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Abstract

Background: Decision curve analysis has been introduced as a method to evaluate prediction models in terms of
their clinical consequences if used for a binary classification of subjects into a group who should and into a group
who should not be treated. The key concept for this type of evaluation is the “net benefit”, a concept borrowed
from utility theory.

Methods: We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the
formal distinction between the net benefit for the treated and for the untreated and define the concept of the
“overall net benefit”. Next, we revisit the important distinction between the concept of accuracy, as typically
assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility
of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of
decision curve analysis to be applied in the context of case-control studies.

Results: We show that the overall net benefit, which combines the net benefit for the treated and the untreated,
is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the
outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision
curve analysis, we illustrate the important difference between the accuracy and the utility of a model,
demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the
application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of
a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation
procedure.

Conclusions: We present several interrelated extensions to decision curve analysis that will both facilitate its
interpretation and broaden its potential area of application.

Background
The decision to administer or not to administer a treat-
ment against some disease is frequently based on an
estimated probability pi that an individual i has the dis-
ease (or – in a prognostic setting – will develop the dis-
ease), typically obtained using a prediction model in the
broadest sense. A treatment is then administered if pi is
high enough, whereas no treatment is administered if pi
is too low. To judge whether pi is high enough, one
should weigh the profit P obtained by treating an

individual with the disease and the loss L caused by
treating an individual without the disease. The rationale
is to treat individual i if and only if piP > (1 - pi)L, i.e. if
the expected profit is higher than the expected loss.
Equivalently, the treatment is administered if and only if
pi >pt, where pt is some threshold probability defined by
pt/(1 - pt) = L/P, that is, pt = L/(L + P). The threshold
probability pt, and hence the decision to opt or not to
opt for the treatment, is thus a one-to-one function of
the ratio L/P which is informative of how a clinician or
a patient weighs the relative harms of false positive and
false negative results. This quantity is typically subjective
and will vary from clinician to clinician and from patient
to patient. In what follows, we just assume that 0 <pt <
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1. Decision curve analysis consists of showing graphi-
cally the so-called “net benefit” obtained by applying the
strategy of treating an individual if and only if pi >pt in
function of the threshold probability pt [1]. It facilitates
the comparison among alternative prediction models
used to calculate pi. As a consequence, it may facilitate
the decision of which of several prediction models to
select, typically as a result of a clinician or a patient
favouring the model with the highest net benefit at their
personally determined threshold probability.
Two extreme examples of prediction models are a

model for which pi = 1 for all individuals (with the con-
sequence of all of them being treated, whatever the
threshold probability), and a model for which pi = 0 for
all individuals (with the consequence of none of them
being treated, whatever the threshold probability). On
the other hand, a model achieving a perfect prediction
would provide pi = 1 for individuals with the disease
and pi = 0 for individuals without the disease.
Interestingly, a binary diagnostic or prognostic test

with only two possible results (positive or negative),
where an individual receives the treatment if and only if
the diagnostic or prognostic test is positive (an indivi-
dual with a negative diagnostic or prognostic test being
not treated), could be seen as a special case of a predic-
tion model by letting pi = 1 if the test is positive for
individual i (such that pi >pt, whatever the threshold pt),
and letting pi = 0 if the test is negative (such that pi <pt,
whatever the threshold pt). Thus, decision curve analysis
allows the comparison of binary diagnostic or prognostic
tests with other prediction models (see below for an
example).
Consider now a random sample of the population (e.g.

the sample used to calculate the pi). Let a be the pro-
portion of individuals with pi >pt and with the disease,
let b be the proportion of individuals with pi >pt and
without the disease, let c be the proportion of indivi-
duals with pi <pt and with the disease, and let d be the
proportion of individuals with pi <pt and without the
disease (to slightly simplify our exposition, we shall
assume that an equality pi = pt is not possible, such that
a + b + c + d = 1). Thus, a, b, c and d are (estimates of)
the proportions of true positive, false positive, false
negative, and true negative results, respectively, and are
dependent both on the threshold pt and on the model
used to calculate the pi. The prevalence of the disease is
(estimated by) π = a + c. Note that our use of the four
letters a, b, c and d corresponds to the proportions of
the four possible results of binary classification and that
we thereby adopt a more commonly accepted notation
(see e.g. [2]) than Vickers et al. [1] (see Figure 1
therein), who used the same letters to denote utilities of
the four possible results.

Vickers et al. [1] proposed to use the so-called net
benefit for the evaluation of prediction models, and to
calculate it, they proceed as follows. Focusing on the
individuals who receive the treatment, i.e. for whom
pi >pt, the expected profit will be aP and the expected
loss will be bL, the resulting benefit being Utreated =
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Figure 1 Illustration of the net benefit for the treated, for the
untreated and overall. Decision curves based on the net benefit
for the treated (a), the net benefit for the untreated (b) and the
overall net benefit (c) for a simple example model and a complex
example model, accompanied by the reference strategies of treating
none or treating all and a hypothetical perfect prediction model
("omniscient”). Note that the addition of the decision curves for the
treated (a) and the untreated (b) results in the decision curves in (c).
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aP - bL. This definition of the benefit corresponds to
the “average profit per prediction” or “utility of the
method” introduced by Peirce [3]. In many situations,
determining actual values of P and L is not an obvious
task. In decision curve analysis, it suffices to have an
idea of their ratio L/P (or equivalently, of pt). In order
to make the benefit dependent only on the ratio L/P,
i.e. not on the actual values of P and L, Vickers et al.
[1] divided the benefit by P, yielding the so-called net
benefit, utreated = a - bL/P, or, expressed as a function
of pt,

utreated = a − b
pt

1 − pt
. (1)

In the extreme case where none of the individuals is
treated, one has a = b = 0 and utreated = 0, which is con-
stant whatever the threshold probability pt. In the other
extreme case where all individuals are treated, one has a =
π, b = 1 - π and utreated = π - (1 - π)pt/(1 - pt). This is a
decreasing function of the threshold probability, ranging
from the prevalence down to negative infinity. For a
model achieving a perfect prediction, one has b = c = 0
and utreated = π, which is again constant whatever the
threshold probability. For many prediction models, the
empirical finding is that the net benefit for the treated will
be a roughly decreasing function of the threshold probabil-
ity, approximately ranging from the prevalence down
to zero.
Interpretation of the value of the net benefit is not

quite straightforward. It is a difference between two
complementary proportions summing up to π, those
profiting from obtaining the treatment (since they really
have the disease) minus those loosing by obtaining the
treatment (since they do not have the disease and will
only suffer from the treatment), the latter weighted by
the ratio L/P. The net benefit is thus equal to zero if the
loss compensates the profit and can even be negative if
the loss surpasses the profit. The maximum possible
value of the net benefit is π, the prevalence of the dis-
ease, which is achieved only by a perfect prediction
model.

Application to an example
To illustrate the application of decision curve analysis,
we make use of a data set which is available on the
accompanying website of a text book by Dupont [4]:
http://biostat.mc.vanderbilt.edu/dupontwd/wddtext/data/
2.20.Framingham.csv. It is a subset of the 40-year fol-
low-up data set of the Framingham Heart Study (made
available by Levy [5]). We define death due to coronary
heart disease (CHD) within 30 years as our binary
response, bluntly ignoring censoring in order to keep
the example simple and to obtain a relatively high

prevalence, both of which render the presentation of the
issues we would like to bring forward didactically easier.
In what follows, only individuals for whom all variables
were measured are analysed (n = 4658). Since we have
a total of 1403 deaths within 30 years, our observed
prevalence is π = 0.30.
We fitted two logistic regression models for the

response variable: A simple model including only the
explanatory variable serum cholesterol, and a complex
model including the explanatory variables sex, age, BMI,
serum cholesterol, diastolic blood pressure, and systolic
blood pressure. For each of the two models, for the
strategies to treat none or to treat all as well as for a
hypothetical perfect prediction model, the net benefit
was calculated and plotted against threshold probabil-
ities pt ranging from 0 to 1 constituting five decision
curves (Figure 1a). The complex model has a higher net
benefit than the simple model over the whole range of
pt, the difference being sizeable and visible on the graph
for values of pt between c. 0.2 and 0.5 (Figure 1a). The
two decision curves for the extreme strategies to treat
none or all individuals serve as reference lines to judge
whether a prediction model has any additional benefit.
For the simple model, this is roughly the case for pt ran-
ging between c. 0.15 and 0.35, and for the complex
model, this is roughly the case for pt ranging between c.
0.15 and 0.5 (Figure 1a). The decision curve for a
hypothetical perfect prediction model, which is equiva-
lent to an omniscient strategy, serves as a reference
line indicating the maximum net benefit that can be
achieved (Figure 1a).

The benefit for the untreated
However, there is no apparent reason to focus solely on
the individuals who receive the treatment when calculat-
ing the net benefit. One could also be interested in the
profit and loss for the individuals not receiving the
treatment, i.e. for whom pi <pt. For these individuals,
the expected profit will be dL and the expected loss will
be cP, the resulting benefit being Uuntreated = dL - cP.
We may note that, while Uuntreated will in general be dif-
ferent from Utreated for a given prediction model, the
difference between two models with respect to Uuntreated

will be equal to the difference between two models with
respect to Utreated, that is,

Uuntreated model 1 − Uuntreated model 2 = Utreated model 1 − Utreated model 2, (2)

as can be deduced from Baker et al. [6]. Thus, a model
maximising Utreated at some threshold probability pt will
also maximise Uuntreated at this threshold.
In the same spirit as Vickers et al. [1], who defined a

net benefit for the treated, one could also define a net
benefit for the untreated, dividing Uuntreated by L and
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yielding uuntreated = d - cP/L, or, expressed as a function
of pt,

uuntreated = d − c
1 − pt
pt

. (3)

This is the formula that Vickers et al. [1] would have
obtained if they had reversed the coding of the outcome
(i.e. if they had considered the individuals with the dis-
ease as being those without the disease, and the treated
as being the untreated). Importantly, while a model maxi-
mising utreated will also maximise uuntreated, the difference
between two models will (in general) be different with
respect to utreated or uuntreated, as we shall see in our
example.
In the extreme case where all individuals are treated,

one has c = d = 0 and uuntreated = 0, whatever the
threshold probability. In the other extreme case where
none of the individuals is treated, one has c = π, d = 1 -
π and uuntreated = (1 - π) - π(1 - pt)/pt. This is an
increasing function of the threshold probability, ranging
from negative infinity up to one minus the prevalence.
For a model achieving a perfect prediction, one has b =
c = 0 and uuntreated = 1 - π, whatever the threshold
probability. For many prediction models, the empirical
finding is that the net benefit for the untreated will be a
roughly increasing function of the threshold probability,
approximately ranging from 0 up to one minus the
prevalence.
The net benefit for the untreated is a difference

between two complementary proportions summing up
to 1 - π, those profiting from not obtaining the treat-
ment (since they really do not have the disease) minus
those loosing by not obtaining the treatment (since they
have the disease and would need the treatment), the lat-
ter weighted by P/L. Here too, the net benefit is equal
to zero if the loss compensates the profit, and it can
even be negative if the loss surpasses the profit. The
maximum possible value of the net benefit for the
untreated is 1 - π, one minus the prevalence of the dis-
ease. It is again only achieved by a perfect prediction
model.
When the net benefit for the untreated is applied to

the example introduced above, the zero reference line is
now represented by the strategy of treating all indivi-
duals, while the strategy of treating none of the indivi-
duals is now represented by a monotonously increasing
line (Figure 1b). The decision curve for a hypothetical
perfect prediction model is in this example higher for
the untreated than for the treated (because the preva-
lence is smaller than 0.5; Figure 1b). The net benefit for
both the simple and the complex model surpasses the
two extreme strategies in the same range of pt as in Fig-
ure 1a. Similarly, the complex model is superior to the

simple model in the same range of pt as in Figure 1a.
However, the difference between the two models with
respect to uuntreated is visible for values of pt between c.
0.1 and 0.5 (whereas it was visible only between c. 0.2
and 0.5 with respect to utreated). Thus, while the two
models achieve roughly the same benefit with respect to
utreated for a clinician using a threshold of say pt = 0.15,
the complex model will appear to be superior to the
simple model at that threshold with respect to uuntreated.
In this regard, the use of the net benefit for the treated
or of the net benefit for the untreated is not equivalent
when comparing different models.

The overall benefit
If one wishes to define a measure of the net benefit for
all individuals (the treated and the non-treated), it
seems natural to add up the net benefits calculated for
the treated and for the untreated, yielding an overall net
benefit defined as uoverall = (a + d) - bL/P - cP/L, or,
expressed as a function of pt,

uoverall = (a + d) − b
pt

1 − pt
− c

1 − pt
pt

. (4)

A model maximising uoverall at some threshold prob-
ability pt will also maximise both utreated and uuntreated at
this threshold probability. On the other hand, the differ-
ence between two models with respect to uoverall is
equal to the sum of the differences between these mod-
els with respect to utreated and to uuntreated, such that a
visible difference between two models with respect to
either of these quantities will also be visible with respect
to uoverall.
The overall net benefit can be interpreted as a differ-

ence of complementary proportions summing up to 1,
those profiting from being correctly classified a + d
minus those loosing by being incorrectly classified b + c,
the latter appropriately weighted to account for the fact
that the values of P and L are different. As for the net
benefits for the treated and for the untreated, the overall
net benefit is equal to zero if the loss compensates the
profit and it can even be negative if the loss surpasses
the profit. The maximum possible value of the overall
net benefit is 1, which is achieved only for a perfect pre-
diction model. This maximum value of 1 is certainly a
sensible value since it implies that 100% of the indivi-
duals would profit from a diagnostic or prognostic test,
which is precisely the case for a perfect prediction
model.
Applying the concept of an overall net benefit to our

example is equivalent to adding up the curves in Figure
1a and b, resulting in the curves in Figure 1c. The
curves for the two extreme strategies of treating none
and treating all are equal to the curves for the strategy
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of treating none in the case of the untreated and for the
strategy of treating all in the case of the treated, respec-
tively, since the complementary strategies are repre-
sented by zero lines (Figure 1c). The curves for the
hypothetical perfect prediction model add up to 1
(Figure 1c). The curves for both the simple and the
complex model now have the form of valley cross sec-
tions (Figure 1c). Again, the complex model surpasses
the simple model over the whole range of pt, the differ-
ence between the two models with respect to uoverall
being clearly visible between c. 0.1 and 0.5.

Relationships to ROC analysis
Vicker et al. [1] stress that with the introduction of deci-
sion curve analysis, they hope to overcome the schism
between those solely interested in the accuracy and
those solely interested in the utility of a prediction
model. Whereas the latter select their threshold prob-
ability independently from the model as pt = L/(L + P),
which is a personal threshold as explained above, the
former select their threshold probability (or cutoff prob-
ability, denoted here by pc) to maximise some well-
defined criterion. Thus, the resulting optimal pc gener-
ally differs from model to model. There are many
criteria which can be optimised, but as Baker et al. [6]
point out, one of the most commonly applied ones is
the Youden index, equal to sensitivity + specificity - 1.
Baker et al. [6] show that the Youden index is equal to
the so-called “science of the method”, as again defined
by Peirce [3], and as such does not bear the name of its
actual author. Baker et al. [6] illustrate how these two
kinds of threshold (the optimal pc or the personal pt)
are related to a receiver operating characteristic (ROC)
curve.
Recall that a ROC curve shows all possible couples (1

- specificity; sensitivity) achievable by a prediction
model when varying the threshold probability. The ROC
curve of the complex model from our example is drawn
in Figure 2. The threshold pc maximising the Youden
index corresponds to the operating point on the ROC
curve that is the highest point above the diagonal from
the lower left to the upper right corner (Figure 2a). To
determine the operating point on the ROC curve corre-
sponding to the personal threshold pt = L/(L + P),
which maximises the personal benefit utreated = a - bpt/
(1 - pt), first note that

utreated = sensitivityπ − (1 − specificity)(1 − π)
pt

1 − pt
. (5)

This follows from the fact that (estimates of) the sen-
sitivity and the specificity are given by a/(a + c) and
by d/(d + b), while (estimates of) π and 1 - π are given
by a + c and by b + d. One may thus calculate the deri-
vative of utreated with respect to 1 - specificity, given by

δutreated
δ(1 − specificity)

=
δ sensitivity(1 − specificity)

δ(1 − specificity)
π − (1 − π)

pt
1 − pt

(6)

and set it equal to zero, as explained in Baker et al. [6]
(see also [7]). Thus pt corresponds to the operating point
on the ROC curve for which the slope is equal to [(1 -
π)/π][pt/(1 - pt)]. Steyerberg et al. [8] noticed that choos-
ing pt = π implies pt = pc (as long as the optimal pc
maximising the Youden index corresponds to the operat-
ing point on the ROC curve for which the slope is equal
to 1). For our example, the solution for two selected
values, pt = 0.2 and pt = 0.4, is given in Figure 2b.
Whereas an ROC curve allows to demonstrate the

sensitivity and the specificity achieved at each personal
pt and to compare these values to what would be
achieved using the optimal pc, it might also be of inter-
est to show the net benefit achieved by the optimal pc
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Figure 2 Relationships of decision curve analysis to ROC curve
analysis. Receiver operating characteristic (ROC) curve for the
complex example model. (a) The optimal operating point based on
maximising the Youden index is the point on the curve with the
largest vertical distance to the diagonal from the lower left corner
to the upper right corner. The optimal operating point is indicated
with a circle, the diagonal with a hatched line. (b) The optimal
operating point based on maximising the net benefit is the point
on the curve for which the slope is equal to [(1 - π)/π][pt/(1 - pt)].
Two examples for pt = 0.2 and pt = 0.4 are indicated with circles,
the corresponding slopes with hatched lines.

Rousson and Zumbrunn BMC Medical Informatics and Decision Making 2011, 11:45
http://www.biomedcentral.com/1472-6947/11/45

Page 5 of 9



as a function of pt. This is illustrated in Figure 3 for the
complex model of our example. One can see that the
net benefit quickly drops below the extreme strategies
of treating none or all as soon as pt is departing from
pc (which in our example was found to be 0.306). This
underlines that the concepts of accuracy and utility of a
prediction model may differ drastically in practice.

Decision curve analysis in case-control studies
So far, we have implicitly assumed that our random
sample was representative for the population of interest.
If we now consider data from a case-control study, the
empirical prevalence π will no longer be a consistent
estimate of the true prevalence, which we shall denote
by π0, since the cases are often overrepresented. In this
context, it is well known that one can still use logistic
regression to consistently estimate odds ratios. However,
a pi calculated from a logistic regression model in a
case-control study will no longer be a consistent esti-
mate of the probability that the individual i has the dis-
ease. If one knew π0, this probability could be estimated
by p′

i defined such that

p′
i

1 − p′
i

=
pi

1 − pi

π0
1−π0

π
1−π

, (7)

that is

p′
i =

pi(1 − π)π0

(1 − pi)π(1 − π0) + pi(1 − π)π0
. (8)

To perform a decision curve analysis in a case-control
study, one should hence know (or estimate) the true
prevalence π0 using another source than the data them-
selves, typically from the literature. In this context, one
may calculate p′

i and opt for the treatment if and only if
p′
i > pt. Let then a’ be the proportion of individuals with
p′
i > pt and with the disease, let b’ be the proportion of
individuals with p′

i > pt and without the disease, let c’ be
the proportion of individuals with p′

i < pt and with the
disease, and let d’ be the proportion of individuals with
p′
i < pt and without the disease (we further assume that
an equality p′

i = pt is not possible, such that a’ + b’ + c’
+ d’ = 1). In line with the fact that the empirical preva-
lence π = a’ + c’ is not a consistent estimate of the true
prevalence π0, the quantities a’, b’, c’ and d’ are no con-
sistent estimates of the true proportions of true positive,
false positive, false negative and true negative results,
respectively. Note however that a’/(a’ + c’) and d’/(b’ +
d’) are still consistent estimates of the true sensitivity
and the true specificity (recall also that an ROC analysis
can still be carried out in a case-control study). To esti-
mate the net benefit for the treated in a case-control
study, one may thus use the mathematical expression
given in the previous section, that is

utreated = sensitivityπ0 − (1 − specificity)(1 − π0)
pt

1 − pt
(9)

=
a′

a′ + c′
π0 − b′

b′ + d′ (1 − π0)
pt

1 − pt
. (10)
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Figure 3 Illustration of the net benefit achieved using an
accurate binary diagnostic test. Dichotomising the complex
example model with the optimal ROC cutoff probability based on
the maximum Youden index (or Peirce’s “science of the method”)
results in an arc-shaped decision curve, with respect to the net
benefit for the treated (a), the net benefit for the untreated (b), or
the overall net benefit (c).
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Similarly, the net benefit for the untreated can be esti-
mated as

uuntreated = specificity(1 − π0) − (1 − sensitivity)π0
1 − pt
pt

(11)

=
d′

b′ + d′ (1 − π0) − c′

a′ + c′
π0

1 − pt
pt

(12)

and the overall net benefit as

uoverall =
[

a′

a′ + c′
− c′

a′ + c′
1 − pt
pt

]
π0 +

[
d′

b′ + d′ − b′

b′ + d′
pt

1 − pt

]
(1 − π0). (13)

If the true prevalence is unknown, the net benefit is a
function of both the personal threshold pt and the true
prevalence π0. One can then perform several decision
curve analyses over a plausible range of values of π0.
Alternatively, for a given threshold pt, one could show
the net benefit achievable by the prediction models
under consideration in function of the unknown π0.
Note that Pencina et al. [9] used a similar strategy to
calculate a “net reclassification improvement” in the
context of a case-control study.
For illustrative purposes, let us pretend that the data of

our example above originate from a case-control study
and that the empirical prevalence π thus does not reflect
the true prevalence π0. We have drawn three decision
curves for which the true prevalence π0 is taken to be
smaller, higher or equal to the empirical prevalence π
(Figure 4). One can see that all decision curves are both
shifted and lowered or raised depending on the value of
π0 (Figure 4a, b and c). As a consequence, the range of pt
where the prediction models have any additional benefit
compared to the extreme strategies to treat none or all
will depend on the postulated value of π0. More gener-
ally, a comparison among alternative prediction models
(as well as the decision of which of them to select) will
not only be made in function of the threshold probability
pt but also of the assumed true prevalence π0 of the
population of interest.

Discussion
We have recalled the foundations of decision curve ana-
lysis and discussed some new aspects. In the original
proposal, prediction models are compared with respect
to the net benefit for the treated where one weighs the
profits and losses for those receiving the treatment.
Besides the net benefit for the treated, one could also be
interested in the net benefit for the untreated which
weighs the profits and losses for those not receiving the
treatment, as developed above. In fact, the net benefit
for the untreated would correspond to the net benefit
for the treated if one would reverse the coding of the
outcome. However, whereas a model maximising the net
benefit for the treated will also maximise the net benefit

for the untreated, the difference between two models
will (in general) not be the same with respect to the net
benefit for the treated or for the untreated. This actually
implies that the original definition of the net benefit
by Vickers et al. [1] is sensitive to the coding of the
outcome, which may not be an optimal feature.
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Figure 4 Application of decision curve analysis to a
case-control study. Decision curves for a simple model, a complex
model, the reference strategies to treat none or all, and a
hypothetical perfect prediction model based on the overall net
benefit for an assumed true prevalence of π0 = 0.15 (a), π0 = 0.45
(b) and π0 = 0.30 (c), the latter corresponding to the empirical
prevalence π. While (c) is a reasonable assumption if the data are
representative of the population of interest, this may no longer be
the case if the data originate from a case-control study.
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To illustrate further how our clinical judgement could
be altered when using one measure rather than the
other when calculating the net benefit, we compare a
simple binary diagnostic test achieving 90% of sensitivity
and specificity with a complex binary diagnostic test
achieving 99% of sensitivity and specificity in a context
where the prevalence is 0.5 (Figure 5, a fictitious exam-
ple). One can see that the difference between the two
tests is rather small with respect to the net benefit for
the treated at a low threshold value pt (Figure 5a),
whereas it is much higher with respect to the net benefit
for the untreated at the same threshold (Figure 5b).
Thus, a clinician with a low personal threshold may
conclude that the complex binary diagnostic test is not
much more useful than the simple one from a clinical
point of view if he/she looks at the net benefit for the
treated, whereas his/her conclusion may drastically
change if he/she looks at the net benefit for the
untreated. Note that these differences are not a conse-
quence of small sample problems and that the sample
size appears in none of the formulae provided in this
paper.
In order to define a measure of the net benefit which

is invariant with respect to the coding of the outcome,
one may combine the net benefits for the treated and
the untreated in a symmetric way. In this paper, we
have simply considered their sum, referred to as the
“overall net benefit” (as done in Figure 5c of our ficti-
tious example). Another interesting property of the
overall net benefit is that the maximum possible value is
always 1 (even though it is difficult to reach). In con-
trast, the maximum possible value for the net benefit
proposed by Vickers et al. [1] is equal to the prevalence
of the disease, which will be different from study to
study. We also note that the overall net benefit is not
more complicated to calculate than the net benefit for
the treated. A user-friendly R package [10] to calculate
and draw decision curves based on the overall net bene-
fit is available from the second author upon request.
The crucial aspect of decision curve analysis is the

choice of the threshold pt, which may be viewed as a
potential limitation of the method since it can be difficult
to quantify the consequences of a misclassification
(the harms of being a false positive or a false negative).
Fortunately, the choice of the threshold only depends on
the relative expression L/P, not on the absolute terms
P and L, which should already greatly simplify the prac-
tice. This was one motivation of Vickers at al. [1] to con-
sider a “net benefit” (in our notation, utreated) rather than
an “absolute benefit” (in our notation, Utreated). Interpret-
ing the value of a net benefit is however not quite
straightforward and interpreting a difference between
the net benefits achieved by two different models may
still be more problematic. Recently, Tsalatsanis et al. [11]

addressed this issue via a regret theory approach. On the
other hand, the value of an absolute benefit would indeed
be informative from a cost-effectiveness perspective
(regarding the gain achieved when using the prediction
model to decide whether an individual should be treated
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Figure 5 Comparison of simple and complex binary diagnostic
tests with respect to the net benefit. At a low threshold
probability pt, the difference between the two tests appears to be
much higher with respect to the net benefit for the untreated (b)
than with respect to the net benefit for the treated (a). The
converse is true at a high probability threshold. A complete picture
of the situation is conveyed using the overall net benefit (c). In this
example, the simple test has 90% sensitivity and specificity and the
complex test has 99% sensitivity and specificity in a context where
the prevalence is 0.5.
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or not, compared to the strategy of treating nobody, as
provided by Utreated, compared to the strategy of treating
everybody, as provided by Uuntreated, or compared to the
strategy of doing the contrary of what is predicted by the
model, as provided by the sum of Utreated and Uuntreated).
We note that it might be difficult to define a measure

of the utility of a model which is invariant with respect
to the coding of the outcome, which only depends on the
relative expression L/P, and which is easily interpretable.
The overall net benefit considered in the present paper
does satisfy the first two properties, while it may still
be difficult to interpret. To assist interpretation, we
described the overall net benefit as a difference of two
complementary proportions. In the special case where
the harms of a false positive equal the harms of a false
negative (the threshold being pt = 0.5), the overall net
benefit equals (a + d) - (b + c), which is simply the per-
centage of those correctly classified minus the percentage
of those incorrectly classified. An overall net benefit of
0.2, for example, means that 60% of the subjects are cor-
rectly classified while 40% are not, the net benefit hence
being 60% - 40% = 20%. In the more general case where
different personal values are assigned to profits and
losses, this difference of complementary proportions is
weighted accordingly, such that a net benefit of 0.2 keeps
the same “clinical value” in the context described above
with pt = 0.5, or in another context.
In summary, we propose to use the overall net benefit

instead of the benefit for the treated in a decision curve
analysis when the issue is to assess and compare several
concurrent prediction models with respect to their utility.
We also took the opportunity to recall the important
difference which may arise between the notions of accu-
racy and utility of a prediction model, as illustrated by
Figure 3. Finally, we have illustrated how to use decision
curve analysis in the context of case-control studies by
allowing the prevalence, in addition to the threshold
probability, to vary over a sensible range. We hope that
our remarks will facilitate interpretation of decision curve
analysis and motivate a more widespread adoption of the
method.
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individuals with pi <pt with the disease of interest; d: proportion of
individuals with pi <pt without disease of interest; uoverall: overall net benefit;
Utreated: benefit for the treated; utreated: net benefit for the treated; Uuntreated:
benefit for the untreated; uuntreated: net benefit for the untreated; ROC:
receiver operating characteristic; π: observed prevalence of the disease of
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