Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70

http://www.biomedcentral.com/1472-6947/11/70

BMC
Medical Informatics & Decision Making

Web-browser encryption of personal health

information

Richard E Morse', Prakash Nadkami?, David A Schoenfeld' and Dianne M Finkelstein'

Abstract

loss.

authorized to use it.

Background: Electronic health records provide access to an unprecedented amount of clinical data for research
that can accelerate the development of effective medical practices. However it is important to protect patient
confidentiality, as many medical conditions are stigmatized and disclosure could result in personal and/or financial

Results: We describe a system for remote data entry that allows the data that would identify the patient to be
encrypted in the web browser of the person entering the data. These data cannot be decrypted on the server by
the staff at the data center but can be decrypted by the person entering the data or their delegate. We developed
this system to solve a problem that arose in the context of clinical research, but it is applicable in a range of
situations where sensitive information is stored and updated in a database and it is necessary to ensure that it
cannot be viewed by any except those intentionally given access.

Conclusion: By developing this system, we are able to centralize the collection of some patient data while
minimizing the risk that protected health information be made available to study personnel who are not

Background
Confidentiality of patient information has become a
major issue in the storage and retrieval of health care
data and biological samples. Some diseases, such as
AIDS and depression, are stigmatized, and patients are
often concerned that they could lose their employment
or their insurance coverage if these conditions are
revealed. Similarly, stored biological samples can be
used to identify future health risks, impacting a patient’s
chance of obtaining insurance. As the move is made to
electronic storage of all health information, it is crucial
that a patient’s identity be protected in health databases.
At the same time, a medical record is dynamic and it is
important that a health care team be able to unambigu-
ously identify a patient when they need to retrieve or
update the information in the record.

The Privacy Regulations [1] released under the Health
Insurance Portability and Accountability Act of 1996
(HIPAA) [2] define different levels of confidentiality of a

* Correspondence: dfinkelstein@partners.org

"MGH Biostatistics Center, Massachusetts General Hospital, 50 Staniford St.
Ste 560, Boston, MA, 02114, USA

Full list of author information is available at the end of the article

(BioMVed Central

data set. The most confidential is a data set which
includes protected health information (PHI) that can
unambiguously identify a patient. Such a data set should
only be available to a patient’s care-givers and the insti-
tutions that work with them to provide care. A lower
level of confidentiality is provided by a limited data set,
which does not contain names, addresses, or social
security numbers, but may contain information such as
birth date, geographical region, and dates of hospital
admission — data that could allow a patient to be identi-
fied in a hospital population. A limited data set can be
transferred to a research group with a written legal
agreement between the care-giving institution and the
research group. In general, care-giving institutions only
allow the transferal or collection of limited data sets
with the patient’s consent. A de-identified data set is the
least confidential type of data set, and is supposed to
have all data which can identify the patient removed
from it. In practice, HIPAA defines particular classes of
data which must be removed (e.g. names, dates, and
geographical information more specific than zip code).
However, using modern data mining techniques,
patients may still be identifiable from a de-identified

© 2011 Morse et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:dfinkelstein@partners.org
http://creativecommons.org/licenses/by/2.0

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

data set. De-identified data sets may be used by research
groups without restriction and can be posted on the
internet.

The issue of encrypting protected health information
arose because the MGH Biostatistics Center is the
codordinating center for the National Cancer Institute’s
Cancer Genetics Network (CGN). The CGN is a multi-
institution research network organized with the goal of
creating a registry of people with an elevated cancer risk
who could be approached to participate in research stu-
dies on genetic susceptibility and the related psychologi-
cal and health outcomes. When the network was
founded in 1999, a de-centralized model was used
wherein each participating institution (or site) recruited
participants from the site’s local clinics and registries.
Each participant completed a survey of their medical
history, and were recontacted annually by the enrolling
site for updates in this data and their contact informa-
tion. The data was collected at each site into a local

Page 2 of 9

database, and a limited data set was abstracted from the
local database and uploaded to a central merged data-
base held by the codordinating center [see figure 1]. The
contact information was never sent to the central site;
the consent form signed by the participants explicitly
stated that the contact information would only be avail-
able to staff at their enrolling site.

In 2007 the CGN decided that there was the poten-
tial to improve the efficiency and cost of the network’s
activities by moving to a centralized model, where the
sites were no longer responsible for storing the medi-
cal and contact data. By doing this, we would also be
able to develop a system to allow the option for parti-
cipants to update their data online, thus reducing the
workload on the sites. Participants who chose not to
update their data online would continue to be con-
tacted by the sites for follow-up. Those who used the
online system would have their updates go directly
into the central database.

Model with contact information stored at recruiting sites

Coordinating Center

CGN registry <

limited data set Limited data set

Codrdinating Center

CGN registry
limited data set

CGN registry
encrypted
contact
information

The codrdinating center
cannot decrypt the data

Recruiting sites

Local CGN
registry including
contact
information

<——{ Participants I

Model with contact information stored at codrdinating center

\| Recruiting sites

Participants and recruiting sites
can decrypt the data

Figure 1 CGN data organization. This figure shows how the data storage for the CGN registry was re-organized in 2007.

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

Centralizing the medical and family history data was
straight-forward, as this was merely a change in where
the data was entered: instead of sites entering data into
their local database and sending the codrdinating center
the abstract, they would enter data directly into the cen-
tral database. However, centralizing the contact informa-
tion was problematic due to the consent form that the
participants had signed. In order to transfer the contact
information to the codrdinating center, the sites’ institu-
tional review boards (IRBs) would require re-consenting
all participants to allow the coordinating center staff to
have access to the PHI. This would be costly and would
likely cause considerable attrition of participants. Discus-
sion with the sites determined that the consent allowed
us to store the contact information provided that no
cooordinating center staff could access the information.
The ability to use the data to contact the participants
would have to remain with the individual sites.

Any system we developed would have to make it
impossible for staff at the coordinating center to access,
understand, or make use of data that could be used to
identify the individual patient. This included IT staff,
database administrators, and web developers. At the
same time, this identifying information would need to
be easy to access and update by both the participants
and project staff at the sites. Thus, we could not require
installation of any software on the participants’ compu-
ters. It would also have to be possible for the sites to
retrieve and decrypt the information in bulk.

Implementation

Overview

The purpose of this system is to allow encrypted data to
be decrypted in a web-browser client and to re-encrypt
it before being submitted to the server. This allows pro-
tected health data to be stored without allowing support
personnel on the server to use the data. At no point is
the encryption key stored on, or made available to, the
server. Instead, the server stores a cryptographic one-
way hash of the encryption key, which the client uses to
ensure that the provided encryption key will properly
decrypt the data. Figure 2 provides an overview of the
data flow for the system.

Constraints

The CGN uses TrialDB, a web-based clinical study man-
agement, data capture, and storage system [3] to capture
data on the participants. TrialDB is a highly customizable
system which offers many advanced features including a
data-element library, dynamic case report forms, complex
data validation within and between forms, as well as skip
logic and built-in support for controlled vocabularies such
as DSM-1V, ICD-10, etc. In order for our system to be
useful, we had to integrate it into TrialDB. TrialDB allows

Page 3 of 9

the injection of completely external forms, so that forms
which are not already supported can be created and used.
Through this facility, we were able to implement this sys-
tem within TrialDB without needing to modify TrialDB
itself. We hope that a future version of TrialDB will
include this encryption system or a similar one.

The contact information needed to be accessible both
to the project staff at the sites and to the participants,
as we wanted to allow the participants to update their
own data. This constraint ruled out the use of a public/
private key solution since the infrastructure required to
set up such a system for 26,000 participants and 15 sites
would be unmanageable by the codrdinating center.
Thus we decided to use a symmetric encryption algo-
rithm: the Advanced Encryption Standard (or AES;
sometimes also called Rijndael), in large part because it
is a government standard [4].

AES requires an encryption key of either 128, 192, or
256 bits. Requiring participants (and, to a lesser extent,
staff at the sites) to enter a 256-bit encryption key in
order to access their contact data is only slightly less
infeasible than managing a large public/private key net-
work. To solve this problem, we decided to use SHA-
256, a cryptographic hashing algorithm, to expand a
“passcode” to a 256 bit encryption key.

Early tests indicated that people would often mistype
the passcode, and the system would decrypt the data
into gibberish. Participants especially, but also staff at
the sites, would then correct the information and save
it, encrypting it using the wrong passcode. This would
then render the data useless.

We could not make the passcode or the encryption
key available to the server for verification as that would
defeat the purpose of the system. However, crypto-
graphic hashing functions are usually “trapdoor” func-
tions: you cannot retrieve the input to the function
given the output; in particular, SHA-256 is such a func-
tion. We can use SHA-256 to generate a “verification
hash” from the encryption key. This value can be stored
on the server since it is not possible to get back to the
encryption key from the verification hash. We can then
transmit this to the client along with the encrypted data,
which can verify that the passcode, when hashed twice,
is transformed into the verification hash. If it is, then
the passcode (and, thereby, the encryption key) is cor-
rect, and decryption can proceed.

Although it isn’t directly related to the system, one
final concern was that a site might somehow forget or
lose their passcode. Our solution to this was the use of
an escrow service. The service could be given a copy of
the passcode, encryption key, and verification hash in a
sealed envelope. However, it would not have access to
the database (which requires a separate username and
password from the encryption passcode).

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

Page 4 of 9

Passcode

hashing

algorithm

User

Generated
encryption
key

hashing
algorithm

Generated
validation
hash

If test succeeds, decryption may proceed.
If test fails, stop processing.

The hashing algorithm is a
cryptographic hashing algorithm

The encryption algorithm is a
symmetric encryption algorithm

Stored
validation
hash

/

/
/

[
encryption Encrypted
algorithm data

Decrypted
data

User edits data

encryption
algorithm

Figure 2 Encryption data flow. A diagram laying out how the encrypted data and the user-supplied passcode are used to decrypt the data.

J

An initial step to the use of this system is that all of
the protected health information needs to be encrypted
and sent to the central database. We developed separate
programs to provide this functionality. For more infor-
mation on these programs, as well as how we allow sites

to retrieve their data in bulk format and decrypt it
easily, please contact the authors.

What follows is an implementation of the webbrowser
based encryption system we have been discussing. The
system used in production is slightly different; the

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

largest difference being that instead of using the
“prompt” command to request information from the
user, we use a JavaScript-based dialog box. This makes
the code more complex as it breaks up much of the
logic into various callbacks instead of having a linear
flow. The few other changes between the code discussed
below and the one we use are related to changes in
JavaScript libraries between 2005 and now.

Our original implementation was done in 2005 as a
demonstration. The actual application was started in
late 2007.

Components
We use the following third-party components in this
system:

» A Javascript AES implementation. There are sev-
eral implementations available online. We use the
one from movable-type.co.uk [5].

» A Javascript SHA-256 implementation (technically
this is one of the SHA-2 family of hashing func-
tions). We use jsSSHA2 [6], slightly modified to put it
into a namespace. We have also incorporated some
of the changes from webtoolkit.info [7]. The Webt-
oolkit implementation is derived from jsSSHA2 and
contains several useful changes (especially for UTF-8
strings), but it was easier to make jsSSHA2 work with
Windows Scripting Host, which was required for
other reasons not relevant to this paper.

+ jQuery [8] is a Javascript library that makes work-
ing with the web browser DOM much easier.
Although not strictly necessary, it makes the code
much cleaner, and easier to get working across
browsers. Our original implementation predates jQu-
ery, but the production version uses jQuery.

Also, although we don’t use it in this paper, we use
jQuery Impromptu [9] for a Javascript-based dialog box
in our actual system.

Code
A complete listing of the HTML sent to the webbrowser
is in table 1. This same HTML, including referenced
libraries, is available in additional file 1. For this system
to work in practice, a server-side program is also needed
which connects to a data store and provides the
encrypted data and the verification hash to the client.
The HTML source is comprised of three main sec-
tions. Lines 7-9 load the external libraries mentioned
above. Lines 10-99 are the encryption and decryption
code. Lines 102-114 are an example form, with both an
encrypted field and a un-encrypted field. The data for
the input fields of the form needs to be supplied by the
server.

Page 5 of 9

There are three global variables that we use. These are
defined in lines 11-16. The GLOBAL verifica-
tion hash variable would be provided by the server;
in this case we have hard-coded the verification hash for
a passcode of ‘passcode’.

This system supports mixing encrypted and unen-
crypted data. Data that should be decrypted for editing
and then encrypted upon submission must be in an
input field with the class “encrypted”. Any field
which doesn’t have this class is ignored by the system,
and passed to the server as-is on submission.

When the page is loaded in the browser, we use the
$ (document) .ready () idiom provided by jQuery to
run three functions, defined in lines 18- 65. This idiom
ensures that the page is completely loaded before we
execute the function. They are executed in the order
that they are added to the jQuery object using the
ready () function.

The first function (lines 18-25) attaches a dynamic
property to each encrypted field to indicate the encryp-
tion status. This prevents double-encrypting or double-
decrypting. We assume that all encrypted fields came
from the server encrypted.

The second function (lines 27-55) prompts the user
for the encryption passcode and decrypts any encrypted
fields. Line 31 ensures that the user is only prompted
for a passcode if there are encrypted fields in the form.
There are several possible error conditions that can
occur. In order to simplify the logic, we use a “try/
catch” block. If an error occurs, the encrypted fields
are disabled, so that the data in them cannot be cor-
rupted. The key steps in this function occur in lines 42-
48. On line 42, the encryption key is generated from the
user-supplied passcode. On line 44, the encryption key
is hashed a second time, and compared to the GLO-
BAL verification hash. If they match, line 48
calls the function to decrypt the data.

The final $ (document) .ready () function (lines
57-65) attaches a validation function to the submit
handler of the form which ensures that the data is
encrypted before it is sent to the server.

The encryption and decryption of the data is fairly
straight-forward. We use two helper functions,
decrypt data (lines 67-81) and encrypt data
(lines 83-97) to keep the $ (document) .ready ()
functions neater. Each of these functions iterate over all
of the encryptable fields that are not currently in the
incorrect state. Because the result of the encryption pro-
cess is not necessarily safe — it might contain quote
characters, or angle brackets, or odd characters outside
of the normal printable characters — the encrypted text
is encoded using Base64, which is included with the
AES library we are using. Before we can decrypt the
data, of course, we need to decode the field value. Note

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

Table 1 Code listing

Page 6 of 9

— O 0 N O U b W N —

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52

<html>

<!-This code is provided under the terms of the Creative Commons

"Attribution (CC BY)'license. Please see

http://creativecommons.org/licenses/for details ->

<head>

<title>Client-side Encryption </title>

<script type="text/javascript’src="jquery-1.4.2.min.js"></script>
<script type="text/javascript’src="sha256.js"></script>

<script type="text/javascript’src="aes.js"></script>

<script type="text/javascript”>

//verification hash for passcode "‘passcode”.

//this would be provided from the database.

var GLOBAL_verification_hash

="a983169676c9fdcc852f29c013aef5f6faac345df££472548bf93a543618d5ed”;

var GLOBAL_passcode =null;
var GLOBAL_encryption_key =null;

e
*assume that all encrypted fields start encrypted
*/

$(document).ready(function () {
$(".encrypted’).each(function () {

S(this).attr('encryption_status’, “encrypted’);
i
1

e
*get the passcode
*/
$(document).ready(function () {
if (5(".encrypted’).length >0) {
try {
if ((GLOBAL_verification_hash) {

throw “There is no verification hash available.”;

GLOBAL_passcode =prompt("Please enter your encryption passcode:”,

if ((GLOBAL_passcode) {

throw “You did not enter an encryption passcode.”;

GLOBAL_encryption_key =SHA256 .hex_sha256(GLOBAL_passcode);

if (SHA256 .hex_sha256(GLOBAL_encryption_key) |=GLOBAL_verification_hash) {

"

throw “The passcode you entered does not verify. '

decrypt_datal);

}

catch (error_message) {
$(".encrypted’).attr('disabled’, "disabled’);
alert(error_message + "Encrypted fields will be disabled.”);

uu) .
’

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

Table 1 Code listing (Continued)

Page 7 of 9

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

/**
*on form submission, encrypt the data
*/
$(document).ready(function () {
S("fencryption_form’).submit(function () {
encrypt_datal);

return true;

*find all encrypted encryptable fields and decrypt them.
*use Base64 to keep characters in the printable range.
*/
function decrypt_data () {
S(".encrypted[encryption_status=encrypted]’).each(function () {
var encrypted_text = $(this).val();
if (encrypted_text |="){
var plain_text =AesCtr.decrypt(Base64.decode(encrypted_text),
GLOBAL_encryption_key, 256);
S(this).val(plain_text);
}
S(this).attr('encryption_status’, "decrypted’);
D

e
*find all decrypted encryptable fields and encrypt them.
*use Base64 to keep characters in the printable range.
*/
function encrypt_data () {
S(".encryptedlencryption_status=decrypted]’).each(function () {
var plain_text = $.trim($(this).vall();
if (plain_text ="){
var encrypted_text =Baseé64.encode(AesCtr.encrypt(plain_text,
GLOBAL_encryption_key, 256));
S(this).val(encrypted_text);
}
S(this).attr('encryption_status’, “encrypted’);
D

</script>
</head>
<body>
<form id="encryption_form">
Encrypted: <input type="text"

name="enc_field"

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

Table 1 Code listing (Continued)

Page 8 of 9

105 id="enc_field"

106 value="TkVjM1RENCtQajR6ZUIzZktRYOVrdndQVTB6Q091akQvTHpjeVEIPQ=="
107 class="encrypted'/>

108 Unencrypted: <input type="text’

109 name="field"

110 id="field"

111 value="some unencrypted value”
112 class="/><bxr/>

13 <input type="submit'value="Encrypt and submit"/>
114 </form>

115 </body>

116 </html>

This is the complete HTML code listing referred to in the “Implementation” section above.

that each function changes the encryption status
attribute for the fields. This ensures that they don’t run
twice on the same field in the event that they get called
twice in a row.

Discussion

When we were developing this system, encryption in the
browser was novel — there were very few implementa-
tions available, and many of them existed only in order
to show that it could be done. At the time, we looked
for any examples of similar systems online, and could
not find any. Since then, we have learned of a few sys-
tems which are similar in some ways (e.g. the Drupal
module “Client Side Encryption” [10]) but such projects
are unusual. Encryption of sensitive data is common,
but encryption and decryption usually happen on the
server (see, for example, [11]) and therefore do not
work for our use-case.

The use of a verification hash is a technique we have
not seen elsewhere. This is the key feature of the system
that allows us to permit the general public to use the
system without a risk of massive data corruption.

This description and our implementation of this sys-
tem is targeted towards protected health information. In
our case, we have consent to have access to a limited
data set, so it is not necessary to de-identify the data.
However, this system could be adapted to transform
limited or protected data sets into de-identified data
sets. Besides contact information, the most common
sensitive data points are dates, such as dates of admis-
sion or treatment (which are not allowed in a de-identi-
fied data set). Using this method of client-side
decryption, it would be possible to have a base date
stored in an encrypted manner. All other dates could be
stored as offsets from this base date. When the form is
displayed to a care team, the browser-client can add the
offsets to the base date, and display actual dates. When
the data is used for analysis, only the offsets are

available. The base date need not even be a relevant
date; any base would sulffice.

It is important to note that this system is only
intended to protect data from misuse on the server side
of the system. This is intended to be used as a part of a
larger system which provides user authentication, access
logs, and other protections against unauthorized access
from clients.

One criticism that has been suggested with our parti-
cular implementation is that we use a single passcode
for all of the participants at each site. This allows the
staff at the site to access all of the data, but does some-
what limit the ability to say that the passcode is “secret”.
In our usage, this is not important (all that matters is
that the codordinating center staff never learn the pass-
code) as access to the data is also protected by a sepa-
rate username and password pair — the encryption
passcode is only used to protect the contact informa-
tion. However, there is a relatively simple enhancement
that obviates this concern. When the data is initially
encrypted, instead of using one passcode, two passcodes
could be supplied. One is the “site” passcode, which is
shared for all participants at a site. The other is the
“participant” passcode, which is unique to each partici-
pant. The participant passcode would be used to encrypt
the data. The participant passcode (or its generated
encryption key) is then encrypted using the site pass-
code. The database stores the participant verification
hash, the encrypted participant passcode, and the site
verification hash. Participants can then use their pass-
code to access the data. For site staff, the site passcode
is used to decrypt the participant passcode, which then
is used to decrypt the data.

This system was devised for the encryption of pro-
tected health information. It is possible to determine if
an encrypted value is completely missing, as the field in
the database will be empty, but other data validation
checks, such as range checks or cross-question integrity,

Morse et al. BMC Medical Informatics and Decision Making 2011, 11:70
http://www.biomedcentral.com/1472-6947/11/70

cannot be performed on the server. Many of these kinds
of checks can be performed using client-side JavaScript
before the encryption takes place, but most of the kinds
of fields that this system would be used for are likely to
be fields that cannot be checked without human inter-
vention; this kind of validation would need to be per-
formed by a person who has permission to use the
decrypted data.

Conclusion

In this paper, we have presented a web-browser based
system that uses client-side encryption to prevent sensi-
tive data from being available to personnel that should
not have access. Although this solution seems straight-
forward, we spent several weeks looking for existing
technologies that offered all of the features that we
needed, and did not find any.

The most interesting part of the system is the use of a
verification hash to ensure that the encryption key is
correct without the server being able to decrypt the
data. This was a very important step that allowed us to
use the system with the general public without concern
about data corruption.

Although we developed this system for a specific
situation, there are interesting directions it can be taken.
Any situation where specific data needs to be available
to a care team or to data-entry staff, but should not be
available to central staff or to an IT team, could benefit
from this technique. As privacy issues become more
challenging, such a system could simplify many of the
data-sharing issues between institutions doing multi-
center clinical trials.

Availability and requirements
The main code for this system is available under the
Creative Commons Attribution license. The AES library
is also available under the Creative Commons Attribu-
tion license. jsSSHA?2 is available under the BSD license.
The Webtoolkit modifications are licensed under the
Creative Commons Attribution 2.0 UK license. jQuery is
available under the MIT license or the GPL.

In order to use this code, you need a web-browser.
This has been tested in Safari, Firefox, and IE6+.

Additional material

Additional file 1: The web site. The sample website, including the
JavaScript libraries, as a. zip file.

Acknowledgements and funding
This system was developed for use in the Cancer Genetics Network, which is
supported by contract HHSN2612007440000C from the National Cancer

Page 9 of 9

Institute. Nora Horick helped edit the manuscript. Anthony DeBenedictis and
Peter Lazar helped with revisions to the system we use in production.

Author details

'MGH Biostatistics Center, Massachusetts General Hospital, 50 Staniford St.
Ste 560, Boston, MA, 02114, USA. “Yale University, New Haven, CT, 06511,
USA.

Authors’ contributions

REM was the primary architect of this system. PN supplied critical feedback
during development, and his past experience with TrialDB and data entry
led to several important changes and refinements. DS was involved in the
initial impetus to develop the system and gave important feedback for the
writing of this paper, including suggestions that led to a change of focus
and several of the ideas for other ways to use the system. DF requested this
application, and provided guidance and feedback on the manuscript
preparation. All authors have read and approved the final version of this
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 March 2011 Accepted: 10 November 2011
Published: 10 November 2011

References

1. HIPAA Regulations Administrative Simplification. 2006 [http://www.hhs.
gov/ocr/privacy/hipaa/administrative/privacyrule/adminsimpregtext.pdf],
Tech rep, U.S. Department of Health and Human Services, Office for Civil
Rights.

2. Health Insurance Portability and Accountability Act. 1996 [http//www.
gpo.gov:80/fdsys/pkg/CRPT-104hrpt736/html/CRPT-104hrpt736.htm], Tech
rep, U.S. House of Representatives.

3. Nadkarni P, Brandt C, Marenco L: TrialDB - A Clinical Studies Data
Management System.[http://ycmi.med.yale.edu/TrialDB].

4. FIPS 197, Specification for the Advanced Encryption Standard (AES).
2001 [http://csrenist.gov/publications/fips/fips197/fips-197.pdf], Tech rep, U.
S. National Institute of Standards and Technology (NIST).

5. Veness C: JavaScript Implementation of AES.[http://www.movable-type.co.
uk/scripts/aes.html].

6. Marin A: jsSHA2 - JavaScript implementation of SHA-256.[http://anmar.eu.
org/projects/jssha2/].

7. Johnston P, Marin A: JavaScript SHA-256.[http://www.webtoolkitinfo/
javascript-sha256.html].

8. Resig J, et al jQuery: the Write Less, Do More, JavaScript library.[http//
jquery.com].

9. Richardson T: jQuery Impromptu.[http://trentrichardson.com/Impromptu/
index.phpl.

10. Gillies A: Client Side Encryption.[http://drupal.org/project/cse].

11. Kline J, Johnson C, Webb W, Runyon M: Prospective study of clinician-
entered research data in the Emergency Department using an Internet-
based system after the HIPAA Privacy Rule. BMC Medical Informatics and
Decision Making 2004, 4:17[http://www.biomedcentral.com/1472 6947/4/17).

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1472-6947/11/70/prepub

doi:10.1186/1472-6947-11-70

Cite this article as: Morse et al. Web-browser encryption of personal
health information. BMC Medical Informatics and Decision Making 2011
11:70.

http://www.biomedcentral.com/content/supplementary/1472-6947-11-70-S1.ZIP
http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/adminsimpregtext.pdf
http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/adminsimpregtext.pdf
http://www.gpo.gov:80/fdsys/pkg/CRPT-104hrpt736/html/CRPT-104hrpt736.htm
http://www.gpo.gov:80/fdsys/pkg/CRPT-104hrpt736/html/CRPT-104hrpt736.htm
http://ycmi.med.yale.edu/TrialDB
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.movable-type.co.uk/scripts/aes.html
http://www.movable-type.co.uk/scripts/aes.html
http://anmar.eu.org/projects/jssha2/
http://anmar.eu.org/projects/jssha2/
http://www.webtoolkit.info/javascript-sha256.html
http://www.webtoolkit.info/javascript-sha256.html
http://jquery.com
http://jquery.com
http://trentrichardson.com/Impromptu/index.php
http://trentrichardson.com/Impromptu/index.php
http://drupal.org/project/cse
http://www.ncbi.nlm.nih.gov/pubmed/15479471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15479471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15479471?dopt=Abstract
http://www.biomedcentral.com/1472 6947/4/17
http://www.biomedcentral.com/1472-6947/11/70/prepub

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Overview
	Constraints
	Components
	Code

	Discussion
	Conclusion
	Availability and requirements
	Acknowledgements and funding
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

