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Abstract 

Background Forecasting models predicting trends in hospitalization rates have the potential to inform hospital 
management during seasonal epidemics of respiratory diseases and the associated surges caused by acute hospital 
admissions. Hospital bed requirements for elective surgery could be better planned if it were possible to foresee 
upcoming peaks in severe respiratory illness admissions. Forecasting models can also guide the use of intervention 
strategies to decrease the spread of respiratory pathogens and thus prevent local health system overload. In this 
study, we explore the capability of forecasting models to predict the number of hospital admissions in Auckland, New 
Zealand, within a three‑week time horizon. Furthermore, we evaluate probabilistic forecasts and the impact on model 
performance when integrating laboratory data describing the circulation of respiratory viruses.

Methods The dataset used for this exploration results from active hospital surveillance, in which the World Health 
Organization Severe Acute Respiratory Infection (SARI) case definition was consistently used. This research nurse‑led 
surveillance has been implemented in two public hospitals in Auckland and provides a systematic laboratory testing 
of SARI patients for nine respiratory viruses, including influenza, respiratory syncytial virus, and rhinovirus. The forecast‑
ing strategies used comprise automatic machine learning, one of the most recent generative pre‑trained transform‑
ers, and established artificial neural network algorithms capable of univariate and multivariate forecasting.

Results We found that machine learning models compute more accurate forecasts in comparison to naïve seasonal 
models. Furthermore, we analyzed the impact of reducing the temporal resolution of forecasts, which decreased 
the model error of point forecasts and made probabilistic forecasting more reliable. An additional analysis that used 
the laboratory data revealed strong season‑to‑season variations in the incidence of respiratory viruses and how this 
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correlates with total hospitalization cases. These variations could explain why it was not possible to improve forecasts 
by integrating this data.

Conclusions Active SARI surveillance and consistent data collection over time enable these data to be used to pre‑
dict hospital bed utilization. These findings show the potential of machine learning as support for informing systems 
for proactive hospital management.

Keywords Forecasting healthcare burden, Seasonal epidemic, Influenza‑like illness, Severe respiratory diseases, 
Forecasting, Flu prediction, Artificial intelligence, Machine learning, Probabilistic forecast

Introduction and background
Seasonal epidemics of respiratory infections challenge 
health systems worldwide [1–5]. Surges in acute hos-
pital admissions caused by seasonal respiratory viral 
epidemics can require elective hospital admissions to 
be canceled at short notice. Consequently, this results 
in stress for the healthcare system, patients, and their 
families. To prevent these adverse outcomes, forecasting 
models can predict upcoming peaks in acute respiratory 
infection-related admissions and enable clinical lead-
ers in hospitals to proactively manage medical resource 
utilization, staffing, and the scheduling of elective proce-
dures. Moreover, forecasting allows policymakers to be 
better informed about applying interventions to reduce 
respiratory pathogen transmission rates and prevent 
local health system overload.

The application of machine learning to time series fore-
casting has increased in recent years due to its strong 
ability to achieve higher predictive accuracy in compari-
son to naïve models solely based on seasonal patterns 
and linear statistical methods such as ARIMA [6]. For 
this reason, several software frameworks offer algorithms 
for a range of time series analyses, including clustering, 
classification, and forecasting, applying concepts from 
tree-based and artificial neural network learning [7–10]. 
Other frameworks apply automated machine learn-
ing (AutoML) that, given a time series as input, system-
atically applies a collection of statistical methods and 
machine learning algorithms to explore which approach 
provides the best results on the data provided [11]. The 
user receives an automatically determined selection of 
the best algorithm or an ensemble output weighted by 
the performance of the algorithms used to predict future 
values for the time series provided. Such solutions are 
promising for the field of forecasting as they rely on the 
collective potential and complementary advantages of 
different algorithmic concepts.

Forecasting algorithms can be differentiated into two 
groups: univariate algorithms, using only one time series 
at a time and making use of statistical patterns in this 
time series to model future values, and multivariate algo-
rithms that can integrate multiple time series to leverage 
statistical patterns across different time series integrated 

into a model that provides predictions for either one 
target time series (multivariate-to-univariate forecast-
ing) or all series provided (multivariate-to-multivariate 
forecasting).

Multivariate forecasting is relevant as the predictive 
performance can be improved by providing additional 
information to the algorithm besides the target time 
series the model is trained for. For instance, weather 
information, such as temperature, precipitation, and 
humidity, has been integrated into several COVID-19 
forecasting models developed for data from different 
countries [12–15]. Regarding influenza or influenza-like 
illness forecasting, there are approaches using weather 
data besides additional geographical information or lev-
eraging internet search information, such as Google 
Trends [16–22]. These studies demonstrate that data 
integration coupled with machine learning can be highly 
beneficial as dedicated algorithms are able to extract 
complex patterns across different data sources to provide 
accurate forecasting models [23].

In this study, we investigate the potential of both uni-
variate and multivariate forecasting algorithms for 
forecasting hospital admissions caused by respiratory 
infections with a severe disease progression monitored 
during the winter season in two hospitals in Auckland, 
New Zealand. The dataset we used for this study has 
been derived from the SHIVERS surveillance of hospi-
talizations, with this active surveillance system having 
consistently used the World Health Organization severe 
acute respiratory infection (SARI) case definition since 
the surveillance platform was established in 2012 [24]. 
This SARI surveillance data accurately describes the 
healthcare burden during seasonal epidemics of respira-
tory diseases as the SARI definition identifies patients 
with a specific combination of symptoms (cough and 
fever), recent onset of these symptoms (within the past 
ten days), and that require inpatient hospitalization [25].

The two participating hospitals in Auckland, New 
Zealand, provide secondary and tertiary healthcare to 
a population of more than 900,000 people, of which the 
socioeconomic and ethnic composition are broadly like 
the population of the whole country [25]. Moreover, 
the dataset provides a consistent laboratory component 
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describing the result of real-time PCR protocols applied 
to test consenting SARI patients if they have been 
infected with one of nine respiratory viruses. These data 
describe which viruses circulate at daily resolution and 
can be integrated by a multivariate forecasting model. As 
the laboratory component encodes highly relevant infor-
mation about the infectious dynamics of different viruses 
during the seasonal epidemics of respiratory diseases, we 
investigated whether it could aid the prediction of SARI 
hospitalization. In addition to the laboratory compo-
nent, we expand the multivariate forecasting by using the 
SARI cases split into age groups representing infectious 
dynamics that differ between adults and children in dif-
ferent age groups.

We investigate a time window of 21 days for which the 
models are trained to provide a forecast at daily resolu-
tion. This time window is called the forecasting horizon. 
The forecasts were evaluated for each day on the hori-
zon at daily resolution and at weekly resolution, using 
the average over seven days in the forecast. Furthermore, 
we include the evaluation of probabilistic forecasting, 
also called quantile forecasts, in our validation to assess 
how precise those quantiles, estimated by the forecasting 
algorithm, are. This is relevant as probabilistic forecast-
ing can be used to create, in addition to the point fore-
cast, a confidence interval describing the probability of 
observing the true value within this interval. Computing 
and visualizing model confidence is of crucial importance 
for decision-makers as it allows them to assess how much 
they should trust the model’s prediction.

A possible application scenario is to use forecasts 
within an information system in hospital management for 
the upcoming years, expecting that seasonal epidemics of 
respiratory diseases will have similar patterns to those 
observed prior to the COVID-19 pandemic. Therefore, 
we focus on data from eight years of this surveillance 
from 2012 to 2019, offering a perspective for using fore-
casting models in hospital management in winter seasons 
without strict social distancing rules as imposed during 
the pandemic era. Furthermore, this study serves as the 
groundwork for future studies that will be more con-
cerned with the challenges that arise with data showing 
different patterns as it was collected during the COVID-
19 pandemic in which social distancing rules and strict 
border closure policies were imposed by the New Zea-
land government.

This is the first study that applies machine learning-
based forecasting to this SARI surveillance data. Besides 
other studies related to the forecasting of respiratory ill-
ness [12–23, 26], this study contributes to this research 
area by benchmarking a large selection of algorithms 
on a dataset with low daily incidence numbers, describ-
ing only severe infections from two hospitals covering a 

population of approximately 900,000 people. This bench-
mark includes multivariate algorithms that can integrate 
covariates describing more details of the target time 
series using different information available for individual 
admissions. The first aim of this study is to compare the 
performance of machine learning models to naïve sea-
sonal models. The second aim is to investigate if the mod-
eling error can be decreased by multivariate forecasting 
in which additional time series from the laboratory com-
ponent and age groups are integrated. The integration 
of laboratory data into forecasting influenza-like illness 
cases has previously been approached by Pei et al., show-
ing that a Markov Chain Monte Carlo approach can be 
used for such a task (26). However, that study describes 
a benchmark based on the SIR compartmental model. It 
does not cover a comprehensive benchmark, including 
advanced multivariate machine learning algorithms for 
forecasting. We further investigated season-to-season 
variation within the laboratory component as a potential 
challenge for machine learning algorithms to integrate 
such data. We then investigated if trend forecasts with a 
lower temporal resolution can be used to achieve lower 
model errors and more reliable confidence intervals. 
Finally, we discuss how well forecasts reflect the true data 
as an outlook for its application scenarios.

Methods
In this section, we provide further descriptions of the 
SARI surveillance dataset and the preprocessing proce-
dures applied. We then describe the machine learning 
experiments and concepts relevant to the model valida-
tion. The results from the multivariate forecasting anal-
yses show that the algorithms can leverage information 
from the laboratory component to improve the model 
performance. As we could not see consistency in this 
improvement, we applied a correlation analysis for the 
laboratory component to investigate the variability in 
these time series, which we also introduced within this 
section.

Software
Data preprocessing, correlation analyses, machine learn-
ing experiments, and evaluations have been implemented 
using the programming language Python. We chose the 
time series forecasting library AutoGluon-TS 1.1.0 as it, 
to the best of our knowledge, is the most recent library 
offering automatic machine learning, probabilistic fore-
casting, and a comprehensive collection of state-of-the-
art univariate and multivariate forecasting algorithms, 
including a recent generative pre-trained transformer 
[11]. We used a high-performance cluster because apply-
ing all algorithms within a one-day walk-forward valida-
tion strategy, as described below, can be computationally 



Page 4 of 16Albrecht et al. BMC Medical Informatics and Decision Making          (2024) 24:293 

demanding. Therefore, all forecasting experiments were 
performed with the support of NeSI, New Zealand’s 
eScience Infrastructure high-performance computing 
facilities.

Dataset and data preprocessing
The SARI patient admissions are available at daily reso-
lution. For consenting patients, a laboratory test was 
done revealing the infection with one of nine respiratory 
viruses covering influenza (FLU), respiratory syncytial 
virus (RSV), rhinovirus (RV), parainfluenza virus 1–3 
(PIV), human metapneumovirus (HMPV), enterovirus 
(ENTV), and adenovirus (ADV). The samples used for 
the RT-PCR protocols are nasopharyngeal swabs and 
nasopharyngeal aspirates for adult and older children and 
for young peadiatric patients, respectively. The percent-
age of patients tested for these viruses varies between 
60 and 100% (Fig. S1, see supplementary material). The 
SARI case counts, and the results from the laboratory 
testing are collected in a hospital’s internal databases at 
a daily resolution and made available by the end of the 
day. In other words, the surveillance data is available in 
near real-time, which is an ideal situation for using these 
data as input for machine learning algorithms to train a 
model as soon as the data can be gathered from the data-
base to provide an updated forecast of SARI hospitaliza-
tions for the next days or weeks. Besides the laboratory 
component, we created additional time series describ-
ing SARI cases that were split into different age groups. 
Note that our statements about real-time data availability 
yet describe the technical possibility of using this data as 
input for models applied within an information system in 
the future. For this study, real-time data retrieval could 
not be implemented due to data-sharing policies that 
require further approval.

In the dataset, SARI cases are recorded daily, allowing 
us to provide forecasts of total SARI cases at this reso-
lution. In all forecasting experiments, the machine learn-
ing models use a time series describing the total SARI 
incidence as a target. The incidence is defined as SARI 
per 100,000 population using the total population of the 
regions serviced by the two hospitals where the SARI 
surveillance is implemented. For the multivariate fore-
casting experiments, we integrate the laboratory com-
ponent describing which respiratory viruses circulate 
among SARI patients, and the SARI case counts split into 
different age groups. The virus circulation is defined as 
the number of positive tests for a certain virus divided 
by the number of patients for which a PCR test has been 
done, as this can vary depending on the SARI cases on 
a specific day and the number of consenting patients. 
Severe acute respiratory infection cases for specific age 
groups were normalized as cases per 100,000 population 

using the accumulated population sizes for the range of 
ages within the age groups of < 1 year, 1–4 years, 5–14 
years, 15–64 years, and > 65 years. The age groups were 
defined by medical experts according to their experience 
with severe hospitalization risk in relation to the age of 
the patients.

The SARI admission numbers vary widely from day 
to day, especially on weekends and holidays. As we are 
interested in the predicted trend for the forecasting hori-
zon rather than an exact value for a particular day in the 
forecast, we applied smoothing to the time series to turn 
the daily case counts into a trend of SARI cases. To avoid 
leakage of future values, we use a sliding seven-day win-
dow to compute the average of the SARI incidence of a 
particular day and the incidences of the previous six 
days (Fig. S2, see supplementary material). In this way, 
we maintain the daily resolution, and the window size of 
seven days ensures that one weekend is always covered 
to mitigate the potential impact of lower hospital admis-
sions on weekends.

This smoothing strategy has been applied to the total 
SARI incidence and all covariates. For more details about 
the incidence split into different age groups and the posi-
tive test rates of the different viruses, we refer to Fig. S3 
and Fig. S4, respectively (see supplementary material).

Forecasting benchmark experiments
Forecasting models within this analysis aim to provide 
21 predictions describing a 21-day forecast for the total 
SARI incidence. In univariate forecasting experiments, 
the algorithm uses only the target time series describing 
the total SARI incidences to train a forecasting model. In 
multivariate forecasting, the selected algorithms are pro-
vided with additional time series describing either the 
SARI cases split into different age groups or respiratory 
viruses. These additional time series are called covariates 
or past covariates. The age groups and laboratory com-
ponents provide five and nine covariates, respectively. 
These can also be integrated simultaneously, resulting in 
14 covariates integrated into the multivariate model.

The machine learning benchmark covers algorithms 
of various types using a collection of algorithms from 
the “best quality” preset as suggested by the AutoGluon 
library [11] covering statistical and machine learn-
ing algorithms ARIMA, ETS, Theta, CrostonSBA, and 
NPTS, as well as the artificial neural network algo-
rithms PatchTST, DeepAR, and the Temporal Fusion 
Transformer (TFT) [27–34]. As some algorithms in 
the benchmark could potentially benefit from param-
eter tuning, we applied a grid search that systemati-
cally iterates over a grid of parameter settings specific 
to each algorithm and provides several forecasts from 
models trained using these different settings. Given an 
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algorithm, all parameter settings are evaluated based 
on training-validation splits on past data from the time 
series to determine which setting to use for comput-
ing a forecast evaluated using the testing set. The grid 
size is algorithm-specific (Table  S1, see supplemen-
tary  material) and was determined to find a balance 
between comprehensiveness and computational runt-
ime. This grid search required more than 70,000 CPU 
hours on the high-performance cluster. While parame-
ter tuning explores the potential of using one algorithm 
with different settings, it might also be beneficial to 
use several algorithms in an ensemble and make model 
selections based on the different algorithmic concepts. 
To explore the potential of this strategy, we applied 
the AutoML. Note that AutoML was used with default 
settings and without parameter tuning, as the corre-
sponding function does not provide an efficient way of 
applying a fine-grained walk-forward validation. How-
ever, this AutoML analysis has been included to explore 
its potential compared to running the algorithms in 
isolation.

The algorithms TFT and DeepAR are neural network 
architectures providing multivariate-to-univariate and 
multivariate-to-multivariate forecasting, respectively. 
Both algorithms were applied in a univariate setting to 
investigate the difference in model performance using a 
univariate and multivariate strategy but with the same 
algorithmic concept.

Our dataset provides valuable data collected over sev-
eral years for well-defined hospital admissions at daily 
resolution. Nevertheless, the dataset poses a small data-
learning challenge. As the surveillance is paused dur-
ing the summer, we can use the daily counts of hospital 
admissions of 152 days per year. Transfer learning over-
comes this challenge using pre-trained models based on 
large datasets covering data from many domains [35]. 
These generative pre-trained transformers (GPT), also 
called foundation models, are trained on big datasets 
and designed to be adjustable to new data from other or 
similar domains but potentially with low sample sizes. In 
healthcare applications, transfer learning has been shown 
to be beneficial, especially for image diagnosis [36, 37]. 
Recently, this concept has been adapted to time series 
forecasting [38–40]. For the reasons just explained, we 
integrated Chronos, one of the latest freely available fore-
casting GPTs, in the benchmark.

The forecast evaluation and model selection are done 
within a one-day walk-forward validation (Fig. 1), reflect-
ing the real-world scenario in which a new model should 
be trained after each day as soon as the most recent data 
for that day is available [19]. More precisely, for each day, 
the time series is split into the training set describing all 
observations until and including this day and the testing 
set composed of all observations after this day. As the 
forecasting horizon is 21 days, only the first 21 observa-
tions from the testing set are relevant to the evaluation. 
For the model selection, determining the best setting 

Fig. 1 One‑step walk‑forward validation strategy. This scheme depicts the one‑step walk‑forward validation, with one day as one step. Given 
a particular day in the data, for example, day 7, the data is split into training and testing sets so that the training data includes this day as the last 
observed value (blue dots). These training samples are used to train a model that computes a forecast. The testing set (grey and orange dots) 
is used to evaluate the forecast. In this example, the orange dots represent the data points used to validate day 4 on the forecasting horizon. 
However, this strategy is applied equally for other days on the horizon. The training and testing split strategy applies when using the default 
parameter settings without hyperparameter tuning. For model selection, when tuning the hyperparameters, training/testing splits, created 
previously during the walk‑forward validation, are used as training/validation splits, as indicated by the yellow dashed arrows. On day 7, for example, 
3 training/validation splits can be used (day 1, day 2, day 3). The different parameter settings in the grid search are validated using these training/
validation splits. As multiple training/validation splits are usually available, the average error rate defines the parameter setting with the lowest 
error rate (model selection). This best parameter setting is then used to train a model on the training data available for day 7. The forecast of this 
model is evaluated using the testing set. Model selection is skipped for the first steps in this walk‑forward validation (days 1 to 4 in the figure), 
for which no training/validation splits are available. In this case, the default model provides the forecast. Using this strategy to create training/testing 
and training/validation splits within the walk‑forward validation allows us to make the most use of the available data
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from the parameter grid, this validation strategy allows 
for using training/test splits from the past as training/
validation splits. As the evaluation starts with the year 
2014, no training/validation splits are available for the 
first forecasts in this year. In this case, no model selection 
is applied, and the default settings of the algorithms are 
used. For all other time points in the walk-forward vali-
dation, all available training/validation splits are used to 
compute the average performance of all parameter set-
tings, and only the one that achieves the lowest error rate 
is selected. This strategy allows us to make the most use 
of the dataset for creating testing and validation sets from 
the data within the walk-forward procedure.

Epidemics of respiratory diseases show strong sea-
sonal patterns. Therefore, making use of approxima-
tions directly derived from historical data can serve as 
forecasting without training a model. For this reason, we 
integrated two naïve baseline models within this analysis. 
The first one is called the Naïve Seasonal Model, which, 
given a day in the future, predicts the value for that day 
observed in the previous season (year). The second naïve 
model is the Naïve Average Seasonal Model that, given 
a day in the future, predicts the average of all values 
observed for this day in the previous seasons available in 
the historical data.

Probabilistic forecasting provides, in addition to point 
predictions, confidence intervals that provide a lower and 
upper bound of the range of values the model expects to 
determine for the true value based on the training data 
used to create the model. From this, we receive 19 proba-
bilistic forecasts for 5% to 95% in steps of 5%. The per-
centage describes the expected probability that the true 
value will be below the value of the probabilistic forecast. 
Considering, for instance, the 5% forecast as the lower 
bound and the 95% forecast as an upper bound, the inter-
val between these two forecasts describes the 90% confi-
dence interval (CI). Accordingly, we created the 80% CI 
by using the probabilistic forecasting of 10% and 90% and 
the 70% CI by using the probabilistic forecasting of 15% 
and 85%. The quantile forecasts used to create these con-
fidence intervals have been further evaluated using the 
mean pinball loss [41].

The data used for this study has gaps in the time series 
as the SARI surveillance has been paused from October 
to April in the summer months. For this reason, there are 
152 daily counts of hospital admissions per year cover-
ing the time from early May to early October without 
any missing values for the six months the surveillance 
was active. On the one hand, this poses no problem as 
the number of severe respiratory illness cases is very low 
during these months, and we do not expect to experi-
ence situations that pose a challenge for public health-
care during this time. On the other hand, this results in a 

technical challenge as the current forecasting algorithms 
require the time series to be continuous without miss-
ing values [8–11, 42]. A common approach for imputa-
tion is to fill in missing values based on the last observed 
values, as automatically done by default when using, for 
instance, AutoGluon-TS [11]. However, for our dataset, 
this would result in a flat line between October and April 
for each summer, simply describing the SARI incidence 
last observed in October, which we found inappropri-
ate as this could differ from year to year, but it does not 
provide information of any relevance to the forecasting 
model trained. Using forecasting to impute the large gaps 
is also unsuitable because data that could represent pat-
terns during the summer months is simply not available. 
Therefore, we decided to fill these gaps by zero, disabling 
the model to learn any useful patterns from this time. 
Note that we completely exclude the summer months 
from the model evaluation for the different years.

The metric used in the evaluation is the Mean-Abso-
lute-Percentage-Error (MAPE). We chose this metric 
as it is scalable and easily interpretable [9]. Given, for 
example, the weekly forecast of 100 cases computed 
by a model that achieves a MAPE of 0.1, the true value 
is expected to be between 90 and 110, according to the 
evaluation based on historical data. MAPE has been 
computed for the data separated by year to analyze how 
the forecasting error differs between different seasons. 
As the maximum SARI incidence can vary from year 
to year, we saw another advantage in using the MAPE 
metric as it is scale-independent, which allows for a fair 
year-to-year comparison. However, we also considered 
the Root-Mean-Squared-Error (RMSE) and Mean-Abso-
lute-Error (MAE) to provide a comprehensive overview. 
For assessing how well the forecasts reflect the true 
SARI incidence, we also used the R-square coefficient to 
express the goodness of fit. Note that the first 14 days per 
year were excluded from the MAPE calculation to ensure 
that the algorithms can integrate at least 14 observations 
of a particular year to compute forecasts involved in the 
evaluation for this year.

Correlation of lab component covariates with the SARI 
incidence
To further investigate the challenges of integrating the 
laboratory component, we performed a correlation 
analysis to investigate how well the time series from 
this data correlates with the SARI incidence, indicat-
ing how informative the information about the virus 
circulation could be for a SARI forecasting model. 
Additionally, this analysis provides further insights 
into the laboratory component as it could be relevant 
to other surveillance studies monitoring similar data 
types. The correlation coefficients were derived from 
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current SARI to current virus and past virus inci-
dences to reveal statistical relationships that could be 
leveraged by a machine learning algorithm to create a 
predictive model. Hence, for each virus, the incidence 
over the year was correlated with the SARI incidence 
over the year using the Pearson correlation. Then, we 
applied a temporal shift to the virus incidence values 
to compute correlation coefficients between the SARI 
incidence at a certain time point in the time series and 
the virus incidence observed days or weeks before this 
time point. These temporal shifts shall show if there are 
statistical patterns in the virus incidences that could be 
informative towards the total SARI incidence during 
the upcoming one, two, or three weeks.

Results
We first summarize the results from the forecasting 
benchmark. These results suggest that integrating labo-
ratory data does not consistently result in better model 
performance. Therefore, we describe an additional anal-
ysis based on this data before describing the impact of 
using forecasts at different temporal resolutions. Lastly, 
we evaluate the probabilistic forecasting.

Impact of parameter tuning on the overall performance
Some algorithms, such as the TFT, did not benefit from 
parameter tuning, except for the 1-day forecast, which 
is the least challenging task (Fig.  2). However, DeepAR 
shows much lower error rates with tuned parameters and 

Fig. 2 Comparing the algorithm performance with and without parameter tuning. The bars represent the mean MAPE error across all validation 
years with the error bar representing the 95% confidence interval. Light grey bars show the error rates for forecasts computed by models trained 
with default settings. The dark grey bars show the error rates achieved by models for which parameter tuning was performed by selecting a model 
from a grid search
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slightly improves when using the age groups, as shown 
for the 7-day horizon evaluation. Here, we conclude that 
the untuned TFT and the multivariate DeepAR using the 
age groups consistently achieve overall low error rates for 
the horizons 7 days, 14 days, and 21 days. These obser-
vations do not significantly change when using the other 
error metrics we explored (see Table S2 in supplementary 
material).

Benchmark of forecasting algorithms within the different 
validation years
Considering the forecasting models for the 7-day forecast 
and beyond, the naïve models are outperformed by most 

of the machine learning approaches, except for the year 
2014, with the univariate TFT algorithm achieving the 
most accurate forecasts overall (Fig. 3). As we did not see 
big changes in the MAPE for forecasts of slightly different 
days on the horizon, we here report the results of  three 
forecasts (7 days, 14 days, and 21 days). Interestingly, 
the TFT algorithm did not consistently provide better 
models when integrating covariates from the labora-
tory component or age groups. In some years, the model 
error even increased for the multivariate TFT. In con-
trast, DeepAR consistently achieves low error rates in the 
multivariate setting, incorporating the age groups. This 
is observed especially in 2017, 2018, and 2019, in which 

Fig. 3 Forecasting benchmark for different horizons separated by year. The model evaluation has been split by year, represented by six sub‑panels 
as indicated by the subfigure titles. The dashed and dotted lines show the model error of the Naïve Seasonal Model and the Naïve Average 
Seasonal Model, respectively. Predictions are available for each of the 21 days on the forecasting horizon. For simplicity, the plots visualize the errors 
only for three different time points: the maximum (21 days) and 2 intermediate time points (7 and 14 days). DeepAR and the Temporal Fusion 
Transformer (TFT) have also been applied for multivariate forecasting experiments. These include covariates describing the age groups (AGE), 
laboratory component (LC), or both (AGE + LC)
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the univariate TFT performes similarly. The training sets 
for those years are larger compared to the other years, 
which indicates that these neural network learners bene-
fit from larger training sets. For the following analyses we 
therefore decided to explore the univariate, default TFT 
forecasts and the forecasts from the tuned, multivariate 
DeepAR using the age groups.

Correlation of lab component covariates with the SARI 
incidence
The correlation between SARI and virus incidences var-
ies strongly from virus to virus (Fig. 4). While influenza, 
for example, shows a highly positive correlation, rhino-
virus correlates negatively with SARI, which indicates 
that rhinovirus circulates before the total SARI admis-
sions increase. For these two examples, we observe high 
absolute correlation coefficients. Furthermore, these 

Fig. 4 Pearson Correlation between current SARI incidence values and past incidence of detected respiratory viruses. Heatmaps show the Pearson 
Correlation Coefficient (PCC) between the SARI incidence and the incidence of individual respiratory viruses. The virus incidence values were shifted 
back in time to visualize how well past values from the different viruses correlate with present SARI values. For example, the RV value at position (‑3 
days, 2017) represents the Pearson correlation between the SARI incidence on a specific day and the RV incidence 3 days before that day, calculated 
over all time points from 2017. White areas (see PIV2 for 2012) describe cases in which the numbers were too sparse to compute a PCC. The viruses 
investigated are influenza (FLU), respiratory syncytial virus (RSV), rhinovirus (RV), parainfluenza virus 1–3 (PIV), human metapneumovirus (HMPV), 
enterovirus (ENTV), and adenovirus (ADV)
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can be high even if the virus incidence was taken from 
past observations relative to the total SARI incidence. A 
machine learning algorithm could potentially leverage 
such correlation patterns to create a predictive model. 
However, the correlation analysis also shows that these 
patterns are inconsistent; see 2013, 2016, and 2018 for 
rhinovirus and 2013, 2016, 2017, and 2019 for influenza.

Forecasting resolution and probabilistic forecasts
The incidence values within the dataset are available at 
daily resolution. The algorithms used to train forecast-
ing models aim to capture statistical patterns in this data 
and provide forecasts at the same temporal resolution. 
However, a daily forecast is not necessarily required, 
depending on how the forecasting is used. In hospitals, 
for example, it might be sufficient to consider weekly 
trends for proactive planning instead of considering the 
forecast of every single day on the forecasting horizon. 

Therefore, we explore if the model error can be reduced 
when changing the forecasting resolution. Instead of 
using 21 predictions for 21 days, we use three predictions 
representing the forecasted trend for the upcoming three 
weeks. This resolution change is done by using the aver-
age forecast of the days within the first, second, and third 
weeks (Fig. 5a).

The expectation is that the resulting trend prediction 
better captures the time series trend compared to the 
forecast at daily resolution for hospital admissions, which 
can vary strongly from day to day. For example, forecast-
ing at weekly resolution will be sufficient to foresee rises 
in the healthcare burden, and noise in the daily forecast 
could potentially be mitigated by using a weekly trend 
represented by the average of several daily forecasts. 
Indeed, using the forecasting at weekly resolution and 
comparing these to the weekly averaged SARI incidence 

Fig. 5 Forecasting error of predictions at two different resolutions. a Visualization of how the forecasting output is changed from daily to weekly 
resolution. The black dots represent the last observations in the time series used within the training set. The vertical black line represents the time 
point at which the time series has been split into training and testing sets, with 21 dots on the right‑hand side representing the predictions 
for 21 days. The forecasting at daily resolution represents 21 values for 21 days. We analyzed the impact of changing the resolution by averaging 
over 7 days, as indicated by different colors, to compute a trend for the upcoming three weeks rather than 21‑point predictions for each day. 
There are three mid‑week time points at 4, 11, and 18 days. The forecasts for these days are used to compare the single‑point forecast of a day 
(daily resolution) to the average of the forecasts for the week (weekly resolution). b The lines represent the model error for different years 
when the forecasting is used at different temporal resolutions as described in a 
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in the testing data results in lower model errors com-
pared to using the data at daily resolution (Fig. 5b).

Probabilistic forecasting can be used to derive a con-
fidence interval for a point prediction from the model. 
However, when applying the one-day walk-forward vali-
dation, the model’s confidence about observing the true 
value within a certain range of values does not necessarily 
reflect the actual fraction of true values lying within the 
confidence intervals. Therefore, we use the testing sets 
from the one-day walk-forward validation to compute 
the fraction of true values within the confidence intervals 

and compare it to the probability of observing the true 
value within this interval as estimated by the algorithm. 
In most of the cases, this fraction does not precisely 
agree with the estimated probability, suggesting that the 
probabilistic forecasts are moderately accurate (Fig. 6a).

It is visible from this analysis that the TFT computes 
quantiles that result in smaller confidence intervals, and 
the fraction of true observations within the confidence 
intervals is lower than the expected probability that the 
true value lies within the confidence interval. In contrast, 
the quintile forecasts from DeepAR result in much larger 

Fig. 6 Evaluation of probabilistic forecasting. a The 90% confidence interval is validated by the fraction of true values captured 
within the confidence interval during the one‑day walk‑forward validation. The dashed black line represents the expected probability of the true 
value lying within the confidence interval estimated by the model. The colored lines represent the actual fraction of values from the testing sets 
that are within the confidence interval when applying the one‑day walk‑forward validation. Again, the forecasts are evaluated at different temporal 
resolutions. b The quantile levels are validated for the different confidence intervals 70%, 80%, and 90% using the mean pinball loss. This has been 
done for the two algorithms in comparison, as indicated by the colors. Subtitles describe the horizon and forecast resolution
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confidence intervals. This leads to a very high fraction of 
true observations within the confidence intervals (Fig. 6a) 
but less useful confidence intervals as they provide no 
clear orientation about where to expect the true observa-
tion. Therefore, we conclude that the TFT provides con-
fidence intervals more suitable for practical application. 
Overall, the TFT also achieves lower pinball loss scores 
computed for the quantile levels of the different confi-
dence intervals (Fig. 6b), which confirms the conclusion 
drawn from the previous analysis.

Discussion
The benchmark analysis concludes that the Tempo-
ral Fusion Transformer  (TFT) and DeepAR achieve the 
overall lowest forecasting error, especially for the one-
week and two-week hospital admissions forecasts (Fig. 2, 
Fig. 3). While the TFT performs well with default settings 
and without using any covariates, DeepAR substantially 
benefits from parameter tuning and slightly improves 
the forecasting performance by integrating the SARI 
age groups. Additional analyses describe that DeepAR 
slightly outperforms TFT when evaluating the point fore-
cast (Fig.  5). However, these improvements of DeepAR 
over TFT are extremely small, whereas the confidence 
intervals provided by TFT are much more reliable than 
those computed by DeepAR (Fig. 6).

Chronos could not leverage its potential of using a 
large pre-trained transformer to apply transfer learning, 
which agrees with findings from other forecasting-related 
studies concluding that transfer learning does not always 
result in the best-performing model [43]. Remarkably, 
Chronos performed very well on the 1-day and 7-day 
horizon for 2014 (Table  S2, see supplementary  mate-
rial), for which the training data was the smallest in our 
analysis, posing the biggest potential for transfer learning 
when applied to small training datasets [35].

Interestingly, the AutoML approach, which includes 
the TFT in the algorithm collection, could not provide 
better forecasts in comparison to using TFT separately. 
This indicates overfitting of the internal validation of 
AutoML. In other words, the model weights AutoML cre-
ates based on the internal validation result in a weighted 
ensemble forecasting that is less generalizable to the test-
ing data. One reason for this could be that AutoML con-
siders the average model error over all time points on the 
horizon. As we see large differences in the forecasting 
error for days early and late on the horizon, we suggest 
considering the model errors for different time points on 
the horizon to compute weights individually. Addition-
ally, it could be beneficial to integrate the stepwise walk-
forward validation within the AutoML function to avoid 
redundant computing and make parameter tuning more 

efficient for AutoML within such a comprehensive vali-
dation. However, this would require substantial changes 
to the AutoML library we used, which we see as beyond 
the scope of this study.

None of the multivariate algorithms in the benchmark 
could leverage information from the laboratory data 
to improve the forecasts consistently (Fig. 2 and Fig. 3). 
On the one hand, this is surprising because information 
about the virus circulation could be relevant to a model 
forecasting how SARI admissions behave in the upcom-
ing weeks. On the other hand, it is known that the inci-
dences of respiratory viruses and their correlation with 
the SARI incidence strongly vary from season to season, 
which we could also observe in our data (Fig.  4). Such 
strong variations pose a challenge for machine learning 
algorithms aiming to leverage consistent and generaliza-
ble patterns in the data. In other machine learning-based 
studies, it has also been shown that cases exist in which 
multivariate forecasting achieves only small improve-
ments over univariate forecasting [44], as we observe for 
DeepAR integrating the age groups, or that the multivari-
ate approaches even increase the error rate in compari-
son to the univariate approaches [45]. Considering the 
age groups, the dynamics in the < 1 year age group pro-
vide predictive information about increases in the SARI 
incidence (Fig. S3, see supplementary material). As this is 
moderately consistent, DeepAR could leverage this infor-
mation to decrease forecasting errors slightly (Fig.  2). 
Such predictive dynamics are visible in some years for 
viruses, such as RSV or rhinovirus, but in contrast to 
the < 1 year covariate, these dynamics in the laboratory 
component vary from year to year and are not present in 
all years (Fig. S4, see supplementary material).

In general, this dataset is based on low admission 
counts as it describes severe cases of respiratory ill-
ness requiring inpatient hospitalization. This causes 
strong day-to-day fluctuations in the admissions, which 
required the 7-day sliding window smoothing (Fig. S2, 
see supplementary material). While the overall cover-
age of laboratory tests is high (Fig. S1, see supplementary 
material), the SARI cases split into nine different viruses 
result in sparse time series that could be too sparse to 
properly reflect the infectious dynamics caused by the 
different viruses, potentially challenging the multivariate 
algorithms.

While the SARI surveillance captures the seasonal 
epidemics of severe respiratory disease cases during 
the winter months, the dynamics during each season, 
described by the strength and timing of surges, strongly 
vary from season to season (Fig.  7). This might explain 
why SARIMA, expecting a seasonality of one year, shows 
no improvement over ARIMA.
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In the practical application of SARI forecasts in hos-
pital management, using forecasts at daily resolution 
might be unnecessary. The daily forecast could include 
noise that makes forecasts inaccurate, and such noise 
can be mitigated by using average values from the 

forecast, which comes at the cost of decreasing the 
temporal resolution. We analyzed the impact of using 
average weekly forecasts on the model error and relia-
bility of the probabilistic forecasts. In both evaluations, 

Fig. 7 Point and probabilistic forecast of the Week 1 forecast in comparison to the true SARI incidence. Forecasts were extracted from the 1‑day 
walk‑forward validation, and the temporal resolution for the point and probabilistic forecasts were changed from daily to weekly. The purple line 
represents the forecast, and the shaded area is the 90% confidence interval derived from the probabilistic forecasting estimated during the model 
training. The black line shows the truly observed SARI incidence after applying the 7‑day sliding window smoothing. The subpanel titles describe 
the algorithm and the validation year. These titles also show the R‑square scorer (R2) describing the goodness of fit of the forecast
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the performance improved when using weekly forecasts 
(Fig. 5 and Fig. 6).

Regarding the probabilistic forecasting, we could show 
that the confidence interval estimated by the model does 
not match the actual fraction of true SARI incidence val-
ues from the testing sets within the confidence interval in 
the one-day walk-forward validation. In most cases, the 
fraction of true values observed within the confidence 
interval was lower than the expected probability, espe-
cially for the Week 2 and Week 3 forecasts using the TFT. 
The confidence intervals can generally be large, making 
it impossible to foresee whether the SARI incidence will 
increase or decrease. We observe this problem, espe-
cially for the confidence intervals computed by DeepAR 
(Fig.  7). In conclusion, the results from this evaluation 
suggest that the TFT provides more reliable confidence 
intervals but that the actual confidence of the model is 
about 10% lower than estimated by the algorithm during 
the model training. The mean pinball loss metric reflects 
this advantage of TFT over DeepAR. From these analy-
ses, we conclude that an evaluation of the probabilistic 
forecasts is highly important to future studies in which 
model confidence is relevant.

Interestingly, the point forecasts of DeepAR and the 
probabilistic forecasts of TFT are better for 2018 and 
2019, in which the training data was much larger com-
pared to 2014 and 2016. The statistical models, such as 
ARIMA, SARIMA, and ETS, performed better in the 
cases with low sample size, indicating that the neural net-
works are more effective in leveraging information from 
larger training sets.

To assess the forecasting for its practical application, we 
compare the one-week forecasts from TFT and DeepAR 
models and the true SARI incidence for the years used 
within the evaluation (Fig. 7). The true values mostly lie 
within the 90% confidence interval, which agrees with 
the previous evaluations (Fig.  6). The point forecasts 
can be close to the true SARI incidence shown for 2015 
and 2017. However, it can fail to predict peaks during 
the winter season, as shown for the mid-August peaks 
in 2014 and 2018. More such errors are observed for the 
two-week and three-week forecasts (Fig. S5 and Fig. S6, 
see supplementary material). Remarkably, the confidence 
intervals are large for most of the time periods in which 
the point forecast is inaccurate. This is important as it 
indicates that large confidence intervals can be used to 
anticipate inaccurate forecasts during decision-making.

Regarding the practical application of SARI forecasts in 
Auckland, we conclude that the one-week predictions are 
useful as orientation about the trend prediction for the 
upcoming seven days, which allows for considering the 
forecast to make short-term decisions that can be rel-
evant to anticipated staffing or the schedule of elective 

surgeries. The R-square scores achieved for this fore-
casting horizon are all positive and describe moderate 
goodness of fit of the forecasts (Fig. 7). This is different 
for the two-week and three-week forecasts, for which the 
predictions are less accurate, showing negative R-square 
scores for some cases, which indicates that these fore-
casts are too inaccurate for practical application (Fig. S5 
and Fig. S6, see supplementary material). Machine learn-
ing models achieve much lower error rates in comparison 
to naïve strategies solely based on seasonality for most of 
the evaluation years, emphasizing the relevance of such 
models for predicting healthcare burden. Furthermore, 
the machine learning algorithms are flexible and can be 
extended in the future, potentially improving the fore-
casting models. It will, for example, be relevant to inte-
grate information about the location of the hospital, such 
as intensive care and high-dependency units in these 
locations. In contrast to the models for total SARI fore-
casting, as investigated in this study, specialized models 
for the two different hospitals in Auckland City, Central 
Business District, and Counties Manukau, South Auck-
land, might be more accurate. Using time series specific 
to the hospitals will result in fewer SARI cases to be used 
for model training, which might pose a challenge for the 
algorithms related to data sparsity. However, in compari-
son to statistical forecasting models, machine learning 
is expected to provide more reliable models when data 
is sparse. We see great potential in using such models to 
compute forecasts, which will probably improve when the 
algorithms are provided with data specific to the hospital 
locations, as differences in socioeconomic characteristics 
can have an impact on the dynamics of disease outbreaks 
[46, 47]. Furthermore, such data can be integrated into 
multivariate forecasting, allowing algorithms to capture 
predictive patterns across hospital locations, which can 
further improve the models. As the data needed to per-
form this analysis needs linkage datasets that are not yet 
available, we leave this for future work.

Conclusion
In this study, we explored the potential of forecasting 
models to predict the healthcare burden, in particular 
hospital admissions, caused by severe influenza-like ill-
ness. Machine learning algorithms achieve much bet-
ter results in comparison to naïve seasonal approaches, 
emphasizing the relevance of using such algorithms in 
hospital management in Auckland, New Zealand. The 
evaluation of the probabilistic forecasting suggests that 
such evaluations are extremely important as the esti-
mated confidence intervals may differ when validated on 
test datasets. We use strategies to change the temporal 
resolution of forecasts, which shows that it can be better 
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to use forecasts at lower resolution as these can result in 
better trend forecasting.

The relevance of this study is underlined by the 
COVID-19 pandemic. While this study investigates 
forecasting models for seasonal epidemics without 
external influence through social distancing policies, 
it serves as the groundwork for future studies tackling 
the challenges arising from concept drifts in the data 
caused by lockdowns and strict border closure policies 
imposed in New Zealand in the years 2020 and 2021. 
Furthermore, by the end of the year 2024, the data for 
three early post-pandemic years will be available. This 
data and the results from this study will play a crucial 
role in future research investigating the challenges of 
integrating data recorded during the pandemic when 
modeling influenza-like illness hospitalizations in the 
future.
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