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Abstract

Background: Microcontact datasets gathered automatically by electronic devices have the potential augment the
study of the spread of contagious disease by providing detailed representations of the study population’s contact
dynamics. However, the impact of data collection experimental design on the subsequent simulation studies has
not been adequately addressed. In particular, the impact of study duration and contact dynamics data aggregation
on the ultimate outcome of epidemiological models has not been studied in detail, leaving the potential for
erroneous conclusions to be made based on simulation outcomes.

Methods: We employ a previously published data set covering 36 participants for 92 days and a previously
published agent-based H1N1 infection model to analyze the impact of contact dynamics representation on the
simulated outcome of HINT transmission. We compared simulated attack rates resulting from the empirically
recorded contact dynamics (ground truth), aggregated, typical day, and artificially generated synthetic networks.

Results: No aggregation or sampling policy tested was able to reliably reproduce results from the ground-truth full
dynamic network. For the population under study, typical day experimental designs — which extrapolate from data
collected over a brief period — exhibited too high a variance to produce consistent results. Aggregated data
representations systematically overestimated disease burden, and synthetic networks only reproduced the ground
truth case when fitting errors systemically underestimated the total contact, compensating for the systemic
overestimation from aggregation.

Conclusions: The interdepedendencies of contact dynamics and disease transmission require that detailed contact
dynamics data be employed to secure high fidelity in simulation outcomes of disease burden in at least some
populations. This finding serves as motivation for larger, longer and more socially diverse contact dynamics tracing
experiments and as a caution to researchers employing calibrated aggregate synthetic representations of contact
dynamics in simulation, as the calibration may underestimate disease parameters to compensate for the
overestimation of disease burden imposed by the aggregate contact network representation.
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Background

Computational models of contagion can provide insight
and foresight into the behavior of particular pathogens
for specific populations. The representation of contacts
between population members has a critical impact on
simulation outcomes [1,2]. It has long been recognized
that models that assume random mixing between aggre-
gate population categories can alter the dynamics and
results of the simulation of contagion spread [3], and
may inhibit insight into intervention trade-offs [4].
Reflecting such findings, the past decade has witnessed
the growing use of agent-based transmission models,
which can better capture the impact of individual-level
contact patterns on both individual risk and population-
wide transmission dynamics. Such models have fre-
quently represented the inter-agent contact patterns as
static graphs with edge weights corresponding to threat
of infection drawn from uniform, power-law [5], or other
[5,6] distributions.

More recently, researchers have used microelectronic
devices such as motes [7-9], RFID tags [10], cell phones
[11-14], or custom-built wireless technologies [15] to
capture contact distance, duration and location, as well
as other parameters, with significantly more accuracy
than previous diarying [16,17] or retrospective self-
report [18,19] methods, and substantially greater accuracy
than cellular [20,21] or WiFi [22] location estimates whose
modeling use entails assuming random mixing patterns
between individuals in the same or nearby geographic
regions. Data collected from such dynamic contact net-
works has been used to simulate the spread of a pathogen
through the recorded network, using both the raw sample
data [15,23,24], and aggregated versions where infection
probability is drawn from an empirical rather than func-
tional distribution [9]. While electronically supported
micro-contact data collection offers significant spatial-
temporal resolution and compliance advantages over
traditional techniques, the relatively high cost and logis-
tical effort involved in a deployment of telemetry systems
and their limited on-board energy capacity imposes design
tensions between study duration, sampling rate, and par-
ticipant count. While study design has been shaped by
clear cost-economic considerations favoring shorter
deployments with larger populations [9] or longer deploy-
ments with smaller populations [8,23], it has been been
conducted absent a clear understanding as to how study
design or post-study data aggregation affect transmission
model accuracy. Reflecting the power hungry character of
the data collection devices, studies have frequently
favoured larger, high sampling-rate designs of just one [9],
two [10,25] or a handful of days [26] in duration. While
some researchers have argued that such short sampling
periods capture one or more typical day(s) [9], there
remains a dearth of formal evidence for the representative
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character of short sampling periods, and the effects of
limited sampling periods on the quality of subsequent
simulation outcomes have not been explored.

Researchers have employed diverse strategies for using
micro-contact data in transmission models. In some
cases [25], researchers have sought to use traditional
static representations, with weights on the link connect-
ing two individuals being proportional to the cumulative
contact duration observed between those individuals
over the study period. Other studies [9,23,24,27] have
employed strategies in which dynamic contact patterns
collected over an interval of time are used directly as the
contact pattern for that the same time horizon. In initial
examinations of the effects of aggregation of microcon-
tact data on simulation outcome, the authors of [28]
noted the effects of aggregation on contagion using two
sets of empirical data, and the authors of [25] explored
the impact of changes in model parameter values and
network aggregation measures — including alternate use
of both weighted and unweighted static representations
— to simulation outcomes. Because the dataset in [28]
was collected over a relatively short (2 day) study dur-
ation, the researchers replicated the recorded data and
variants over longer simulation horizons (60 or 100 days)
to ensure sufficient duration to capture the dynamics of
the simulated outbreak, and found that application of
unweighted homogeneous aggregation schemes led to
significant overestimation of infection spread. The study
further examined three strategies for extending the time
frame, with all three approaches positing that the
observed contact recorded over the brief study period
are representative of a longer period of time. The
researchers found notable epidemic-phase-specific differ-
ences between the typical day [9] variants, reflecting
whether contacts occur repeatedly with the same set of
individuals or different individuals. Most importantly,
simulated infection transmission on a duration-weighted
aggregated static graph yielded results close to those
from a fully disaggregated but replicated dynamic net-
work. However, because of the short study duration, the
researchers were unable to evaluate the fidelity of any of
the three approaches to simulated infection transmission
over a disaggregated dynamic network for the entire
simulation time horizon. While this contribution yielded
important insights into the effects of aggregation and
replication strategies on simulation outcomes, the
researchers emphasized the importance of analyzing data
from longer-duration studies, to validate the fidelity of
the proposed strategies for study data extrapolation.

To help address and expand upon the questions raised
in [25] regarding the impact of temporal aggregation
and extrapolation, this paper analyzes such effects for
the Flunet dataset [8] in the context of an influenza-like
illness (ILI). The Flunet dataset is characterized by a two
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minute-level temporal contact resolution, and a smaller
population (N=36) observed over a much longer time
period (T=92 days) than other studies [9,10]. Taking
advantage of the longer time duration of this study, we
examine agent-based simulation using a previously con-
tributed ILI model [29], and both previously contribu-
ted [8,23,24] and novel dynamic network structures,
and previously used but unevaluated strategies for
extending the study timeframe. We report three important
findings:

e Even the weighted “typical-day” techniques
advanced in [9,25] are fragile because the variance in
contact patterns between days can lead to highly
variable simulation outcomes;

e Confirming with an extended temporal horizon and
extending findings of [25], aggregated network
representations tend to overestimate the disease
burden in the population;

e While static synthetic networks with contact
distributions can produce results consistent with the
full dynamic network, this apparent agreement can
be due to an accumulation of counter-balancing
inaccuracies leading to a deceptively correct
outcome.

Overall, our findings suggest that longitudinal data
collected over a prolonged period is required to accur-
ately reconstruct dynamic or static contact networks for
the purpose of simulating pathogen spread for at least
some subpopulations, and that simulations based on
summary networks tend to systematically overestimate
the risk of infection. These findings are important be-
cause they suggest that traditionally calibrated disease
models may contain biased disease parameter estimates
to compensate for undetected inaccuracies in the under-
lying network and mixing models. These biases in disease
parameter estimates might then lead to erroneous conclu-
sions about the relative impact of interventions or the rate
of disease propagation. Because such inaccuracies may not
cancel in the same fashion when investigating intervention
effects, additional caution should be employed when using
such aggregation and generalization schemes. Unfortu-
nately, while typical day [9,25] contact data acquisition
techniques ease study design, they do not appear to be an
adequate solution, as they can yield even more erroneous
disease burden estimates than traditional aggregate
models. This leads us to finally conclude that larger-scale
longer-term longitudinal studies may be required to
generate sufficiently accurate descriptions of the contact
dynamics in many populations. Such studies are urgently
needed to help identify the balance between study size
and length required to secure reliable insight into inter-
vention tradeoffs.
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Methods

Given the HIN1 strain emergence and in anticipation of
the significance of the 2009-2010 influenza season, the
co-authors launched a previously-described [24] pilot
study in the midwestern Canadian city of Saskatoon to
electronically collect contact patterns between 36 parti-
cipants, in addition to their influenza-related health sta-
tus information. The study was conducted between
November 9th, 2009 and February 9th, 2010 — a time
period coinciding with the second rise of reported HIN1
cases in the province of Saskatchewan [30]. Each partici-
pant was requested to carry a proximity sensor whenever
awake during the study period, and to respond to a se-
quence of weekly health surveys via a web browser. Par-
ticipants filled out an informed consent form prior to
joining the study, as required by the university research
ethics board.

To study the impact of network representation on
simulation outcomes, an HIN1 infection transmission
model [24] was created and parameterized with empir-
ical characteristics of the HIN1 pathogen [31]. The
model simulated the spread of infection between agents
through their daily interactions. Agents’ daily connectiv-
ity — either from empirically collected or aggregate
approximations — were imported into the model and
defined the potential for infection between discordant
agents. Overall, 616 different scenarios — each positing a
different connectivity network derived from the data —
were simulated, with each such scenario being run for
10,000 realizations by replaying a sequence of the
265,000 thirty-second time slots in the study period.
Based on the 100,000 run ensembles with the same
model and dynamic network reported in [24] we con-
cluded that 10,000 runs were sufficient, as the maximum
depth of infection in [24] was reached 10 times, implying
that division by 10 would have a high probability of cap-
turing even the most extreme infection events, while
maintaining the probability distribution at significantly
reduced computational cost. Because each run could be
conducted relatively swiftly (typical run-times for an en-
semble were 30 s) having a large number of runs was
not computationally prohibitive given the resources
available to us.

The underlying disease parameters and distributions
were held constant across scenarios. Within a given
scenario, stochastics associated with exogenous and en-
dogenous infection transmission and duration of different
phases in the natural history of infection induced variability
in simulation output.

Data collection

The Flunet experiment covered 57 weekdays and
33 weekends/holidays (including Christmas break). Par-
ticipants were asked to carry a small wireless sensor (or
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“mote”) capable of short-range wireless communication
[8]. When two motes were in close proximity, they
would record a contact with a minimum resolution of
30 seconds. Each contact record represented a contact
session between two motes, which included the start
and end time of a contact, and the distance between the
adjacent motes binned by the received signal strength
indicator (RSSI, a measure of the wireless signal
strength) into close (< 5 m), medium (5-15 m) and far
(> 15 m) bins [8]. Contacts longer than 7 hours (0.03%
of total reported contacts) were removed, as we assumed
that most contact of this duration was due to sensors
abandoned near each other making the contact duration
distribution broadly consistent with other long-term
datasets [8,23,32]. Participants were asked to fill out a
sequence of weekly health surveys, which included
symptoms and diagnoses of ILI, reported date of HIN1
vaccination, and self-reported contact patterns. Demo-
graphic data was collected in a single survey at the con-
clusion of the study.

Transmission model

As the data collection occurred during the HIN1 out-
break, we used an agent based HIN1 SEIR transmission
model to simulate the infection dynamics. This section
includes a short description of the model; interested
readers are referred to a detailed specification in [24].
The simulation model classified each individual in the
sample population into one of seven states: Susceptible,
Latent, Asymptomatic Infectious, Symptomatic Infec-
tious, Symptomatic Non-Infectious, and Recovered. All
the agents in the model started in the Susceptible state,
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consistent with limited pre-existing population-level
immunity to HINI. A susceptible individual could
contract the infection either from exogenous or en-
dogenous sources. Exogenous sources are defined as
the population outside the study who were in contact
with Flunet participants and could transmit the infec-
tion to the monitored individuals, while endogenous
sources are other Flunet participants in an infectious
state within the simulation. Both endogenous and exogen-
ous infection forces of infection were calculated using data
from the 2009 outbreak [30], a prominent HIN1 model
[31], and collected contact data [24].

A susceptible agent contracting the infection from ei-
ther exogenous or endogenous sources transitions to the
Latent state. When an individual enters the Latent
period, the model computed the duration for each of the
subsequent four stages of illness (Figure 1). In determin-
ing these durations, we sought to reproduce the
observed variability in HIN1 progression by drawing the
duration of incubation and duration of symptoms from
two log-normal distributions [24]. The duration for
other stages were calculated using these two values.

Each infected agent experienced the four illness states
sequentially with the passage of time. A person in the
Asymptomatic Infectious or Symptomatic Infectious
state was considered infective. At each time the infective
person triggered potentially transmitting events (e.g.
coughs or sneezes) with a specified likelihood. A poten-
tially transmitting event had a given probability of trans-
mission to each susceptible in contact. The simulation
model did not consider HIN1 mortality, self-quarantine,
antiviral administration, or hospitalization outcomes.

~

Weekly Population
Clinical Data [29]

H1N1 Disease
Model [30]

~

Flunet
microcontact
Dataset [22, 8]

Disease
State
Durations

Exogenous Infection
Pressure

Endogenous
Infection
Probability

Contact History

Stable Agent
States

Disease
Progression

Figure 1 Simulation structure and flow. This figure demonstrates the agent state transition process (oval nodes) and model parameter sources
(clouds) as a flow process. Parameters inform the probability of state transition changes.
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While the HIN1 model employed has been previously
used the capture the impact of vaccination [24], vaccin-
ation was not considered in this study.

Connectivity patterns

This work seeks to analyze and quantify the impact of
contact pattern representation on transmission outcomes
in agent-based simulation models. Because we had re-
course to data offering considerably greater temporal
span than most other past contributions in this area, we
could more readily examine the impact of varying levels
of temporal aggregation on model outcomes. To do so,
we looked at three different experimental manipulations,
each associated with additional parameter variations
focused on a particular type of network representation. A
combination of manipulation and parameter variation is
termed a scenario.

The first baseline manipulation focused on two refer-
ence scenarios, each representing different extremes in
the aggregation spectrum. The first employed the Flunet
empirical data directly, as it captures the contact patterns
between agents with the greatest fidelity. In the dynamic
baseline graph, edges have weights of 1 or 0 — that is,
they correspond to the existence or absence of a connec-
tion during a given timeslot. The dynamic contact net-
work can be visualized as a series of network where
the nodes represent participants and each connections
represents a pair of participants that were proximate
to each other during a time step. This construct is
often called a dynamic graph — drawing from the field
of Graph Theory — where the participants are nodes,
and the connections are the edges. This graph can either
be realized in practice as a sparse dynamic graph with
edges appearing and disappearing, or a time series of
symmetric matrices with binary constituents, with 0 indi-
cating the absence and 1 indicating the presence of an
undirected edge.

The second baseline manipulation scenario collapsed
the dynamic Flunet graph down to a single static graph.
In the static graph scenario, edge weights are replaced
by the time averaged contact density between a specific
pair of participants over the entire study. This is trivially
constructed as the sum of all the dynamic symmetric
matrices divided by the number of timesteps. This aggre-
gation approach captures an extreme form of aggrega-
tion, in which no changes are made in contact graph
structure over time. If contact dynamics had no signifi-
cant impact on the results, then simulations using this
graph should echo the fully dynamic case.

The second manipulation examined typical day
approaches. As a method of temporally extrapolating
graphs collected over shorter time horizons, both [9] and
[15] employed a typical day [9] hypothesis, positing that
the day(s) captured in the experiment were generally
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representative of longer-term contact patterns and could
be duplicated through time to extend the dynamic graph
until the simulated outbreak dissipated or reached a
quasi-static endemic equilibrium. Once an interval was
selected, the day-by-day duplication of that interval could
be accomplished in one of two ways [9,25]. In the first
approach, the collected contacts are aggregated over that
interval — in a manner similar to how the static graph is
aggregated over the course of the study — with the aggre-
gated contact network then being applied across the en-
tire simulation time horizon. Another appoach simply
replicates the fully dynamic graph for that interval
throughout the study period. To evaluate the impact of
the typical day hypothesis, the second manipulation con-
sisted of a series of simulations with duplicated days
using both the fully dynamic and aggregated typical day
scenarios.

Reflecting the fact that many researchers lack recourse
to high-fidelity empirical contact data for model integra-
tion, the third manipulation focused on fitted synthetic
networks. Past contributions have generated random
contact networks using small-world, scale free or other
network topologies, often with contact probabilities
represented as edge weights randomly drawn from other
independent distributions. To analyze the impact of such
an aggregate network representation on the spread of in-
fection across the simulated population, the dynamic
Flunet graph was reduced to distributions for edge
weights and node degree and a set of new small-world
contact graphs based on these distributions were cre-
ated. To determine the impact of model fit on simula-
tion results, several edge weight distributions were
employed that provided increasingly accurate fit, at the
cost of decreasing theoretical rigour.

Unweighted small-world connectivity graphs with 36
nodes were generated using the Watts and Strogatz
model [33] in R [34,35]. Average path length and cluster
coefficient were used as measures of similarity with re-
spect to the aggregate empirical Flunet graph. Five
hundred possible parameterizations of small-world net-
works based on different connectivity ranges and rewiring
probabilities were each generated with 10,000 realizations.
For each such realization, the average of each of the simi-
larity measures were calculated. The connectivity range
and rewiring probability parameterization that yielded the
highest average similarity measure was selected as the
base for unweighted graph generation. The parameters
were then used to generate final unweighted small-world
networks. Figure 2 shows the resulting distributions of
networks selected using this process.

Weights were assigned to the edges of the unweighted
small-world network by drawing the value for each edge
from a distribution. For each of the scenarios within the
synthetic network manipulation, we examined the effects
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Figure 2 Histogram for Distribution of Generated Aggregated Contact Duration. This figure provides a heat map to demonstrating the
distribution of generated aggregated contact durations used in the simulation. Each sub-graph represents the CCDF of contact duration for: a)
the empirical distribution used in the FullA case; b) the two part power-law exponential distribution commonly used in practice; c) the three part
power law-exponential-exponential distribution which provides a better fit to our data; and d) the best fit power law-exponential-exponential
with outliers included as single empirical data points. The shade of the point represents the frequency with which a network contained exactly
that contact duration-probability pair. Some slight fanning of the distribution in b, ¢ and d at higher contact durations indicates that our network
construction algorithm had good but not perfect reconstruction of contact durations when compared to the empirical baseline.
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of using three different fitted distributions, as well as
drawing from the normalized empirical histogram of
pairwise Flunet aggregated contact durations (ACDs).
Fitting of distributions was performed using linear
regression in MATLAB. For linear regression to perform
properly, data underwent log-log (power law fitting) or
log-linear (exponential fitting) transformation prior to
performing the piecewise fit. For fitted distributions, the
fitted curves were required to achieve a R* value exceeding
99%. Piecewise breakpoints were selected by iteratively
changing the breakpoints, performing the regression, and
manually selecting the point at which error began to
increase sharply, but which still maintained a minimum
R* of 99% value for all the piecewise components.
Figure 3 shows one of the curve fits implicitly and
three explicitly. The red and blue lines correspond to
the two and three piece fits for the data. The data points
themselves form a discrete empirical distribution, and
the three piece plus the additional three points with
the highest aggregated contact duration form a com-
bined functional-discrete distribution, which can be
mathematically considered a 6 part piecewise function,

where the discrete outliers are described as Dirac delta
functions.

Infectious events were generated according to a
Poisson process as described in [24]. When such
event occurred in the FullD and DayD cases, the state
of the contact graph was queried, and connected
agents were infected based on the probability of infec-
tion for the pathogen. For aggregate representations a
joint probability of the edge weight from the static
graph and infection probability was used to determine
infection probability. This is mathematically equivalent
to randomly sampling the contact records from either
the DayD or FullD contact records for the DayA and
FullA cases.

Detailed scenario description

The three primary experimental manipulations (baseline,
typical day and synthetic network representations) are each
represented by a set of scenarios describing the method for
generating the contact graphs. Each scenario in turn is
composed of a set of cases; for example, there are 57 pos-
sible typical day pairs to investigate using our methodology;
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three-piece power law-exponential-exponential distribution fit. Text in blue or red corresponds to the break points for each fit section. Outliers

by contrast, each baseline scenario is associated with just a
single case. Each experimental case was simulated for
10,000 realizations, where a single realization is an agent-
based simulation of the entire 92 day study period, yielding
a total of 6.16 million realizations across all scenarios. Here
we describe each scenario in detail.

1. Full-Detailed Network (FullD): FullD is the first
scenario in the baseline experimental manipulations.
The connectivity pattern in this case uses the
complete contact information of participants
throughout the study as a dynamic graph, preserving
the chronological order of contacts. For each
participant, his/her observed contacts with other
individuals in the study at each of 265,000
thirty-second time-slots across the 3 months of the
Flunet study were imported into the model to
represent the connectivity pattern of the
corresponding agent. In each realization, the model
stepped through all timeslots sequentially, simulating
infection transmission using the corresonding
inter-agent connectivity graph. 3.

2. Full-Aggregated Network (FullA): FullA provides an
upper bound on the impact of temporal aggregation.

The connectivity pattern of this scenario is similar to
the FullD scenario, but the contacts are aggregated
over time. To generate the connectivity pattern, the
study-wide per-timeslot contact likelihood between
any two given agents was calculated based on the
Flunet database, and imported into the model.
Assuming the probability of two given nodes
contacting each other across the entire 92 day study
period is p, the connectivity between those two
agents in a given timestep model was drawn from a
Bernoulli distribution with success rate of p. Before
starting the simulation, 265,000 samples were drawn
from the distribution for each pair of nodes,
representing the simulation connectivity patterns
between those nodes during each successive
timestep. Note that, in this scenario, contact patterns
are regenerated at the beginning of each realization,
and while the contact likelihood between pairs of
agents are held invariant between realizations, the
network dynamics and chronological order of the
contacts are not preserved.

Day-Detailed Network (DayD): The Flunet study
covered 57 weekdays and 34 weekends/holidays. The
DayD scenario — the first scenario in the typical day
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manipulation — abstracts this as 57 cases, each
related to a unique pair of weekday-weekend/holiday.
The first 34 weekdays paired with each of the first 34
weekend/holidays, and the remainder of the
weekdays are paired by repeating the first 23
weekend/holidays. Subsequently, each pair was used
to generate the connectivity pattern between agents
by replicating the weekday of the pair 57 times (for
the non-holiday weekdays during the study period)
and replicating weekend/holiday of the pair 34 times
(during the weekends and holidays during the study
period). Therefore, in each case of this scenario, the
ordered contacts of a particular weekday-weekend
pair were replicated to cover all remaining days of
the simulation as well.

4. Day-Aggregated Network (DayA): This scenario —
the second scenario in the typical day experimental
manipulation — consists of a hybridization between
DayD and FullA. Like DayD, it also consists of 57
cases, each based on one of the 57 weekday-weekend
pairs. Similar to FullA, the contact network used is
aggregated over time (here, over a day) and
regenerated by each realization prior to simulation.
For each of the 57 weekday-weekend pairs, we
derived the weekday-specific per-timestep contact
probability between any two given nodes based on
the specific contact patterns seen in the weekday
from that pair. A weekend-specific per-timestep
contact probability was analogously derived for each
pair of nodes. For each pair of participants, and each
timeslot of each (non-holiday) weekday throughout
the study period, samples were drawn from a
Bernoulli distribution with the specified
weekday-specific contact probability for that pair.
Contacts in weekend timeslots were similarly defined.

5. Small-World Network with Power Law-Exponential
Fitted ACD (SW2P): In the first scenario in the
synthetic network experimental manipulation, the
selected connectivity range and rewiring probability
(described in the previous section) were used to
construct 100 unweighted small-world networks. To
determine the weights for edges, a distribution was
generated using a two-piece Power Law-Exponential
distribution fitted to the Flunet ACD curve based on
[36], where 4 data points from the head and 18 data
points from tail of the empirical distribution were cut
to improve the fit. The connectivity of network i was
determined by drawing the weight associated with
each edge in the unweighted i small-world network
from the 2 piece distribution.

6. Small-World Network with Power Law-Exponential-
Exponential (SW3P): To construct connectivity
patterns in the second scenario of the synthetic
network manipulation an approach similar to SW2P
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was followed, but a 3-piece Power
Law-Exponential-Exponential distribution was used
to fit the Flunet ACD empirical distribution. Here,
3 data points from the head and 4 data points from
the tail of the Flunet distribution were removed to
improve the fit. As with SW2P, 100 connectivity
networks were created.

7. Small-World Network with Power Law-
Exponential-Exponential True Tail Replaced
(SW3PTT): In the curve-fitting for SW3P — the third
scenario in the synthetic network manipulation — we
cut 4 points from the tail to better fit the
distributions. Although the eliminated tail portion is
approximately 1% of all data points in the Flunet
empirical distribution, their contact duration was
substantially larger than that of other data points,
resulting in a greater importance to the network-
wide transmission of infection [24]. Similar to SW3P,
this scenario also generates 100 connectivity
networks by drawing from a 3-piece fitted
distribution, but randomly selects 4 weights within
each such network and replaces them with the 4
empirical values to preserve the important contacts
in the tail.

8. Small-World Network with Empirical ACD (SWE):
The fourth and final scenario in the synthetic
network manipulation uses a specified connectivity
range and rewiring probability to generate 100
small-world networks, where the weights for the
edges in each network are drawn from the empirical
Flunet ACD distribution.

Results

Flunet dataset characteristics

A preliminary analysis of the dataset is provided in [8],
and a similar analysis found in [24]. The majority of the
description of the Flunet dataset in this subsection, in-
cluding Figure 4 in its entirety, is a direct reproduction
from [24], included here to increase the readability of
the paper. Additional discussion germain to the analysis
of the impact of network representation on infection
rate has been added. The remaining subsections of
Results contain new figures and analysis based on the
simulations described in the Methods section.

Figure 4.a shows that contacts are tightly clustered
throughout the workday, with staff arriving in the morn-
ing and graduate students trickling in throughout the day.
Sporadic contacts are recorded throughout the evening
and night. This figure also illustrates that the contact data
contains primarily workplace relationships. While the
contact densities in 2.a hold in general for those times
when contact occurred — normally weekdays — they do
not adequately capture the patterns on the weekend or
during holidays (particularly the week between Christmas
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and New Year’s Day) which are characterized by more
sporadic or sparse connections. However, it is worth
noting that these gaps in connectivity relate to the under-
lying contact patterns of the sample, which are character-
ized by primarily professional relationships. While we
cannot claim that a given participant will have a dimin-
ished chance of infection from over a weekend or holiday,
we can claim with a great deal of certainty that they will
have a diminished chance of becoming infected by a co-
worker during those time periods. Figure 4.b shows the
complementary cumulative distribution function (CCDF)
of contact duration. In addition to the CCDF for all the
collected data (solid line), we removed contacts with
durations exceeding 7 hours (0.03% of total reported con-
tacts) from the raw dataset (dashed line) because we
assumed contact of this duration was due to sensors
abandoned near each other. Removing this section of data
yields considerable differences in the distribution’s tail.
The CCDF is broadly consistent with other long-term
datasets of this nature [16]. The heterogeneity of the con-
tact distribution is important for our hypotheses and
assumption — that contact dynamics have significant
impacts on infection rate as initially noted by [6] — which
in turn drove the simulation design. In Figure 4b, contact
duration spans more than two orders of magnitude. If we
posit that an infectious individual gives rise to contagious
events (e.g., sneeze or cough) with some stochastic arrival
probability independent of the contact duration, a suscep-
tible is likely to experience more contagious events in a
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prolonged contact than in a shorter one, a property
assumed in some other modeling studies [17].

To visually highlight the impact of cliques and place
on the dataset, Figure 4c plots the relationship between
contacts which existed for an average of 18 min/day.
This threshold was to represent a plausible amount of
time per day that a regular contact might have occurred
over the course of the study, bearing in mind that week-
ends and holidays are included in the denominator.
Black nodes represent stationary nodes associated with a
location, and are included in this graph for illustrative
purposes only. As is apparent in the graph, nodes that
are generally collocated have a high degree of contact
with each other. Nodes that are not collocated have
much lower connectivity, with the exception of a few
bridging individuals.

Given the importance of network structure, we consider
the span of the network in Figure 4.d, which is closely
related to degree centrality [24]. This graph is shown for
two scenarios: a scenario where only close proximity con-
stitutes a contact, and a scenario where any detectable
presence qualifies. When limiting the analysis to close
contacts, the histogram is both more peaked and has a
lower mean than when considering all the possible con-
tacts. The modes are 22 and 31, respectively, implying that
many participants saw most of the other participants at
least once. However, because it is not saturated at the
maximum (as would be the case if all participants saw all
other participants) it is logical to hypothesize that some
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partially isolated cliques exist, and that the close contact
network is more strongly cliqued.

Contact pattern representations effects

We sought to study how the representation of dynamic
contact networks over time impacted simulated trans-
mission of an influenza-like illness. In particular, we
were interested in determining whether the choice of a
sample day as a typical day had an impact on reliability
of results, whether significant differences in outcome
were observed when collapsing empirical contact dura-
tions into distributions, and whether representation of
dynamic — rather than aggregate — contact networks sig-
nificantly affected simulated outcomes.

To compare overall trends in the findings, a simula-
tion outcome for each scenario described in the previous
section was graphed as a box plot in Figure 5. The y axis
shows the total number of endogenous infections
observed in the population, summed over all 10,000 rea-
lizations for one case. FullD and FullA scenarios are
represented as straight lines across the graph, as they
were each composed of a single case, providing useful
reference bounds for the other ensembles. The other 5
scenarios are plotted as boxplots over 57 data points
(DayD and DayA) or 100 data points (synthetic scenar-
ios). If each scenario led to the same outcome, similar
distributions should be observed; however, Figure 5 illus-
trates divergent results that summarize the primary find-
ings of this work.

Both typical day (DayA and DayD) distributions were
associated with a much larger span and heavier tails than
the other distributions, suggesting that contact dynamics
variation between days was characterized by different
distributions rather than the temporal variances in the
disease model. Because daily contact density was not
normally distributed, the means for the typical day sce-
narios are pulled higher by the long tails evident in
Figure 5. Consistent with observations regarding the im-
pact of aggregation in [25] and in entirely simulation-
based studies, all the means (with the exception of
SW2P) are greater than in the full detailed case, demon-
strating the systemic overestimation introduced by aggre-
gation of contact dynamics. Although the SW2P case
outcome closely approximates the ground-truth outcome
of FullD, it was the least accurate representation of the
contact duration distribution among the small world
representations. Increasingly accurate representations
successively move the mean and overall distribution
away from the FullD case (SW3P, SW3PTT), culminat-
ing in the empirically determined weight case SWE
which had a mean coinciding with the FullA case —
clearly demonstrating that seemingly more accurate attack
rates (such as that associated with SW2P) can appear
from a cancellation of offsetting biases.
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Impact of network structure

In line with previous simulation-centric studies [25], we
found that aggregation has a tendency to overestimate
the infection burden. As observed by [15], aggregation
eliminates ordering information that would otherwise
rule out possible transmission pathways among multiple
individuals. Removing such constraints permitted simu-
lated infections to spread more rapidly across the net-
work. For example, if susceptible individual A contacts
susceptible individual B earlier in a day and infective in-
dividual C (only) later in that day, C may infect A, but B
will not be infected via A during that day. By contrast,
aggregation over the course of a day would permit trans-
mission not only from C to A, but also from C to A to B
in that day.

It is common practice to calibrate models to historical
data to raise confidence in a model’s predictive abilities
[37,38]. Adjustment to edge connectivity or weights for
agent-based simulations or to parameters such as the
contact rate (c) for population-level simulations tune im-
plicit assumptions regarding the underlying dynamic
contact network. As the SW2P simulations demonstrate,
principled estimates of contact strength or duration can
lead to apparently excellent agreement with ground-
truth scenarios; however, this was based on a flawed esti-
mate of the actual contact data. Within this scenario, the
highest contact duration 18 edges were trimmed from
the contract graph as a result of the fit, leading to a sys-
tematic underestimate of the generally overestimated ag-
gregate burden. For SW2P, two wrongs did in fact make
a right: the reduced contact rate compensated for the
implicit overestimate of infection transmission induced
by network aggregation. The compensatory nature of
such effects can be recognized by examining the effects
of increasing fidelity with FullA in other synethic net-
work scenarios. Systematically increasing the accuracy of
the edge weight distribution, first by using a three-piece
fit (SW3P), and then a 3 piece fit with included outliers
(SW3PTT), increased the overall infection rate, until
reaching the SWE scenario, whose mean corresponds
closely with that of the FullA scenario.

Impact of study period

By collecting data on a hypothesized typical day [9],
other researchers have in effect, exchanged study dur-
ation for study size; opting for shorter deployments but
larger sample populations. The large variability of both
aggregate and detailed day simulations in Figure 5, when
compared with the various synthetic aggregate networks,
indicates that the choice of day can have profound
repercussions on the results of simulated infection trans-
mission. To further investigate the scope of this variabil-
ity, and to separate out the effects of model stochastics
from those associated with choice of days, we subdivided
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each 10,000 realization ensemble into 40 ensembles of
250 realizations each. This step permitted the compari-
son between the distributions of the baseline (FullD
and FullA) and each of the DayD scenarios, as shown
in Figure 6. Each of the 57 cases in DayD are sorted
and grouped by total contact duration.

While some stochastically induced variation is evident
in the baseline scenarios (FullD, FullA), the variation
between distributions when different days are chosen
as typical and the variation among the realizations for
many high contact duration days are substantially
greater. The differences in endogenous infection counts
between each day in the DayD scenario are easily
accounted for when considering the probability of in-
fection. On days with limited connectivity, there are
both fewer transmission paths and fewer chances for
an infectious event to result from a contact. As such,
those few infectious events which do occur will tend
to occur between few individuals, suppressing both the
variance and the mean. In cases where many connec-
tions exist, the joint probability of infectious events
and proximity increases, as do the number of indivi-
duals who could be infected. The impact of sampling
error that can result from a typical day experimental
design is apparent from the graph, but to more fully
quantify this risk we attempted to determine how
many of the 57 sampled day pairs could be viewed as

typical.

We chose to define a typical day in a post-hoc fashion:
typical days should lead to similar individual infection
risks to the baseline network. To determine similarity,
we computed Pearson’s correlation between each indivi-
dual’s infection risk within the single case of the FullD
scenario with that associated with each day-specific case
in the DayD scenario. Only 3 day pairs (the 21°, 54,
and 56™) were found to have significant (p > 0.7, p <
0.05), correlation with the FullD scenarios, and no day
pairs with strong and significant (p > 0.8, p < 0.05) cor-
relations were found. Individual infection rates are
shown in Figure 7, which clearly indicates the weakness
of the correlation between the baseline FullD infection
counts and each of the typical day realizations. Although
reasonable matches exist for low-risk individuals (char-
acterized by fewer infection counts in both the FullD
and selected DayD cases), typical day techniques overes-
timated the infection risk for higher-risk individuals,
leading to weaker correlations.

Based on our analysis, and subject to the limitation of
our dataset, we concluded that typical day techniques
can generate spurious rates of infection within closed
populations and are unlikely to represent the richness of
longitudinal datasets. Although we do not have the
requisite study population to conclude that T (study dur-
ation) is more important than N (study sample size),
Figure 7 indicates a much stronger variation between
days than between people. Further evidence to this effect
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is provided by the coefficient of variation (cv) for infec-
tion rate, which has a value of 68.9 between participants
and 80.6 between days.

Discussion

The results presented here simultaneously underscore
the high rate of return in terms of model reliability of
investing in the collection of micro-contact data, but
suggest that not all such investments confer equivalent
value. It is widely recognized that model aggregation (for
example, in the imposition of random mixing assump-
tions) tends to overestimate the spread of contagion.
The results presented here suggest the natural extension
of this understanding to the network context, where
simulations employing purely static networks — such as
might be produced by traditional network reconstruc-
tion techniques based on contact tracing, diarying or
survey instruments — are also demonstrated to be biased
towards overestimation of contagion. While this over-
estimation is pronounced in our experiments, it appears
likely that the degree of this overestimation will depend
heavily on the characteristics of the contagion process —
particularly the speed of transmission relative to the
speed of contact formation and dissolution [15]. The dis-
tortions associated with imposing a static network for
some types of contagion suggest the importance of

collecting information regarding network dynamics at a
fine temporal granularity for such contexts. For very
short-lived pathogens, a typical day approach may be
sufficient in that all members of the network will be
infected quickly or the infectious transmission will
dwindle quickly. For long-lived pathogens such as tu-
berculosis, an aggregate model may be appropriate, as
infection rates are low and latent periods are long. For
the flu-like infection we modeled, our results indicate
that typical days are too volatile and aggregate represen-
tations too permissive.

In addition to highlighting the importance of fine-scale
data collection, these results also suggest a minimum
efficient scale for such data collection. Such results are
important in that many healthcare researchers have
sought to defray the cost and logistic burden of elec-
tronically mediated micro-data collection by restricting
the duration of studies. While such study designs side-
step many challenges associated with power consump-
tion and device failures, they do rely heavily on the
assumption that the network dynamics observed during
the data collection interval is in some sense representa-
tive of the network dynamics over the long term. While
such assumptions hold greater plausibility when applied
in highly structured settings such as secondary schools
[9], the results presented here highlight the elusiveness
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of identifying a typical day in some populations. Our
results suggest that adopting a day as representative
can be the source of major variability in simulation
results, which can swamp the accuracy benefits con-
ferred by using electronic micro-contact data. Diverse
transmission modeling studies in the past several dec-
ades have revealed pronounced impacts of population
heterogeneity on transmission dynamics, and have
recognized the risks to model reliability of positing
that the population is composed of homogenous typ-
ical persons. The results here suggest that — at least
for some settings and sample populations — selecting a
typical day can be fully as risky to model reliability as
selecting a typical person — even when due diligence
has been exercised to filter out manifestly unrepresen-
tative days. While typical day assumptions appear to
be hazardous in the context of our limited and highly
clustered sample population, future data collection is
required to determine whether similar risks extend
from choosing typical days for studies with larger and
more diverse populations.

Synthetic networks based on randomly generated net-
works and contact duration distributions are an appeal-
ing representation for extending results to larger
populations. Our results highlight the need for care in
the design of synthetic networks given that even high
quality matches to the contact distribution using

parametric distribution mixtures can lead to distortions
of infection risks, primarily due to the impact of a few
important outliers. When assessing the match fidelity
between the synthetic results and results for the fully
detailed data, it is easy to overlook an underestimation if
it cancels out the overestimation due to an aggregated
network whose outcomes misleadingly agree with histor-
ical or synthetic ground truth estimates. These biases
could in turn distort the perceived trade-offs between
interventions, or skew other important statistics regard-
ing model dynamics. As is the case for random mixing
models [4], even apparently calibrated models which
match baseline data well can yield very misleading
results when applied to counter-factual scenarios, such
as interventions. We have little doubt that it is both im-
portant and feasible to build synthetic networks to cap-
ture transmission dynamics with high accuracy, but the
current study suggests that achieving this goal will re-
quire moving beyond even well-calibrated models of net-
work structure and contact duration. We particularly
highlight the potential need to scrutinize the convenient
assumption (applied here) of independence in the cen-
trality of an agent and that agent’s contact duration dis-
tribution. While the close match in mean attack rates
observed between the FullA and SWE scenarios suggests
that this assumption may impose little distortion, further
study is required to assess this assumption’s reliability.
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The findings here have implications both for health
research and epidemiological methodology. The results
suggest that, while it is important to capture micro-
contact data in many contexts, attempting to
economize by reducing study duration may be penny
wise and pound foolish. Use of micro-contact data
appears to confer substantial benefits, but those bene-
fits will be compromised — and potentially reversed —
unless studies are of sufficient duration to capture
day-to-day variability. While these results could be
unique to smaller participant pools and flu-like infec-
tions, they likely apply to many important pathogens
in high-risk populations of note such as institutional
populations associated with long-term care facilities
which are often not much larger than our participant
pool.

We hope that the findings presented here will offer
initial guidance in planning micro-contact studies, ele-
vating the prospect that these studies will serve as a
cost-effective means of enhancing health insight. Our
results regarding the impact of network representation
and parametric contact distribution approximations will
also inform the data analysis methodologies used to
analyze and generalize such data for transmission mod-
eling. We have further described here a general method-
ology that can be replicated for future studies to assess
the impact of aggregation on simulation results.

While our paper has made several important contribu-
tions to the field, as with all initial analyses, there are
several shortcomings that should be addressed in future
work. In fact, a major contribution of the paper is eluci-
dating what the structure of future experiments should
be to provide realistic samples of contact and disease
dynamics for a given population. In particular, the role of
sample size (N), versus study duration (7) is problematic.

Previous contributions [9,15] have opted for larger N
at the expense of T, and attempted to use various techni-
ques to extend the duration of simulations beyond T
artificially. We have demonstrated that the error intro-
duced through replicating 7 is significant and perhaps
larger than using a well-tuned aggregate model. However,
the limited participant pool of our study prevented us
from addressing the issue of sample size. This leads to
the possibility that our results are a statistical fluke, and
that larger sample size would begin to diminish the het-
erogeneity in sample days to the point where one day
was like any other for a large enough group of people.
We believe this outcome to be unlikely due to the small-
world nature of dynamic contact networks [36]. Rather
than having an averaging effect, adding additional N —
particularly for heterogeneous study populations — is
likely to capture more partially isolated sub-networks
with their own particular contact dynamic patterns and
life rhythms. A study employing a typical day strategy
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must then assume that the sampling period represents a
typical day for new subnets. In fact, we conjecture that
larger sample sizes will increase the sensitivity to 7, as
temporal variability is likely to rise with population
heterogeneity.

The uncertainty over the apparent tradeoff between
study size and duration is a strong motivation for further
contact dynamic studies with substantially larger, hetero-
geneous populations observed over longer time periods.
Larger longitudinal studies would permit the analysis of
the relative sensitivity of different disease models to sim-
plifications in sample size, population and study dur-
ation by permitting knock-out experiments where
similar simulations could be performed over statistically
significant subsets of the data, and compared against
each other and the full data set.

Summary

We have demonstrated that the dynamics of empirical
contact networks impact the outcome of simulation
models, that aggregation over this data provides system-
atic overestimates of disease burden, that typical day
data collection techniques employed elsewhere impose a
risk. These findings are important as they inform both
issues in microcontact study design and use of synthetic
contact networks in calibrated models. However these
findings are limited by the number of participants in the
study and the single pathogen studied. In the future,
we intend to investigate these impacts against larger,
longer and more diverse datasets to determine if there
is a point at which increasing study duration or sam-
ple size no longer materially affects simulation out-
comes. We will also investigate the interaction
between pathogen behavior and temporal sampling strat-
egies. By providing this work we have established baseline
insights into both the design of agent-based simulations of
pathogen transmission and into the emerging discipline of
contact dynamics acquisition and analysis.
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