, we present the results obtained
using the imaging data and the classification schemes as
laid out previously.
The employment of the CFS algorithm for feature selec-

tion resulted in a refined feature vector containing the
following features: extra-tumor spreading, extra-nodal
spreading, texture (lymph node), site (lymph node), side
(lymph node) and number of lymph nodes. Afterwards, the
employment of the wrapper feature selection algorithm has
resulted in the following lists of features for each classifica-
tion algorithm: BN: extra-tumor spreading and site (lymph
node); NB: extra-tumor spreading and site (lymph node);
ANN: extra-tumor spreading and site (lymph node); SVM:
extra-tumor spreading, floor of the mouth invasion and site
(lymph node); DT: extra-tumor spreading, perineural infil-
tration (tumor), bone infiltration (tumor) and site (lymph
node); RF: extra-tumor spreading and site (lymph node).
Tissue genomic-based classification
Using the gene expression values acquired from the can-
cerous tissue, we aim to identify those genes that are
mostly differentially expressed between relapsers and
non-relapsers; for this purpose we employ the SAM al-
gorithm and set the fold-change threshold to 1.8, thus,
yielding a set of 9 genes, shown in Table 5.
Subsequently, the retained genes are employed as part

of a series of classification schemes in order to discrim-
inate the patients into high and low risk groups, in terms
fication schemes

Se. (%) Sp. (%) Kappa AUC

61.4(±16.04) 86(±10.86) 0.47(±0.18) 0.775(±0.13)

68.4(±14.72) 80.7(±18.31) 0.49(±0.31) 0.721(±0.15)

73.7(±19.78) 75.4(±19.25) 0.49(±0.31) 0.781(±0.12)

71.9(±17.93) 77.2(±20.73) 0.49(±0.24) 0.746(±0.12)

73.7(±14.35) 89.5(±11.91) 0.63(±0.22) 0.826(±0.10)

68.4(±18.19) 80.7(±16.56) 0.49(±0.28) 0.807(±0.09)

64.9(±15.56) 82.5(±12.18) 0.47(±0.20) 0.776(±0.08)

68.4(±14.42) 86(±12.15) 0.54(±0.19) 0.783(±0.10)

68.4(±14.35) 75.4(±15.07) 0.44(±0.20) 0.736(±0.10)

66.7(±17.43) 89.5(±9.09) 0.56(±0.21) 0.781(±0.10)

66.7(±12.09) 87.7(±15.96) 0.54(±0.24) 0.788(±0.07)

64.9(±16.94) 78.9(±16.39) 0.44(±0.28) 0.75(±0.09)

66.7(±18.21) 82.5(±8.05) 0.49(±0.22) 0.758(±0.15)

73.7(±14.56) 82.5(±9.19) 0.56(±0.21) 0.791(±0.09)

73.3(±11.09) 80.7(±19.95) 0.54(±0.29) 0.791(±0.13)

66.7(±17.43) 89.5(±11.65) 0.56(±0.23) 0.781(±0.12)

73.7(±14.35) 93(±8.05) 0.67(±0.20) 0.842(±0.09)

71.9(±12.01) 78.9(±8.05) 0.51(±0.17) 0.826(±0.11)



Table 4 Results obtained using the imaging data and all classification schemes

Classification algorithm Acc. (%) Se. (%) Sp. (%) Kappa AUC

No feature selection

BN 86.4(±10.48) 77.3(±17.98) 95.5(±9.56) 0.73(±0.21) 0.936(±0.07)

NB 87.5(±11.96) 75(±23.21) 100(±0) 0.75(±0.24) 0.901(±0.12)

ANN 83(±10.65) 81.8(±13.58) 84.1(±18.83) 0.69(±0.21) 0.914(±0.07)

SVM 84.1(±12.15) 81.8(±17.98) 86.4(±19.16) 0.68(±0.24) 0.841(±0.12)

DT 77.3(±17.71) 72.7(±25.41) 81.8(±27.29) 0.55(±0.35) 0.738(±0.19)

RF 83(±8.02) 72.7(±16.70) 93.2(±16.36) 0.66(±0.16) 0.915(±0.11)

CFS

BN 85.23(±11.05) 81.8(±16.91) 88.6(±15.06) 0.7(±0.22) 0.917(±0.05)

NB 77.3(±6.82) 65.9(±13.12) 88.6(±15.06) 0.55(±0.13) 0.881(±0.07)

ANN 83(±11.72) 84.1(±14.14) 81.8(±11.35) 0.66(±0.23) 0.89(±0.10)

SVM 87.5(±12.25) 84.1(±14.76) 90.9(±14.15) 0.75(±0.24) 0.875(±0.12)

DT 84.1(±11.72) 77.3(±14.42) 90.9(±14.15) 0.68(±0.23) 0.831(±0.13)

RF 83(±11.72) 79.5(±13.58) 86.4(±14.54) 0.66(±0.23) 0.887(±0.11)

Wrapper

BN 85.2(±12.25) 84.1(±14.76) 86.4(±14.15) 0.7(±0.24) 0.866(±0.11)

NB 90.9(±12.25) 88.6(±14.76) 93.2(±14.15) 0.82(±0.24) 0.89(±0.12)

ANN 89.8(±12.25) 86.4(±14.76) 93.2(±14.15) 0.8(±0.24) 0.854(±0.13)

SVM 86.4(±12.25) 86.4(±14.76) 86.4(±14.15) 0.73(±0.24) 0.864(±0.12)

DT 85.2(±13.64) 86.4(±14.76) 84.1(±25.58) 0.7(±0.28) 0.835(±0.24)

RF 88.6(±12.25) 84.1(±14.76) 93.2(±14.15) 0.77(±0.24) 0.906(±0.13)

Exarchos et al. BMC Medical Informatics and Decision Making 2012, 12:136 Page 8 of 14
http://www.biomedcentral.com/1472-6947/12/136
of reoccurrence probability. The results obtained with all
employed classification schemes are shown in Table 6.
The utilization of the CFS algorithm for feature selec-

tion, subsequently retains the following features: TCAM,
SOD2, AMDHD1, AY358224, PHACTR1, AK026836 and
RPRM. Afterwards, the employment of the wrapper algo-
rithm coupled with a different target classification algo-
rithm each time has retained the following features: BN:
TCAM1, AMDHD1, AY358224, PHACTR1 and RPRM;
NB: TCAM1, SOD2, AMDHD1, PHACTR1 and RPRM;
ANN: TCAM1, SOD2, AMDHD1, PHACTR1, SLC5A12,
AK026836 and RPRM; SVM: TCAM1, SOD2, FCAR,
AMDHD1, AY358224 and PHACTR1; DT: AMDHD1,
AY358224, PHACTR1, AK026836 and RPRM; RF: SOD2,
FCAR, AMDHD1, AY358224, PHACTR1 and RPRM.
In the literature, there have been identified several

genes that are descriptive of the development and the
prognosis of oral cancer, therefore, we have additionally
integrated these genes with the ones identified in our
work, in order to gain enhanced generalization capability
and explore the overall discriminative potential of the
resulting unified gene set. The literature derived set con-
sists of 28 genes [23,24] whose performance has been
evaluated upon the current dataset, using the same
Table 5 List of the most significant genes as pinpointed
by the SAM algorithm

TCAM1 AMDHD1 SLC5A12

SOD2 AY358224 AK026836

FCAR PHACTR1 RPRM
methodology as described in the previous sections. Table 7
provides a comparison among the highest results obtained
using the genes identified in the current work, the litera-
ture extracted genes and the union of the two gene sets.
It is noteworthy that even though both gene sets per-

form quite satisfactory, the union of the two gene sets sig-
nificantly ameliorates the obtained results, enhancing the
generalization capability of the classification procedure.

Blood genomic-based classification
Same as with the tissue genomic data, for the blood gen-
omic data as well, initially we employ the SAM algorithm
in order to identify the genes that are mostly differentially
expressed between relapsers and non-relapsers; the
obtained gene subset is shown in Table 8.
The discriminative potential of the gene subset is eval-

uated either by providing it directly as input to a series
of classification algorithms, or by applying certain fea-
ture selection algorithms, prior to the classification task.
The results obtained when the 11 genes are used for
classification without performing feature selection are
shown in Table 9.
The employment of the CFS algorithm maintains the

following genes as most significant: A_24_P221960,
THC2399272, BM683433, OXCT2, A_24_P230388, A_
32_P57247 and AL566369. Next, the employment of the
wrapper algorithm maintains the genes that are specific-
ally tuned to achieve the best performance using a spe-
cific classification algorithm. Those genes are for BN:
A_24_P221960, THC2399272, BM683433 and OXCT2;
for NB: THC2410448, A_24_P221960, BM683433,



Table 6 Results obtained using the tissue genomic data and all classification schemes

Classification algorithm Acc. (%) Se. (%) Sp. (%) Kappa AUC

No feature selection

BN 75.8(±15.44) 75(±21.15) 76.7(±19.56) 0.52(±0.31) 0.843(±0.09)

NB 74.2(±10.72) 70(±20.49) 78.3(±13.72) 0.48(±0.21) 0.834(±0.12)

ANN 74.2(±12.70) 83.3(±13.61) 65(±21.44) 0.48(±0.25) 0.834(±0.13)

SVM 74.2(±12.08) 75(±18.00) 73.3(±16.10) 0.48(±0.24) 0.742(±0.12)

DT 69.2(±11.82) 68.3(±21.44) 67(±25.82) 0.38(±0.24) 0.706(±0.14)

RF 80(±8.96) 85(±14.59) 75(±23.90) 0.6(±0.18) 0.856(±0.10)

CFS

BN 75.8(±14.83) 75(±20.86) 76.7(±17.21) 0.52(±0.30) 0.838(±0.09)

NB 75(±12.91) 75(±17.66) 75(±19.64) 0.5(±0.26) 0.837(±0.10)

ANN 78.3(±10.54) 83.3(±13.15) 73.3(±14.05) 0.57(±0.21) 0.854(±0.13)

SVM 70.1(±9.46) 73.3(±18.00) 68.3(±13.72) 0.42(±0.19) 0.708(±0.09)

DT 72.5(±13.72) 73.3(±16.20) 71.7(±26.59) 0.45(±0.27) 0.724(±0.15)

RF 76.7(±11.92) 80(±17.57) 73.3(±22.50) 0.53(±0.24) 0.845(±0.09)

Wrapper

BN 74.2(±12.08) 70(±18.92) 78.3(±14.59) 0.48(±0.24) 0.782(±0.10)

NB 73.3(±11.15) 73.3(±18.34) 73.3(±10.54) 0.47(±0.22) 0.833(±0.10)

ANN 73.3(±15.32) 81.7(±16.57) 65(±19.33) 0.47(±0.31) 0.772(±0.12)

SVM 77.5(±9.00) 76.7(±16.57) 78.3(±14.05) 0.55(±0.18) 0.775(±0.09)

DT 62.5(±14.83) 70(±15.32) 55(±17.66) 0.25(±0.20) 0.665(±0.15)

RF 77.5(±13.49) 78.3(±17.21) 76.7(±23.57) 0.55(±0.27) 0.842(±0.13)
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OXCT2, A_32_P57247 and A_24_P942151; for ANN:
A_24_P221960, THC2399272 and CN391963; for SVM:
THC2410448, OXCT2 and A_24_P942151; for DT:
A_24_P221960; for RF: A_24_P221960 and THC2399272.

Multi-type classifier
Next, we employ the best performing classification schemes
identified using each source of data separately, and merge
the individual predictions using a weighted majority voting
algorithm, achieving perfect discrimination between pa-
tients with and without disease relapse. Table 10 shows the
classification schemes based on each source of data.

Disease evolution monitoring
For the second part of our analysis, we employ gene ex-
pression values extracted from blood samples which
have been collected in predefined time-intervals during
the follow-up period. After the raw values (45,015 genes)
have been accordingly preprocessed, concluding in
33,491 high quality genes, we employ the SAM algo-
rithm for time-course gene expression data in order to
identify the genes that exhibit the most differential ex-
pression pattern over the follow-up. These retained
genes (Table 11) are subsequently fed as input to the
Table 7 Comparison among the most prominent classification

Source of gene set Classifier Acc (%) Se

Literature RF 78.94(±8.93) 82.5(

Current work RF 80(±8.96) 85(±

Union of literature and current work ANN 91.23(±7.23) 94.7(
next steps of our analysis where we aim to monitor the
disease evolvement.
The aforementioned genes serve as input in order to

formulate the architecture of the DBN, used subse-
quently for monitoring the evolvement of the disease
over the follow-up. Specifically, we search among thou-
sands of possible architectures using the Simulated
Annealing and the Greedy algorithm in order to identify
the best-performing ones, i.e. the ones yielding the high-
est results. It should be noted that no restrictions have
been imposed on the nodes of the network, in order to
obtain the network whose interactions yield the highest
performance. In Figure 5 we present the DBN architec-
ture that yielded the highest results.
For the evaluation of the trained DBN model, we have

employed the leave-one-patient out technique, and based
on the individual predictions we have calculated the over-
all results, that are shown in Table 12. According to the
employed clinical scenario, gene expression from blood
samples is extracted in three consecutive visits, that refer
to the baseline visit, the middle of the follow-up period
(i.e. follow-up #1) and the end of the 2-year follow-up
(follow-up #2). In Table 12, the first row shows the
performance of the DBN model towards the relapse
schemes

(%) Sp (%) Kappa statistic AUC # of genes

±11.20) 75.4(±16.56) 0.58(±0.18) 0.841(±0.07) 28

14.59) 75(±23.90) 0.6(±0.18) 0.856(±0.10) 9

±11.25) 87.7(±13.72) 0.82(±0.14) 0.957(±0.04) 37



Table 8 List of most significant genes as pinpointed by
the SAM algorithm

THC2410448 BM683433 A_24_P942151

A_24_P221960 OXCT2 X58809

THC2399272 A_24_P230388 AL566369

CN391963 A_32_P57247
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probability at follow-up #1, using as input solely the data
from the baseline; the second row shows the performance
towards predicting the relapse probability at follow-up #2,
using as input data both from the baseline visit and
follow-up #1.
Discussion
In this work we have collected and analyzed a broad set
of heterogeneous data from various sources, i.e. clinical,
imaging tissue genomic and blood genomic, in order to
capture the progression of the disease during remission
and predict potential disease relapses. For this purpose a
twofold analysis has been performed: i) Baseline Data
Analysis which employs solely data obtained at the base-
line visit aiming to identify a potential disease relapse
and ii) Disease Evolution Monitoring, that explores gene
expression from genes obtained at predefined intervals
over the follow-up coupled with a personalized genetic
signature in order to capture the temporal progression
of the disease and hence predict the approximate timing
of a potential relapse.
Table 9 Results obtained using the blood genomic data and a

Classification algorithm Acc. (%)

No feature selection

BN 87.5(±21.94)

NB 91.7(±21.08)

ANN 95.8(±15.81)

SVM 95.8(±15.81)

DT 87.5(±21.94)

RF 87.5(±19.33)

CFS

BN 83.3(±0)

NB 83.3(±15.81)

ANN 87.5(±15.81)

SVM 87.5(±15.81)

DT 87.5(±18.00)

RF 87.5(±21.94)

Wrapper

BN 70.8(±15.81)

NB 83.3(±0)

ANN 87.5(±10.54)

SVM 95.8(±0)

DT 79.2(±18.00)

RF 66.7(±18.00)
The Baseline Data Analysis outcome is compared with
the works presented in the literature review, as shown in
Table 13.
We observe that the currently proposed methodology

exhibits superior results compared to the other methods
presented in the literature, nevertheless, direct comparison
cannot be performed since different datasets have been
employed in each case. It should be noted that the cur-
rently employed dataset contains a considerable number
of patients, i.e. 86, compared to the other ones in the lit-
erature. A significant advantage of the current work is the
multitude of data that has been employed (clinical, im-
aging, tissue genomic and blood genomic) whereby a sep-
arate classifier has been trained from each source of data,
as well as an overall one that combines the individual clas-
sifiers. On the other hand, the other methodologies in the
literature exploit mostly genomic data coupled with infor-
mation from the clinical profile of the patients.
In addition, the modular architecture of the current

work allows for inspecting the "verdict" based on each
source of data separately and hence conjecturing about
the contribution and validity of each type of data. Of
course an overall decision is calculated which weighs the
individual predictions yielding a more accurate consen-
sus outcome. Alternatively, the combination of all
sources of data could be achieved by pooling all data in
a single dataset (i.e. the bag of features approach); how-
ever, with this approach the intersection of patients
across all sources of data would have to be used, and
given the uneven distribution of patients this would
ll classification schemes

Se. (%) Sp. (%) Kappa AUC

83.3(±42.16) 91.7(±31.62) 0.75(±0.48) 0.965(±0)

91.7(±31.62) 91.7(±31.62) 0.83(±0.42) 0.986(±0)

100(±0) 91.7(±31.62) 0.92(±0.32) 1(±0)

100(±0) 91.7(±31.62) 0.92(±0.32) 0.958(±0.16)

100(±0) 75(±48.30) 0.75(±0.48) 0.84(±0.24)

91.7(±31.62) 83.3(±42.16) 0.75(±0.48) 0.941(±0)

91.7(±0) 75(±0) 0.67(±0) 0.972(±0)

83.3(±0) 83.3(±31.62) 0.67(±0.32) 0.958(±0)

91.7(±0) 83.3(±31.62) 0.75(±0.32) 0.972(±0)

83.3(±0) 91.7(±31.62) 0.75(±0.32) 0.875(±0.16)

100(±0) 75(±42.16) 0.75(±0.42) 0.84(±0.21)

91.7(±31.62) 83.3(±42.16) 0.75(±0.48) 0.92(±0)

66.7(±31.62) 75(±0) 0.42(±0.32) 0.859(±0)

83.3(±0) 83.3(±0) 0.67(±0) 0.955(±0)

91.7(±0) 83.3(±31.62) 0.75(±0.32) 0.924(±0)

91.7(±0) 100(±0) 0.92(±0) 0.958(±0)

83.3(±0) 75(±42.16) 0.58(±0.42) 0.799(±0.21)

58.3(±31.62) 75(±31.62) 0.33(±0.42) 0.729(±0.16)



Table 10 Best performing classifications schemes based on each source of data

Source of data Feature selection Classifier Acc (%) Se (%) Sp (%) Kappa AUC

Clinical Wrapper DT 83.3 (±10.06) 73.7 (±14.35) 93 (±8.05) 0.67 (±0.20) 0.842 (±0.09)

Imaging Wrapper NB 90.9 (±12.25) 88.6 (±14.76) 93.2 (±14.15) 0.82 (±0.24) 0.89 (±0.12)

Tissue genomic Union of genes from literature and current work ANN 91.23 (±7.23) 94.7 (±11.25) 87.7 (±13.72) 0.82 (±0.14) 0.957 (±0.04)

Blood genomic No feature selection ANN 95.8 (±15.81) 100 (±0) 91.7 (±31.62) 0.92 (±0.32) 1 (±0)
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conclude in a rather limited dataset. In terms of valid-
ation, the current work has been evaluated using 10-fold
cross validation and the leave-one-patient-out technique,
in order to assess thoroughly the achieved performance.
The results obtained with the leave-one-patient-out
technique are in complete accordance with the ones
obtained using 10-fold cross validation, therefore, the
former ones are not included in the manuscript.
The best performing classification schemes based on

each source of data are summarized in Table 10. The
features maintained in each case constitute a minimal
subset of features that bears enhanced discriminative po-
tential. Therefore, in terms of prediction, we have come
down to a rather refined set of features that can be
employed in order to estimate the relapse probability for
a specific patient.
The features maintained from each source of data can

be inspected independently, however, it should be noted
that it is their combination that yields the results pre-
sented previously. Based on the clinical data, the best
performing classification scheme involves a Decision
Tree where the initial input has been stripped off from
redundant features using the wrapper feature selection
algorithm, maintaining the following features as most
significant: depth of invasion, p16ink4a stain and N sta-
ging. Especially the depth of invasion and the N staging
constitute major factors affecting the disease prognosis.
For the case of imaging data the Naive Bayes classifier
coupled with the wrapper algorithm for feature selection
employs the combination of extra-tumor spreading and
(lymph node) site, thus, achieving the highest perform-
ance. Next, we move on to the genomic data (from
Table 11 List of mostly differentially expressed genes
over the follow-up period

GeneID Fold change

HMCN1 2.5

RGMA 1.8

TSC1 2.2

AK023526 4.7

NOTCH2 2.8

STX6 4.8

THC2447689 2.9

THC2344152 1.9

LEPRE1 2.3
tissue and blood) where the best performing gene sub-
sets are shown in Table 5 and Table 8, respectively.
Among those genes, there are certain genes that have
been correlated in the literature with the evolvement of
oral cancer and its manifestations. Specifically, TCAM1
has been associated with the HPV status of patients with
head and neck squamous cell carcinomas [25]; another
example is SOD2 that has been implicated with the pro-
gression and metastasis of oral cancer [26,27]. For the
remaining genes more distant and sporadic associations
have been mined in the literature for relevant diseases or
other types of cancer, e.g. AMDHD1 and PHACTR1
have been linked to tobacco use disorders [28] or RPRM
with colorectal cancers [29].
Both for the clinical and the imaging input vector, the

employment of the wrapper algorithm yields the feature
subset with the highest discriminating ability; in accord-
ance with our findings, the wrapper algorithm has been
reported in the literature to often outperform other fea-
ture selection algorithms due to the fact that it is tuned
to the target classification algorithm [19]. However, in
the case of tissue and blood genomic data, the output
from the SAM algorithm constitutes the best performing
gene subset, and further feature selection does not
ameliorate the results; this is more or less expected since
the SAM algorithm aims at finding those genes that dif-
fer the most between the two target classes, and there-
fore bear enhanced discriminating potential.
An important aspect of the current work that should be

highlighted, is the fact that for the tissue genomic data, we
have merged the gene subset identified using the current
dataset with a set of genes pinpointed in the literature as
highly correlated and descriptive of oral cancer reoccur-
rence. As shown in the Results section, the union of the
two gene subsets achieves superior performance com-
pared to the individual sets. Besides the performance
amelioration, it is very important that in this manner we
consolidate information from other data resources, thus,
achieving enhanced generalization capability.
As for the Disease Evolution Monitoring, a substantial

advancement is the incorporation of the time dimension,
thus, capturing the temporal nature of the disease. This is
particularly interesting from a medical point of view, since
we are able to conjecture the approximate timing that a
potential relapse is more likely to occur. Moreover, the
ability of DBNs to capture time-varying parameters,



Table 13 Comparison between the current work and the
literature

Author Number of patients Accuracy (%)

Roepman et al. [7] 22 86

Figure 5 Best performing DBN architecture.
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resembles better the actual disease progression and facili-
tates the modeling of the evolvement over the follow-up
period. The employment of a DBN which features a trans-
parent architecture allows for inspecting the interplay
among the involved parameters and therefore, reasoning
is provided for each decision. DBNs have been elsewhere
used in other domains in order to capture time-varying
events, yielding quite satisfactory and accurate results.
Table 12 Overall performance of the DBN model

Evidence Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Baseline 63.6 100 86

Baseline & follow-up #1 100 100 100

Roepman et al. [8] 66 88

Rickman et al. [9] 79 77

Watanabe et al. [10] 39 76

Nagata et al. [11] 75 87

Zhou et al. [12] 25 85

Exarchos et al. (current work) 86 100
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As shown in the DBN architecture depicted in Figure 5,
nine genes have been maintained as most discriminatory
and their combination, as represented in the DBN de-
pendencies, can be used to conjecture about the relapse
probability of a specific patient. The genes that have been
maintained are: HMCN1, RGMA, TSC1, AK023526,
NOTCH2, STX6, THC2447689, THC2344152, LEPRE1. It
should be noted that the features extracted from the per-
sonalized genetic signature that has been described previ-
ously, were not maintained during the training of the
DBN and therefore they have not been included in the
employed architecture. The majority of the aforemen-
tioned genes have not been elsewhere associated in the lit-
erature with oral cancer progression; however, gene TSC1
is a notable exception since it has been correlated with
esophageal cancer as well as the reoccurrence of head and
neck cancer [30,31]. Furthermore, gene AK023526 has
been found to constitute a marker for cancer stem cells
[32], and gene NOTCH2 has been associated with tobacco
use disorders and certain types of cancer [28].
The relatively small association of the extracted genes

with literature findings related to cancer and more spe-
cifically oral cancer, was expected since blood gene ex-
pression has been scarcely studied, and therefore few
and sporadic references exist in the literature. However,
given the fact that even a subset of the currently
extracted genes have been identified in cancer related
pathways, is quite encouraging and further supports the
proof-of-concept that is intended with the approach of
Disease Evolution Monitoring in the current work. In
any case, the relatively small set of patients, compared to
the initially enormous number of genes was a hindrance
in the first place, yet the preliminary results obtained
using the leave-one-patient-out technique are quite
satisfactory.

Conclusions
In this work we have presented a multiscale and multi-
parametric approach for modeling the progression of
oral cancer during remission. Specifically, our approach
consist of two main analyses, i) Baseline Data Analysis
where clinical, imaging, tissue genomic and blood gen-
omic data were employed in order to predict a potential
disease relapse and ii) Disease Evolution Monitoring
aiming to capture the progression of the disease based
on gene expression data acquired from circulating blood
cells, and subsequently exploit this information in order
to predict if and roughly when a relapse is more likely to
appear. This information can be used to stratify the
patients into high and low risk groups according to the re-
lapse probability; hence, the treatment protocol can be ei-
ther intensified or relaxed accordingly. Moreover, it is very
important to unify our study with findings from similar
studies alongside with further verification of the results in
order to achieve enhanced generalization capability and
conjecture meaningful and solidified corollaries.
The proposed approach encompasses heterogeneous

sources of data that are expected to assess the disease
status from several aspects and therefore, can be proven
very helpful towards studying complex diseases, such as
cancer.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KPE and YG conceived, designed and implemented the study, DIF supervised
the study and provided substantial advice and guidance during all phases.
All authors have read and approved the final manuscript.

Author details
1Unit of Medical Technology and Intelligent Information Systems,
Department of Materials Science and Engineering, University of Ioannina,
GR45110 Ioannina, Greece. 2Foundation for Research and Technology -
Hellas, Institute of Molecular Biology and Biotechnology, Department of
Biomedical Research, GR45110 Ioannina, Greece. 3Department of Economics,
University of Ioannina, GR45110 Ioannina, Greece.

Received: 25 April 2012 Accepted: 1 November 2012
Published: 22 November 2012

References
1. Haddad RI, Shin DM: Recent advances in head and neck cancer. N Engl J

Med 2008, 359:1143–1154.
2. Mork J, Lie AK, Glattre E, et al: Human papillomavirus infection as a risk

factor for squamous-cell carcinoma of the head and neck. N Engl J Med
2001, 344:1125–1131.

3. Forastiere A, Weber R, Ang K: Treatment of head and neck cancer. N Engl
J Med 2008, 358:1076. author reply 1077–8.

4. Mucke T, Wagenpfeil S, Kesting MR, et al: Recurrence interval affects
survival after local relapse of oral cancer. Oral Oncol 2009, 45:687–691.

5. Godden DR, Ribeiro NF, Hassanein K, et al: Recurrent neck disease in oral
cancer. J Oral Maxillofac Surg 2002, 60:748–753. discussion753-5.

6. D'Silva NJ, Ward BB: Tissue biomarkers for diagnosis & management of
oral squamous cell carcinoma. Alpha Omegan 2007, 100:182–189.

7. Roepman P, Wessels LF, Kettelarij N, et al: An expression profile for
diagnosis of lymph node metastases from primary head and neck
squamous cell carcinomas. Nat Genet 2005, 37:182–186.

8. Roepman P, Kemmeren P, Wessels LF, et al: Multiple robust signatures for
detecting lymph node metastasis in head and neck cancer. Cancer Res
2006, 66:2361–2366.

9. Rickman DS, Millon R, De Reynies A, et al: Prediction of future metastasis
and molecular characterization of head and neck squamous-cell
carcinoma based on transcriptome and genome analysis by microarrays.
Oncogene 2008, 27:6607–6622.

10. Watanabe H, Mogushi K, Miura M, et al: Prediction of lymphatic metastasis
based on gene expression profile analysis after brachytherapy for
early-stage oral tongue carcinoma. Radiother Oncol 2008, 87:237–242.

11. Nagata T, Schmelzeisen R, Mattern D, et al: Application of fuzzy inference
to European patients to predict cervical lymph node metastasis in
carcinoma of the tongue. Int J Oral Maxillofac Surg 2005, 34:138–142.

12. Zhou X, Temam S, Oh M, et al: Global expression-based classification of
lymph node metastasis and extracapsular spread of oral tongue
squamous cell carcinoma. Neoplasia 2006, 8:925–932.

13. Reis PP, Waldron L, Perez-Ordonez B, et al: A gene signature in
histologically normal surgical margins is predictive of oral carcinoma
recurrence. BMC Cancer 2011, 11:437.

14. Jerez-Aragones JM, Gomez-Ruiz JA, Ramos-Jimenez G, et al: A combined
neural network and decision trees model for prognosis of breast cancer
relapse. Artif Intell Med 2003, 27:45–63.

15. Hall M, Frank E, Holmes G, et al: The WEKA data mining software: an
update. ACM SIGKDD Explorations Newsletter 2009, 11:10–18.



Exarchos et al. BMC Medical Informatics and Decision Making 2012, 12:136 Page 14 of 14
http://www.biomedcentral.com/1472-6947/12/136
16. Chawla N, Bowyer K, Hall L, et al: SMOTE: synthetic minority over-
sampling technique. J Artif Intell Res 2002, 16:321–357.

17. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001,
98:5116–5121.

18. Hall M: Correlation-based feature selection for discrete and numeric class
machine learning. Stanford, CA, Morgan Kaufmann, San Mateo, CA:
Proceedings of Seventeenth International Conference on Machine Learning
(ICML); 2000:359–366.

19. Kohavi R, John G: Wrappers for feature subset selection. Artificial
intelligence 1997, 97:273–324.

20. Tan P-N, Steinbach M, Kumar V: Introduction to data mining, 1st ed. Boston:
Pearson Addison Wesley; 2006.

21. Murphy KP: Dynamic Bayesian Networks: Representation, Inference and
Learning. Berkeley, Computer Science Division: PhD Thesis, University of
California; 2002.

22. Xiang Z, Minter RM, Bi X, et al: miniTUBA: medical inference by network
integration of temporal data using Bayesian analysis. Bioinformatics 2007,
23:2423–2432.

23. Warner GC, Reis PP, Jurisica I, et al: Molecular classification of oral cancer
by cDNA microarrays identifies overexpressed genes correlated with
nodal metastasis. Int J Cancer 2004, 110:857–868.

24. Saintigny P, Zhang L, Fan YH, et al: Gene expression profiling predicts the
development of oral cancer. Cancer Prev Res (Phila) 2011, 4:218–229.

25. Slebos RJ, Yi Y, Ely K, et al: Gene expression differences associated with
human papillomavirus status in head and neck squamous cell
carcinoma. Clin Cancer Res 2006, 12:701–709.

26. Ye H, Wang A, Lee BS, et al: Proteomic based identification of manganese
superoxide dismutase 2 (SOD2) as a metastasis marker for oral
squamous cell carcinoma. Cancer Genomics Proteomics 2008, 5:85–94.

27. Choi P, Chen C: Genetic expression profiles and biologic pathway
alterations in head and neck squamous cell carcinoma. Cancer 2005,
104:1113–1128.

28. Rose JE, Behm FM, Drgon T, et al: Personalized smoking cessation:
interactions between nicotine dose, dependence and quit-success
genotype score. Mol Med 2010, 16:247–253.

29. Beasley WD, Beynon J, Jenkins GJ, et al: Reprimo 824 G>C and p53R2 4696
C>G single nucleotide polymorphisms and colorectal cancer: a case–control
disease association study. Int J Colorectal Dis 2008, 23:375–381.

30. Liu CY, Wu MC, Chen F, et al: A Large-scale genetic association study of
esophageal adenocarcinoma risk. Carcinogenesis 2010, 31:1259–1263.

31. Zhang X, Yang H, Lee JJ, et al: MicroRNA-related genetic variations as
predictors for risk of second primary tumor and/or recurrence in
patients with early-stage head and neck cancer. Carcinogenesis 2010,
31:2118–2123.

32. Torigoe T, Hirohashi Y, Satoh N, et al: Molecular marker for cancer stem cell.
2011. U.S. Patent No 2011/0262358 A1.

doi:10.1186/1472-6947-12-136
Cite this article as: Exarchos et al.: A multiscale and multiparametric
approach for modeling the progression of oral cancer. BMC Medical
Informatics and Decision Making 2012 12:136.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Clinical scenario
	Baseline data analysis
	Preprocessing
	Feature selection
	Classification

	Disease evolution monitoring
	Identification of the most significant genes
	Personalized Genetic Signature
	Dynamic Bayesian Networks


	Results
	Baseline data analysis
	Clinical-based classification
	Imaging-based classification
	Tissue genomic-based classification
	Blood genomic-based classification
	Multi-type classifier

	Disease evolution monitoring

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References

