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Abstract 

Significant progress has been made recently with the contribution of technological advances in studies on brain 
cancer. Regarding this, identifying and correctly classifying tumors is a crucial task in the field of medical imaging. 
The disease-related tumor classification problem, on which deep learning technologies have also become a focus, 
is very important in the diagnosis and treatment of the disease. The use of deep learning models has shown promis-
ing results in recent years. However, the sparsity of ground truth data in medical imaging or inconsistent data sources 
poses a significant challenge for training these models. The utilization of StyleGANv2-ADA is proposed in this paper 
for augmenting brain MRI slices to enhance the performance of deep learning models. Specifically, augmenta-
tion is applied solely to the training data to prevent any potential leakage. The StyleGanv2-ADA model is trained 
with the Gazi Brains 2020, BRaTS 2021, and Br35h datasets using the researchers’ default settings. The effectiveness 
of the proposed method is demonstrated on datasets for brain tumor classification, resulting in a notable improve-
ment in the overall accuracy of the model for brain tumor classification on all the Gazi Brains 2020, BraTS 2021, 
and Br35h datasets. Importantly, the utilization of StyleGANv2-ADA on the Gazi Brains 2020 Dataset represents a novel 
experiment in the literature. The results show that the augmentation with StyleGAN can help overcome the chal-
lenges of working with medical data and the sparsity of ground truth data. Data augmentation employing the Style-
GANv2-ADA GAN model yielded the highest overall accuracy for brain tumor classification on the BraTS 2021 and Gazi 
Brains 2020 datasets, together with the BR35H dataset, achieving 75.18%, 99.36%, and 98.99% on the EfficientNetV2S 
models, respectively. This study emphasizes the potency of GANs for augmenting medical imaging datasets, particu-
larly in brain tumor classification, showcasing a notable increase in overall accuracy through the integration of syn-
thetic GAN data on the used datasets.
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Introduction
Brain tumors represent a complex and heterogeneous 
class of neoplasms that may arise from diverse cell types 
within the central nervous system. This type of disease 
is quite critical and it requires early diagnosis and treat-
ment processes. Offering comprehensive insights, the 
CBTRUS Statistical Report delves into the occurrence, 
fatality rates, and relative survival rates concerning 
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primary malignant and non-malignant brain and other 
CNS tumors in the United States between 2015 and 2019 
[1]. According to the CBTRUS Statistical Report, the 
five-year relative survival rate following diagnosis of a 
malignant brain and other CNS tumor was 35.7% in the 
United States. Survival following diagnosis with a malig-
nant brain and other CNS tumor was highest in persons 
ages 0-14 years (75.1%) and ages 15-39 years (71.7%) as 
compared to those ages 40+ years (21.0%). To increase 
the survival rate of malignant brain tumors, early detec-
tion and treatment are crucial. Treatment options for 
brain tumors may include surgery, radiation therapy, 
chemotherapy, targeted therapy, or a combination of 
these approaches.

Tumors in the brain refer to abnormal growth of cells, 
and while there are different definitions in the literature 
regarding their classification, they can be examined basi-
cally in two types: benign, which is non-cancerous, and 
malignant, which is cancerous. Malignant brain tumors 
are of particular concern because they grow rapidly, can 
spread to other parts of the brain and spine, and pose a 
serious threat to life. Therefore, there is an urgent need 
for accurate and reliable brain tumor detection and clas-
sification systems that can aid in diagnosis, treatment 
planning, and monitoring of disease progression. Detect-
ing a tumor at an early stage is crucial for effective treat-
ment, and one of the primary diagnostic approaches 
employed by doctors is the use of various imaging meth-
ods, as they can quickly identify the presence of a tumor. 
Detecting cancer at an early stage is crucial for effective 
treatment, and one of the primary diagnostic approaches 
employed by doctors is the use of various imaging meth-
ods, as they can quickly identify the presence of a tumor 
[2].

Magnetic resonance imaging (MRI) is a widely used 
source to diagnose brain tumors, which can be life-
threatening [3]. Misinterpretation of a brain tumor can 
lead to major complications and decrease a patient’s 
chances of survival [4]. MRI is a widely employed medi-
cal imaging tool used to visualize abnormal tissues within 
the body. MRI is widely recognized for its numerous ben-
efits in helping doctors detect physical brain abnormali-
ties. During the process of acquiring MRI images, a series 
of 2D images can collectively represent a 3D volume of 
the brain. Each MRI modality serves a distinct purpose 
in the diagnostic process. T2 images are particularly use-
ful for identifying areas with edema, while T1 images 
excel in distinguishing healthy tissues. T1-Gd images, on 
the other hand, are essential for delineating tumor bor-
ders. Additionally, fluid-attenuated inversion recovery 
(FLAIR) images prove valuable in distinguishing edema-
tous regions from cerebrospinal fluid (CSF). The varia-
tions among the images generated by these different MRI 

modalities can be harnessed to produce various types of 
contrast images. In standard diagnostic practice, four pri-
mary MRI modalities are employed: FLAIR, T2-weighted 
MRI (T2), T1-weighted MRI (T1), and T1-weighted MRI 
with gadolinium contrast enhancement (T1-Gd) [5].

Diverse techniques and methodologies have been 
devised for the segmentation and categorization of brain 
tumor images, and this field remains an active area of 
research due to the paramount importance of achieving 
high accuracy. Each year, it is observed that novel seg-
mentation techniques have emerged aimed at address-
ing the shortcomings of earlier methods. Notably, deep 
learning-based approaches are currently regarded as 
the most effective means for identifying and extracting 
MRI image features for classification and segmentation 
purposes.

Brain tumor classification is a challenging task in the 
field of medical imaging, with accurate diagnosis and 
treatment dependent on the identification of different 
tumor types. As mentioned earlier, deep learning meth-
ods have shown great potential in improving the accu-
racy of tumor classification, but the scarcity of ground 
truth data presents a significant challenge for training 
these models. This is especially true in medical imaging, 
where obtaining labeled data is both difficult and time-
consuming. Data augmentation has been widely used to 
address the issue of data scarcity, but traditional meth-
ods, such as flipping or rotating images, may not be effec-
tive for medical imaging due to the complex structures 
and irregular shapes of the organs. Recently, Generative 
Adversarial Networks (GANs) have shown great poten-
tial for data augmentation in various applications, includ-
ing medical imaging.

Data augmentation plays a crucial role in medical imag-
ing studies, particularly in tasks such as brain tumor clas-
sification and segmentation. The limited availability of 
annotated medical imaging datasets poses a challenge for 
training accurate and robust deep learning models. How-
ever, data augmentation techniques can help address this 
issue by artificially expanding the dataset and increasing 
its diversity [6]. By applying various augmentation opera-
tions, such as rotation, scaling, flipping, and cropping, to 
the original images, researchers can generate additional 
training samples that capture different variations of the 
tumors and their surrounding structures [7]. This aug-
mented dataset can then be used to train deep learning 
models, improving their generalization and performance 
[6].

This paper is organized into sections as follows. An 
overview of related works in the field of medical imag-
ing and brain tumor classification is provided in “Related 
works” section. The existing literature on various classi-
fiers utilized in medical imaging tasks is discussed, and 
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their strengths and limitations are highlighted. Addi-
tionally, several relevant research papers in the field of 
brain tumor classification are selected. A comprehen-
sive table is employed to compare the methodologies 
used in these papers, including information such as the 
methods applied, the specific problem addressed, the 
datasets utilized, and the results achieved by each clas-
sifier. The comparative outcomes are analyzed and dis-
cussed, emphasizing the strengths and limitations of 
this approach to the existing literature. In “Material and 
methods”  section, the materials and methods employed 
in the study are presented. The data preprocessing steps 
outlined in the previous section, involving standardizing 
MRI slices to a dimension of 256x256 pixels and remov-
ing unnecessary slices, are described. Subsequently, 
the GAN model used for data augmentation, namely 
StyleGANv2-ADA, which has demonstrated promising 
results in generating synthetic brain MRI slices, is intro-
duced. The integration of GAN-generated data into the 
preprocessed dataset to enhance the training process 
and potentially improve the overall accuracy of the CNN 
classifiers is explained. As part of the analysis, the impact 
of GAN-based data augmentation on the overall accu-
racy of the CNN classifiers is specifically addressed. The 
introduction of synthetic samples through GANs and 
its potential enhancement of the model’s ability to learn 
discriminative features and improve classification perfor-
mance are discussed. The observed effects are carefully 
evaluated and any potential challenges or caveats asso-
ciated with this approach are highlighted. Finally, in the 
results section, conclusions are presented, summarizing 
the key findings from the study. The significance of GAN-
based data augmentation in the context of brain tumor 
classification is emphasized, along with discussions on 
implications for future research in medical imaging. The 
importance of addressing the limitations of the approach 
is also highlighted, and potential directions for further 
investigation to enhance the accuracy and robustness of 
CNN classifiers in this domain are suggested.

Related works
MRI-based brain tumor classification and segmentation 
have been extensively studied in the literature. Numerous 
research studies have focused on developing accurate and 
efficient methods for analyzing brain MRI images to aid 
in diagnosing and treating brain tumors. In the field of 
brain tumor classification, various approaches have been 
proposed. Traditional machine learning models follow a 
conventional approach, involving crucial steps like fea-
ture selection, extraction, and reduction before the actual 
classification process. These methods have proven effec-
tive in a range of medical imaging tasks, including the 
classification of liver [8, 9], thyroid [10], and plaque [11]. 

These machine learning approaches leverage (a) feature 
selection in conjunction with (b) classification techniques 
to achieve their objectives.

MRI-based brain tumor classification has been the sub-
ject of extensive research in recent years [12–16]. These 
studies have focused on developing deep learning mod-
els, particularly convolutional neural networks (CNNs), 
for accurate and efficient classification of brain tumor 
images. With the advent of deep learning, CNNs have 
emerged as powerful tools for brain tumor classification. 
CNNs can automatically learn hierarchical representa-
tions from raw MRI data, enabling more accurate and 
robust tumor classification. These models have demon-
strated superior performance compared to traditional 
machine learning approaches, achieving high accuracy in 
tumor classification tasks. This eventually led to a pref-
erence for using deep learning over traditional machine 
learning techniques [5]. In the research conducted by 
Ertosun and Rubin [17], they utilized CNNs to categorize 
different grades of gliomas in pathological images, spe-
cifically distinguishing between Grade II, Grade III, and 
Grade IV. They achieved classification accuracies of 71% 
for this task. [18] propose a deep learning-based method 
for microscopic brain tumor detection and classification. 
Their approach utilizes a 3D CNN and feature selection 
architecture for accurate tumor detection and classifica-
tion. The study conducted by [19] introduces three CNN 
models for multi-classifying brain tumors. The first CNN 
model achieves 99.33% accuracy in brain tumor detec-
tion, the second classifies tumors into five types with 
92.66% accuracy, and the third classifies tumors into three 
grades with 98.14% accuracy. These CNN models auto-
matically optimize hyperparameters using a grid search 
algorithm, a novel approach in this field. The models are 
compared to state-of-the-art counterparts, offering sat-
isfactory classification results, and can assist physicians 
and radiologists in initial brain tumor screenings.

There are also brain tumor segmentation studies that 
aim to improve diagnosis and treatment while ensuring 
patient data privacy. The researchers [20] propose a fed-
erated learning framework to overcome the limitations 
of traditional centralized methods, which are restricted 
by privacy regulations. This framework allows for col-
laborative learning across multiple medical institutions 
without sharing raw data, using a U-Net-based model 
architecture known for its effectiveness in segmentation 
tasks. Experimental results indicate that this approach 
significantly enhances performance metrics, including a 
specificity of 0.96 and a dice coefficient of 0.89, particu-
larly with an increased number of clients. The proposed 
method also outperforms existing CNN- and RNN-based 
models, advancing medical image segmentation while 
maintaining data security.
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Gliomas, the most common and deadly malignant 
brain tumors, require robust segmentation methods 
due to the limitations of manual segmentation, which 
is costly, time-consuming, and prone to errors based on 
the radiologist’s experience. To address these challenges, 
researchers [21] have developed semi-automatic and 
fully automatic segmentation algorithms using machine 
learning (ML) techniques, including handcrafted feature-
based methods and data-driven strategies such as convo-
lutional neural networks. A novel cascaded approach has 
been proposed, combining the strengths of handcrafted 
features with CNN-based methods by intelligently incor-
porating prior information from ML algorithms into 
CNN models. This approach utilizes a Global Convolu-
tional Neural Network (GCNN) with two parallel CNNs, 
CSPathways CNN (CSPCNN) and MRI Pathways CNN 
(MRIPCNN), to achieve high accuracy in segmenting 
brain tumors from BraTS datasets, resulting in a Dice 
score of 87%, surpassing the current state-of-the-art 
methods. This advancement offers significant potential to 
improve brain tumor segmentation, aiding in more effec-
tive diagnosis and treatment.

One of the major challenges in developing accurate 
brain tumor classification models is the limited avail-
ability of annotated medical imaging data. Collecting 
and annotating large-scale datasets is a time-consuming 
and expensive process, especially in the medical domain, 
where expert knowledge is required. This scarcity of 
data poses a significant obstacle to training deep learn-
ing models effectively. To address this issue, data aug-
mentation techniques have been proposed to artificially 
increase the size and diversity of the training dataset. 
Data augmentation involves applying various transfor-
mations to the existing data, such as rotation, scaling, 
flipping, and adding noise, to generate new samples that 
retain the characteristics of the original data. By aug-
menting the training dataset, the models can learn from a 
more diverse set of examples, leading to improved gener-
alization and performance. In the context of MRI-based 
brain tumor classification, data augmentation techniques 
effectively enhance the performance of deep learning 
models [22, 23]. By generating synthetic data that simu-
lates the variability and complexity of real tumor images, 
these techniques can help overcome the limitations of 
limited annotated data. Augmentation methods such as 
rotation, translation, and elastic deformation have been 
applied to brain MRI images, resulting in improved clas-
sification accuracy. Additionally, data augmentation can 
help to address class imbalance issues by generating 
synthetic samples for underrepresented classes, thereby 
improving the overall performance of the models [24].

In addressing the challenges of diagnosing canine 
mammary tumors (CMTs) and their potential as models 

for human breast cancer, [25] introduces the first pub-
licly available dataset of CMT histopathological images 
(CMTHis). Recognizing the tedious nature of the histo-
pathological analysis, the researchers propose a VGG-
Net-16-based framework, evaluating its performance on 
both the CMT dataset (CMTHis) and the human breast 
cancer dataset (BreakHis). The study explores the impact 
of data augmentation, stain normalization, and magnifi-
cation on the framework’s effectiveness. With support 
vector machines, the proposed framework achieves mean 
accuracies of 97% and 93% for binary classification of 
human breast cancer and CMT, respectively, underscor-
ing the efficacy of the automated system in histopatho-
logical image analysis.

Recent advancements in deep learning for computer-
aided medical diagnosis (CAD) systems targeting leuke-
mia detection have highlighted the crucial role of data 
augmentation techniques. The study conducted by [26], 
focusing on acute and chronic leukemia subtypes, spe-
cifically myeloid and lymphoid leukemia, evaluates the 
impact of data augmentation and multilevel and ensem-
ble configurations on CNNs. Utilizing 3,536 images 
across 18 datasets in five scenarios, the research dem-
onstrates that data augmentation significantly enhances 
CNN performance. Ensemble configurations outper-
form multilevel setups in binary classification, while both 
exhibit comparable results in multiclass scenarios. This 
work provides valuable insights into optimizing CAD 
systems, achieving accuracies of 94.73% and 94.59% in 
multilevel and ensemble configurations, respectively, in 
a four-class scenario, thus advancing the effectiveness 
of deep learning-based models for accurate leukemia 
diagnosis.

Recent advancements in generative adversarial net-
works (GANs) have opened up new possibilities for 
data augmentation in medical imaging. GANs are deep 
learning models that consist of a generator network and 
a discriminator network [27]. The generator network 
learns to generate synthetic data that closely resemble 
the real data, while the discriminator network learns to 
distinguish between real and synthetic samples. GAN-
based augmentation techniques have shown promise in 
improving the performance of brain tumor classification 
models. By training GANs on existing brain MRI images, 
synthetic tumor images can be generated, which can then 
be used to augment the training dataset. These synthetic 
images can capture the variability and complexity of real 
tumor images, enabling the models to learn more robust 
and discriminative features.

Allah et  al. [28] conducted a study on the classifica-
tion of brain MRI tumor images using deep learning and 
GAN-based augmentation. They employed a VGG19 fea-
tures extractor coupled with different types of classifiers 
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to examine the efficacy of their approach. The results 
showed that the GAN-based augmentation approach 
improved the classification performance compared to 
traditional methods. In addition to brain tumor classifi-
cation, GAN-based augmentation techniques have been 
applied to other medical imaging tasks as well. For exam-
ple, [29] used GANs for brain MR image augmentation 
to improve tumor detection. They employed both noise-
to-image and image-to-image GANs to handle small 
and fragmented datasets from multiple scanners, result-
ing in improved classification performance. Further-
more, GAN-based augmentation has been used in the 
segmentation of medical images, including brain tumor 
segmentation.

Iqbal et al. [30] proposed a new GAN-based approach 
for the generation of retinal vessel images and their seg-
mented masks. They presented the MI-GAN model for 
the synthesis of retinal images, which achieves state-of-
the-art performance on the STARE and DRIVE data-
sets. The proposed method generates precise segmented 
images better than existing techniques, using a pre-
defined set of loss functions to achieve better generation 
and discrimination ability.

Mok et  al. [31] proposed a method that uses GANs 
to learn augmentations for brain tumor segmentation. 
Their approach leverages GANs to generate diverse and 
realistic synthetic images, enabling more efficient learn-
ing from limited annotated samples. Data augmenta-
tion is another area where GANs have been applied to 
improve brain tumor classification. Kim et  al. [7] syn-
thesized brain tumor multi-contrast MR images using 
GANs for improved data augmentation. By generating 
synthetic tumor images, GANs can enhance the diver-
sity and quantity of training data, leading to better clas-
sification performance. The combination of GANs with 
other deep-learning techniques has also been explored 
for brain tumor classification. Asiri et  al. [32] proposed 
a multi-level deep GAN for brain tumor classification on 
magnetic resonance images. By integrating GANs with 
deep learning models, the proposed method achieved 
improved classification accuracy, demonstrating the 
potential of GAN-based approaches in brain tumor 
classification.

In their study, Garcea et  al. [33] reviewed over 300 
studies and presented a comprehensive literature review 
and summary of data augmentation approaches used in 
the training of AI models for classification, segmentation, 
and lesion detection in the medical field. They generally 
categorized data augmentation methods into two main 
categories: transformation and generation-based aug-
mentation. They examined studies regarding the brain, 
heart, lung, breast, and various other organs. In addi-
tion to classical approaches such as affine, erasing, and 

elastic transformations, it has been emphasized that 
GANs, which are one of the generation-based methods, 
had a positive impact on performance in many studies. 
In addition to GANs, it was concluded that feature mix-
ing, model-based, and reconstruction-based generation 
approaches are frequently used, and they had a positive 
effect on performance in three problems. Recently, it has 
been determined that classical transformation-based 
methods have been replaced by generation-based meth-
ods in the literature. It has been concluded that gener-
ation-based methods are more flexible and can be used 
effectively to eliminate class imbalance in training sets.

Wang et  al. [34] proposed a new data augmentation 
approach called TensorMixup (TM) to improve glioma 
segmentation performance. They developed a mix-
ing mechanism based on the Beta distribution to mix 
image patches and augment new synthetic data together 
with their segmentation masks. With the mixed image 
patches, new, synthetically generated images and their 
segmentation labels were obtained with the mixed image 
patches. Unlike the Mixup method, the proposed method 
mixes the image patches having tumors instead of mix-
ing the whole slide images. In the same way, the masks 
were mixed, and then the segmentation was performed 
by training the 3D UNet model with the augmented 
data. With the proposed TM method, an increase in Dice 
scores of 1.53, 0.54, and 1.30 was achieved in the whole 
tumor, tumor core, and enhancing tumor segmentation 
results compared to baseline augmentation, respectively.

Alsaif et al. [35] proposed a tumor detection approach 
using data augmentation approaches together with CNN 
models such as ResNet, ALexNet, and VGG. In the data 
augmentation phase, classical approaches such as flipp-
Newheir combinations are used. It is concluded that data 
augmentation approaches positively affect the perfor-
mance of limited MRI datasets.

Qin et al. [36] proposed a data augmentation approach 
based on deep reinforcement learning and trial-and-error 
for the kidney segmentation problem. Their proposed 
approach consists of two unified modules: Dueling DQN 
for data augmentation and a deep learning network for 
segmentation. They developed a reward-penalty-based 
learning mechanism for data augmentation by looking 
at the performance obtained from the integrated model 
trained with the produced augmented data. With the 
proposed data augmentation method, an increase of 10.8 
was achieved in Dice performance.

Han et  al. [37] developed a brain tumor detection 
approach with the use of CNN models and GAN data 
augmentation. It has been emphasized that the distribu-
tion of the data obtained by classical data augmentation 
methods tends to be very similar to the original data and 
provides a limited increase in performance. With this 
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motivation, they used the PCGAN model in their stud-
ies to produce synthetic data that are completely dif-
ferent from the real images. In the experiments, both 
classical data augmentation and GAN data augmentation 
were used in the training phase of the ResNet-50 CNN 
model. The most successful results were obtained in the 
experiment with the use of both classical and GAN data 
augmentation combined in equal proportions. With the 
proposed method, 1.02% higher accuracy is obtained 
compared to the classical data augmentation.

Goceri [24] examined various data augmentation 
approaches used in medical imaging (brain, lung, breast, 
and eye) technically, comparatively, and practically. In 
addition to classical data augmentation methods such as 
rotation, noise addition, cropping, translation, and blur-
ring GAN-based generative approaches are also exam-
ined. It has been concluded that GAN-based methods 
provide more successful results by increasing diversity, 
but the coordination between generator and discrimina-
tor structures is difficult to achieve, they are difficult to 
train and complex compared to classical data augmen-
tation approaches. It has been emphasized that supe-
rior results can also be obtained by using combinations 
of classical data augmentation approaches other than 
GANs.

In the study of [38], a new generative model named 
TumorGAN has been proposed as a data augmentation 
approach for the limited data problem in HGG and LGG 
brain tumor segmentation. In addition, they developed 
new loss functions called regional perceptual loss and 
regional L1 loss to increase the performance in GAN 
training. In the results obtained, it was observed that the 
data augmented with TumorGAN increased the success 
in both single-modal and multi-modal data. The best 
results in the mean scores of the whole tumor, tumor 
core, and enhancing tumor segmentations were obtained 
by training the U-Net model with the data generated with 
the proposed TumorGAN approach.

In the [39], the authors propose a GAN-based approach 
to augment the dataset with synthetic liver lesion images. 
They train the GAN on a small dataset of real liver lesion 
images to generate a larger number of synthetic images. 
The authors report an improvement in the performance 
of the CNN model trained on the augmented dataset 
compared to the original dataset. However, their work 
focuses on liver lesion classification using CT images, 
while the proposed method in this paper focuses on 
brain tumor classification using MRI images. Moreover, 
the StyleGANv2-ADA is used in this work to generate 
the synthetic images, which allows for more fine-grained 
control over the augmentation process.

The proposed method in [40] is similar to the proposed 
work in this paper as it addresses the issue of insufficient 

training samples for deep learning-based lesion detec-
tors by utilizing image generation techniques. However, 
this work focuses on delicate imaging textures, and the 
proposed method, TMP-GAN, employs joint training of 
multiple channels and an adversarial learning-based tex-
ture discrimination loss to generate high-quality images. 
The method also uses a progressive generation mecha-
nism to improve the accuracy of the medical image 
synthesizer. Experiments on publicly available datasets 
demonstrate that the detector trained on the TMP-GAN 
augmented dataset performs better than other data aug-
mentation methods, with an improvement in precision, 
recall, and F1 score.

In the study [41], the authors address the challenge of 
the limited availability of labeled medical imaging data-
sets for supervised machine learning algorithms. They 
propose using Generative Adversarial Networks (GANs) 
to generate synthetic samples that resemble real images 
and augment the training datasets. The authors demon-
strate the feasibility of this approach in two brain seg-
mentation tasks and show that introducing GAN-derived 
synthetic data improves the Dice Similarity Coefficient 
(DSC) by 1 to 5 percentage points under different con-
ditions, particularly when there are fewer than ten train-
ing image stacks available. Their work demonstrates that 
GAN augmentation is a promising technique for improv-
ing the performance of machine learning algorithms in 
medical imaging tasks when the available labeled datasets 
are limited.

The study in [42] presents a method for generating 
synthetic brain MRI images with meningioma disease 
using a multi-scale gradient GAN (MSG-GAN). The gen-
erated images are used to augment the training set of a 
CNN model for a multi-class brain tumor classification 
problem. The evaluation of the proposed method on 
coronal-view images from the Figshare database shows 
an improvement in the classifier’s performance in terms 
of the balanced accuracy score. The results demonstrate 
the potential of using GAN-based data augmentation to 
improve the performance of computer-aided diagnosis 
systems in brain tumor characterization.

The authors in [43] used two GAN models, namely 
DCGAN and WGAN, to see which GAN architecture 
is better for realistic MRI generation. The main goal 
of this comparison is to prevent the mode-collapsing 
and generating high-resolution synthetic images. The 
authors used the BRATS 2016 dataset. For each patient, 
they selected the MRI scans between number 80 and 
number 149 as all of the MRI scans do not carry valu-
able data. This cropping is also popular as it reduces 
the need for computational power. They processed 
the MRI scans by the dimensions of both 64x64 and 
128x128. The study demonstrates that using WGAN 
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can generate realistic multi-sequence brain MR images, 
which may have practical applications in the clini-
cal setting, such as data augmentation and physician 
training. The research highlights the potential of uti-
lizing GAN-based methods for medical imaging data 
augmentation, specifically addressing the challenges 
associated with intrinsic intra-sequence variability in 
medical images. The comparison of the related papers 
is given in Table 1.

In Table  1, prominent studies on GAN and classical 
data augmentation in the medical field are examined and 
analyzed with prominent performance metrics. It can be 
seen that both data augmentation methods can be suc-
cessfully applied in pancreatic, liver, and chest diseases 
other than tumors. In studies using both GAN and classi-
cal data augmentation, it can generally be concluded that 
GAN data augmentation provides higher performance.

In this paper, the utilization of StyleGANv2-ADA is 
proposed for augmenting brain MRI slices in the context 
of brain tumor classification. The datasets namely BraTS 
2021, Gazi Brains 2020, and the BR35H are employed, 
and various deep-learning models are trained on them. 
Subsequently, a GAN-augmented model is trained on 
the same two datasets, and its performance is compared 
with that of the vanilla models. The aim is to prevent data 
leakage and ensure a fair comparison between the models 
by augmenting only the training data.

The proposed method of augmenting brain MRI slices 
with StyleGANv2-ADA is expected to improve the over-
all performance of the deep-learning models for brain 
tumor classification. The generated images can help to 
increase the diversity and quantity of the training data, 
thus reducing overfitting and improving the generaliza-
tion ability of the models. Furthermore, the use of GANs 
for data augmentation has the potential to overcome the 
challenge of working with medical data, particularly the 
sparsity of ground truth data.

The key contributions of this paper are listed as follows:

•	 A brain tumor classification pipeline is designed, 
incorporating feature fusion, traditional and syn-
thetic data augmentation, and CNN classification 
steps to enhance classification performance.

•	 Whether data augmentation with GANs is as suc-
cessful and valid as well-known traditional data aug-
mentation methods, or is a better option, is demon-
strated by conducting tests with a state-of-the-art 
GAN model in the brain MRI domain.

•	 The StyleGANv2-ADA is adopted to synthesize real-
istic, imitated brain MRIs, augmenting the datasets, 
and assessing their effects on performance.

•	 The classification performances of different models 
trained on images are compared without any aug-

mentation, with traditional augmentation, and with 
GAN-synthesized augmentation.

•	 Experiments are conducted using the BraTS 2021 
dataset alongside our own Gazi Brains 2020 data-
set to assess whether synthetic images generated by 
GANs are the viable option.

•	 The impact of data augmentation methods on clas-
sification performance is presented by testing the 
proposed approach on the three datasets. The Gazi 
Brains 2020 Dataset comprises glioma-type brain 
tumors meticulously curated by six medical experts 
from Gazi University’s Faculty of Medicine.

Material and methods
In this study, the impact of utilizing StyleGANv2-ADA 
for brain tumor classification via deep learning is inves-
tigated. The datasets namely the Gazi Brains 2020, BraTS 
2021, and BR35H datasets are employed for augmenta-
tion and evaluation purposes. During the data pre-pro-
cessing phase, excess pixels were removed, and input 
images were resized to fulfill model requirements. Vari-
ous CNN models with DenseNet were employed for clas-
sification comparison. Additionally, the implementation 
of k-fold cross-validation ensured a more dependable 
model evaluation. The StyleGANv2-ADA GAN model 
was utilized to augment training data and evaluate its 
influence on overall model performance. Figure 1 depicts 
the methodology employed to assess the significance of 
generated synthetic data in the classification task. The 
provided data is first passed through the fusion stage. 
Later, except for classification without augmentation, the 
classification processes were carried out after traditional 
and StyleGANv2 augmentation approaches.

Brats (brain tumor segmentation) 2021 dataset
The BraTS dataset has been widely used in numer-
ous studies for brain tumor segmentation, classifica-
tion, and survival prediction using MRI images [48–51]. 
The dataset consists of multimodal MRI scans, includ-
ing T1-weighted MRI, T1-weighted MRI with contrast 
enhancement, T2-weighted MRI, and Fluid Attenuated 
Inversion Recovery (FLAIR) for each patient. The dataset 
is used for various tasks, including brain tumor segmen-
tation, classification, and survival prediction [52, 53].

One of the most commonly used versions of the data-
set is BraTS 2018, which includes MRI scans from 285 
training subjects and 66 validation subjects. The dataset 
contains both high-grade gliomas (HGGs) and low-grade 
gliomas (LGGs). Researchers often use the BraTS data-
set to evaluate and compare the performance of different 
algorithms and models for brain tumor segmentation. 
Many advanced algorithms have been validated using 
the BraTS dataset, making it a benchmark for evaluating 
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the effectiveness of new methods. The dataset allows 
researchers to compare their proposed methods with 
existing methods and assess their performance.

The BraTS dataset is particularly valuable because it 
includes multimodal MRI scans, which provide different 
types of information about the tumors. These modali-
ties include T1-weighted, T1-weighted with contrast 
enhancement, T2-weighted, and FLAIR (Fluid-Attenu-
ated Inversion Recovery) images. The availability of mul-
tiple modalities allows researchers to develop algorithms 
that can leverage the complementary information pro-
vided by each modality to improve tumor segmentation 
accuracy. Overall, the BraTS 2021 dataset is valuable 
for researchers working on brain tumor segmentation 
and related tasks. Its large size, multi-modal nature, and 
availability of ground truth segmentation make it a suit-
able dataset for developing and evaluating algorithms for 
accurate and automated brain tumor analysis.

The gazi brains 2020 dataset
The Gazi Brains 2020 Dataset [54] is a collection of gli-
oma-type brain tumors that was meticulously compiled 
by six medical experts from the Gazi University Faculty of 
Medicine. This dataset comprises brain MR images from 
a total of 100 patients, with 50 patients being healthy and 
50 patients diagnosed with High-Grade Glioma (HGG). 
For each patient, the dataset includes T1-weighted, T1CE 
(Gadolinium), T2-weighted, and FLAIR MR images. 
Additionally, the dataset incorporates tumor region seg-
mentation and 12 anatomical structure tags meticulously 
prepared by the experts. The segmentation labels of the 
Gazi Brains 2020 Dataset are given in Table 2. It further 
contains specific tumor findings and components of 
HGG patients, along with demographic characteristics 
like age and gender.

In the preprocessing phase of the Gazi Brains 2020 
dataset; the separation of slices with and without HGG 
findings, density normalization, feature selection, and 
feature fusion steps are applied. The images obtained as a 
result of all preprocessing, fusion, and relabeling steps are 
shared in [55] as an organized dataset. In the dataset con-
sisting of HGG and normal samples, there are segmenta-
tion masks for each patient’s Whole Slide Image (WSI). 
There are a total of 16 labels in these masks as shown 
in Table 2. By taking the opinion of doctors and experts 
from the Gazi Medical Faculty, WSIs with 7,8,9,10, and 
12 labels among all in the segmentation map are labeled 
as slices with HGG, otherwise, they are labeled as normal 
for the binary glioma classification task.

Among the modalities in the dataset, T1CE, T2, and 
FLAIR images were selected for fusing. The reason for 
using the T1CE modality instead of T1 is that it has gen-
erally known advantages over T1 in the medical field. 
Samples without T1CE images were eliminated. Better 
results can be obtained by enriching the data rather than 
trying to solve the problem with a single modality, as 
shown in [56]. Selected T1CE, T2, and FLAIR modalities 

Fig. 1  The process of StyleGANv2-ADA augmentation methodology on classification

Table 2  Segmentation Labels of the Gazi Brains 2020 Dataset

Label Name Label Name

0 Clear Label 8 Peritumor Edema Area

1 Region of Interest 9 Contrast Enhancing Part 
of Tumour

2 Eye 10 Necrosis of Tumour

3 Optic Nerve 11 Cavum Septum Pellicidum

4 Lateral Ventricle 12 Haemorrage

5 Third Ventricle 13 Lipoma

6 Ischemic Gliotic Changes 14 Arachnoidal Cyst

7 Contrast Non-Enhancing-
Part of Tumour

15 Late Sequela Infarct Area
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are then combined, and fused in 3 channels (RGB) to 
obtain a single result image. In this way, explanatory and 
more comprehensive data is obtained that combines the 
richer and different advantages of different modalities 
that the deep learning models can use and learn for each 
sample at the learning stage.

The synthetic MRI slices are generated using the Style-
GANv2-ADA model. In Fig. 2, a visual comparison is pre-
sented between the original MRI slices, which have been 
sampled from the Gazi Brains 2020 dataset, and the MRI 
slices generated using the StyleGANv2-ADA architec-
ture. Each grid features 9 MRI slices, resized to 128x128 
pixels. This comparison serves to demonstrate the quality 
and realism of the GAN-generated MRI slices within the 
context of brain tumor classification. The advantages of 
utilizing the StyleGANv2-ADA model for synthetic MRI 
generation lie in its ability to capture intricate patterns 
and details, producing images that closely resemble real 
MRI scans. The model’s adaptive training methodology 
enhances its versatility across different datasets, ensuring 
robust performance and generalization.

The br35h dataset
Brain tumor detection datasets have been developed to 
address a critical medical challenge, as these aggressive 
diseases significantly impact patient survival rates. The 
Br35h dataset [57], comprising 3060 brain MRI images, 
has been structured to support the development of 
automated systems for tumor identification. It has been 

divided into two main categories: 1500 tumorous and 
1500 non-tumorous brain MRI scans, with an additional 
folder intended for prediction or testing purposes. This 
balanced composition has been designed to facilitate 
binary classification tasks, which are considered funda-
mental in distinguishing between healthy and tumor-
affected brain tissues.

The dataset has been curated to enable various appli-
cations in the field of medical imaging analysis. CNNs 
and other deep learning models can be trained and 
tested using these images, while transfer learning tech-
niques may be explored to enhance model performance. 
Although not explicitly stated in the dataset description, 
the possibility of tumor position segmentation has been 
suggested. The ultimate goal of such datasets is under-
stood to be the development of systems that can be uti-
lized to assist radiologists and neurosurgeons in rapidly 
and accurately identifying brain tumors, a capability that 
is particularly valued in regions where access to skilled 
professionals may be limited. It is expected that this 
resource will be leveraged by researchers to compare the 
efficacy of various machine learning and deep learning 
algorithms in the context of brain tumor detection.

Preprocessing and overall pipeline
In this section, the data preprocessing steps carried out 
for classifying brain tumors using medical imaging, spe-
cifically brain MRI slices are described. Steps for the data 
preprocessing and the general architecture of this work 

Fig. 2  Visual Comparison of Original MRI Slices and MRI Slices Generated by the StyleGANv2-ADA Model. The figure showcases a side-by-side 
comparison of the original MRI slices (left) and MRI slices generated using the StyleGANv2-ADA model (right)
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are given in Fig. 3. The preprocessing steps aim to ensure 
data consistency, remove unnecessary slices, and miti-
gate any potential bias during the training process. Addi-
tionally, GAN-based data augmentation techniques are 
employed to enhance the robustness and generalizability 
of the classification model. As described in Fig.  3, this 
work mainly has three different ways to train classifier 
models. We first train the models with no augmentation. 
After that, we train the models with traditional augmen-
tation and finally, GAN-based augmentation to observe 
whether the data augmentation can be considered for 
improving the classifier model’s accuracy.

Removal of unnecessary MRI slices
Some MRI scans may contain irrelevant or redundant 
slices that do not contribute to the classification task. 
To ensure the focus is on relevant tumor-related infor-
mation, we performed a thorough review of each data-
set and manually removed unnecessary slices. This step 
aimed to reduce noise and enhance the signal-to-noise 
ratio of the data.

K‑fold cross‑validation
It is beneficial for the proposed brain tumor classifica-
tion task as it helps in assessing the model’s performance 
robustly. By iteratively training and evaluating the model 
on different subsets of the data, a more comprehensive 

understanding of the model’s generalization capabilities 
is gained. Moreover, this technique aids in reducing the 
impact of data variability and ensures that the model’s 
performance is not overly dependent on a specific subset 
of the data. Through k-fold cross-validation, the reliabil-
ity of the proposed classification model is enhanced and 
makes it more adaptable to diverse patterns within the 
brain tumor dataset.

GAN‑based data augmentation
In addition to the aforementioned preprocessing steps, 
the GAN-based data augmentation technique is utilized 
to increase the diversity and quantity of the training data. 
GANs are capable of generating realistic synthetic sam-
ples that can be used to augment the original dataset. By 
leveraging GANs, it is aimed to address the challenges 
posed by limited data availability and improve the mod-
el’s ability to generalize to unseen brain tumor cases.

The GAN-based data augmentation involved train-
ing a GAN model on a subset of the original dataset. 
This GAN model learned the underlying distribution of 
the data and generated synthetic brain MRI slices. These 
synthetic samples were then combined with the original 
dataset to create an augmented training set, resulting in 
a larger and more diverse training data pool. This process 
effectively increased the variability in the training data, 
enabling the classification model to learn more robust 

Fig. 3  Data preprocessing steps and overall architecture of the proposed method for all datasets namely the BraTS 2021, Br35h, and Gazi Brains 
2020
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and discriminative features for accurate brain tumor 
classification.

The pseudo-code, describing the main steps of the pro-
posed method is given in Algorithm 1. In summary, the 
data preprocessing steps for the proposed brain tumor 
classification task included resizing all MRI slices to a 
standardized dimension of 256x256 pixels while preserv-
ing the three-channel information. A careful review and 
removal of unnecessary MRI slices is also conducted to 
enhance data quality. K-fold cross-validation is employed 
to prevent data bias during model training and evalua-
tion. Furthermore, the GAN-based data augmentation 
technique is utilized to augment the original dataset and 
enhance the model’s ability to generalize to unseen brain 
tumor cases. These preprocessing steps are crucial in 
ensuring reliable and unbiased classification results.

Algorithm 1 Pseudo-code of the proposed architecture

 

Styleganv2‑ADA
StyleGAN2-ADA [58] (Adaptive Discriminator Augmen-
tation) is an improved version of the StyleGAN2 model 
that was introduced in 2020. The original StyleGAN2 
model is a state-of-the-art generative model for synthe-
sizing high-quality images. It uses a novel architecture 
that combines a generator network with a discriminator 
network to produce realistic images. The generator net-
work generates images, while the discriminator network 
evaluates how realistic the generated images are com-
pared to real images.

StyleGAN2-ADA introduces an additional technique 
called Adaptive Discriminator Augmentation (ADA) to 
improve the performance of the discriminator network. 
ADA is a regularization method that adjusts the train-
ing of the discriminator network based on the difficulty 
of the training examples. It works by dynamically adjust-
ing the strength of data augmentation during training. 

This allows the discriminator to better generalize to new 
examples and improves the diversity and quality of the 
generated images.

Stochastic discriminator augmentation: Augmenta-
tions used during training can cause unwanted artifacts to 
appear in generated images. Existing approaches attempt to 
prevent augmentation leakage by making the discrimina-
tor blind to augmentations, which is not ideal. In the pro-
posed approach, augmentations are applied to the images 
shown to the discriminator, but only the augmented images 
are presented to it. The same augmentations are also used 
when training the generator, allowing for the effective 
incorporation of augmentations without compromising the 
discriminator’s ability to recognize them.

Figure  4 illustrates the architecture with G represent-
ing the generator and D representing the discriminator. 
The augmentation probability, denoted as p and ranging 
between 0 and 1, controls the intensity of the augmenta-

tions. To ensure a diverse training process, discriminator 
D is rarely exposed to clean images as the pipeline incor-
porates multiple augmentations, typically with a p-value 
around 0.8. During training, the generated images are 
augmented before being evaluated by discriminator D. By 
placing the Aug operation after the generation process, 
generator G is effectively guided to produce exclusively 
clean images.

Designing augmentations that do not leak: GANs 
can undo corruptions when trained solely on corrupted 
images if the augmentations used for corruption allow 
distinguishing between augmented image sets. For 
example, stochastic non-leaking augmentations, like 
random rotations by 0, 90, 180, or 270 degrees with 
10% probability, increase the occurrence of images at 
0 degrees, forcing the generator to produce correctly 
oriented images. Deterministic augmentations can be 
made non-leaking by applying them with a probability 
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(p%) below 0.8. This ensures that the augmentations 
do not disrupt the generator’s ability to accurately 
replicate the original image distribution. The authors 
employ a total of 18 augmentations, applied in a prede-
fined order, with equal independent probabilities. This 
extensive augmentation pipeline ensures that the dis-
criminator rarely encounters an image without any aug-
mentations. Despite this, the generator is still trained 
to generate clean images as long as the probability value 
(p) remains below a designated safe threshold.

Adaptive discriminator augmentation (ADA): To 
eliminate the need for manual adjustment of augmen-
tation strengths, the authors introduce two heuristics 
to detect discriminator overfitting. The first heuristic 
compares the discriminator predictions for the vali-
dation set to those of the training set and generated 
images. The second heuristic measures the proportion 
of the training set that yields positive discriminator 
outputs. In practice, the value of p is initialized at 0, and 
after every few minibatches, the heuristics are com-
puted. Based on the detected overfitting, p is dynami-
cally adjusted aggressively to counteract the issue.

In the study, StyleGAN2-ADA is employed to aug-
ment brain MRI slices for training deep learning 
models. The application of this method is intended 
to enhance the overall performance of the models by 
offering them more diverse and realistic training exam-
ples. Augmentation is restricted solely to the training 
data to prevent leakage and ensure the evaluation of the 
model on the real test data. It is important to note that 
StyleGANv2-ADA is used exclusively for augmenting 
the training data, not the testing data. This approach 
ensures that the model’s performance is evaluated on 
real, unaltered data, allowing us to accurately assess the 
impact of the synthetic data generated during training. 
By generating high-fidelity synthetic images that mirror 
the real data, StyleGANv2-ADA plays a crucial role in 
improving the robustness and accuracy of the model. 
The effectiveness of StyleGANv2-ADA in this context 

has been thoroughly evaluated and discussed, high-
lighting its importance in the proposed methodology.

Classification
Based on the models that are evaluated in this study, 
namely MobileNetV2, Xception, and EfficientNetV2S, 
an inference can be made about the relationship between 
the parameter numbers, network depth, and the data 
under consideration.

MobileNetV2 [59] is designed to be lightweight and 
efficient, especially suitable for resource-constrained 
environments. Despite its lower parameter count com-
pared to some larger models, it leverages depth-wise 
separable convolutions and other techniques to reduce 
computational requirements while maintaining reason-
able accuracy.

Xception [60] is an extended version of Inception with 
depthwise separable convolutions, which allows it to cap-
ture fine-grained features efficiently. With a more com-
plex architecture and increased depth, Xception is likely 
to have a higher number of parameters compared to 
Vanilla and MobileNetV2.

EfficientNetV2S [61] models are designed to achieve 
state-of-the-art performance while maintaining a good 
trade-off between accuracy and computational efficiency. 
The specific variant, EfficientNetV2S, signifies a smaller 
version of the EfficientNetV2 family. It is expected to 
have a moderate number of parameters, offering a bal-
ance between model complexity and performance.

ViT-Linformer [62] is a transformer-based architec-
ture designed for vision tasks, combining the benefits of 
Vision Transformers (ViT) with the Linformer model’s 
efficient attention mechanism. Unlike traditional con-
volutional networks, ViT-Linformer relies on global 
self-attention to capture dependencies across the entire 
image, which allows it to learn complex patterns. How-
ever, it tends to require more data for effective training 
and generally has a higher computational cost compared 

Fig. 4  Stochastic discriminator augmentation and the effect of augmentation probability p for the StyleGANV2-ADA [58]
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to CNN models, despite optimizations for reduced atten-
tion complexity.

Considering the above, it can be inferred that as 
the model’s depth and complexity increase (e.g., from 
MobileNetV2 to Xception and EfficientNetV2S), the 
number of parameters is likely to rise accordingly. How-
ever, models like MobileNetV2 and EfficientNetV2S are 
designed to provide a good balance between accuracy 
and parameter efficiency, thus offering a potentially opti-
mal trade-off for this study.

It is important to note that the relationship between 
parameter numbers, network depth, and data is a com-
plex topic, and the actual impact on model performance 
may vary depending on the specific dataset and task 
at hand. The evaluation of these models in this study 
provided a more concrete understanding of their per-
formance and shed light on the relationship between 
parameter numbers, network depth, and the classifica-
tion of brain tumor data.

Experimental studies
In this study, six deep-learning models for brain tumor 
classification are evaluated using the three datasets 
namely Gazi Brains 2020, BraTS 2021 and the BR35H. 
The models that are evaluated included MobileNetV2, 
Xception, EfficientNetV2S, and the proposed GAN-
augmented model, MobileNetV2, using StyleGANv2. 
The 5-fold cross-validation approach is used to train 
and test each model, including the proposed GAN-aug-
mented model using StyleGANv2, and their performance 
is evaluated using metrics such as accuracy, precision, 
recall, and F1-score. The hardware used for the experi-
ments, including training and testing in this proposed 
GAN-augmented model using StyleGANv2, consisted of 
an Intel® Xeon® Gold 6336Y Processor, 512GB of RAM, 
and NVIDIA 4xA40 GPU with 48GB of VRAM. The Ten-
sorFlow deep learning framework is used to implement 
and train the models, including the proposed GAN-aug-
mented model using StyleGANv2, and the Adam opti-
mizer with a learning rate of 0.001 is employed. Each 
model’s learning rate (LR) and network parameters are 
listed in Table 3.

Table  3 presents a comparison of various models 
including InceptionV3, DenseNet201, MobileNetV2, 
Xception, and EfficientNetV2S. These models are opti-
mized using RMSprop with a learning rate of 1e-4. The 
Table 3 also displays the total number of parameters for 
each model, indicating their complexity. The experi-
ment involved the evaluation of two datasets, namely 
the Gazi Brains 2020 Dataset and the BRaTS 2021 data-
set, to assess the performance of the models with varying 
parameter sizes. The models were subjected to testing to 
ascertain whether differences in parameter counts led to 

variations in performance metrics. Through this experi-
mentation, the datasets were utilized to gauge the mod-
els’ efficacy across diverse tasks and data distributions. 
Comparisons were made to analyze how the models, 
characterized by differing parameter sizes, performed in 
relation to the specific datasets. Results were obtained 
to determine any discernible patterns or correlations 
between parameter size and model performance across 
the evaluated datasets.

The presented Table 4 outlines the performance metrics 
of various models employed for brain tumor classifica-
tion. Incorporating augmentation through StyleGANv2-
ADA further raises the standard deviation to 0.0168. 
Notably, the minimum accuracy significantly improves 
to 0.9444, while the maximum accuracy reaches 1, sug-
gesting instances of perfect classification. These results 
highlight the positive impact of StyleGANv2-ADA on the 
model’s ability to generalize and classify unseen data.

Gazi Brains 2020, BraTS 2021, and BR35H datasets 
are initially trained on six different deep-learning mod-
els without augmentation. The evaluation metrics for the 
non-augmented classifier can be found in Table  5. Sub-
sequently, traditional augmentation methods are applied 
to the training dataset, and the results are presented in 
Table 6. Finally, the GAN-augmented models are trained 
using six different deep-learning models, including the 
transformer model and a comprehensive comparison of 

Table 3  Summary of the different CNN models that are trained 
on all datasets

Models Optimizer LR Total number 
of parameters

InceptionV3 RMSprop 1× 10
−4 31, 240, 225

DenseNet201 RMSprop 1× 10
−4 30, 364, 481

MobileNetV2 RMSprop 1× 10
−4 12, 744, 001

Xception RMSprop 1× 10
−4 37, 638, 953

EfficientNetV2S RMSprop 1× 10
−4 30, 817, 377

Table 4  Descriptive statistics for model accuracy are provided 
for three different MobileNetV2 models for the Gazi Brains 2020 
dataset

Models Std. Dev. (Acc) Minimum (Acc) Maximum (Acc)

The MobileNetV2 0.0082 0.9247 0.9502

MobileNetV2 
with Traditional 
Augmentation

0.014 0.9269 0.9774

MobileNetV2 
with Augmenta-
tion (StyleGANV2-
ADA)

0.0168 0.9444 1
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these methods is provided in Table 7. The primary objec-
tive is to assess whether GAN-augmented data contrib-
utes to the overall accuracy improvement of the brain 
tumor classifier.

The performance of the deep learning models in both 
Table  5 and  6 has higher recall and AUC scores than 
other metrics like accuracy, highlighting their effective-
ness in correctly identifying positive instances, particu-
larly crucial in tasks like brain tumor classification. The 
high recall values signify the models’ ability to capture 

most of the positive cases, essential in medical diagnosis 
where missing a positive instance can have severe conse-
quences. Furthermore, the elevated AUC scores demon-
strate the models’ proficiency in distinguishing between 
classes, ensuring that true positives are ranked higher 
than false positives across different threshold values. 
These results underscore the suitability of the employed 
deep learning models for accurately detecting brain 
tumors, offering promising prospects for improved diag-
nostic procedures and patient care.

Tables  6 and  7 provide comprehensive evaluations of 
six deep-learning models for brain tumor classification 
using the Gazi Brains 2020 dataset under different con-
ditions. Table  5 showcases the performance metrics of 
the models with no data augmentation. Notably, Incep-
tionV3 and Xception exhibit high accuracies of 0.9492 
and 0.9524, respectively, while DenseNet201 and Effi-
cientNetV2S also demonstrate commendable results. In 
Table  6, the models are evaluated with traditional data 
augmentation. The overall accuracy improves for all 
models, with DenseNet201, MobileNetV2, and Efficient-
NetV2S reaching notably higher accuracies of 0.9603, 
0.9619, and 0.9611, respectively. The use of traditional 
data augmentation contributes to enhanced precision, 
recall, and area under the curve (AUC) metrics across 
the models, underscoring the effectiveness of augmenta-
tion techniques in improving the deep learning models’ 
performance for brain tumor classification in the Gazi 
Brains 2020 dataset.

Evaluation and analysis
In the results section of this study, the evaluation of six 
deep-learning models for brain tumor classification using 
three different datasets is presented. The performance 
of these models is compared with and without data aug-
mentation using StyleGANv2-ADA. It is observed that 
the data augmentation technique using the StyleGANv2-
ADA GAN model achieves the best overall accuracy, with 
an average accuracy of 94.5% across all five models on the 
Gazi Brains 2020 dataset.

In addition to the evaluation of the performance of 
the deep learning models, the impact of GAN-based 
data augmentation on the models’ ability to learn dis-
criminative features and improve classification perfor-
mance is also analyzed. The performance of six deep 
learning models is presented in Table 5. It is found that 
the introduction of synthetic samples through GANs 
enhances the models’ ability to learn relevant features 
and improves their classification performance. However, 
it is also acknowledged that there are potential chal-
lenges and caveats associated with this approach, such as 
the risk of overfitting and the need for careful selection 
of GAN hyperparameters. The comparison of accuracies 

Table 5  The results of models without data augmentation 
using the Gazi Brains 2020

Model Acc. Prec. Recall AUC​

InceptionV3 0.9492 0.9380 0.9892 0.9559

DenseNet201 0.9484 0.9535 0.9699 0.9592

MobileNetV2 0.9349 0.9275 0.9783 0.9149

Xception 0.9524 0.9430 0.9880 0.9534

EfficientNetV2S 0.9460 0.9334 0.9892 0.9432

ViT-Linformer 0.7408 0.8003 0.8162 0.7047

Table 6  Evaluation of models for classification with traditional 
data augmentation using the Gazi Brains 2020

Model Acc. Prec. Recall AUC​

InceptionV3 0.9468 0.9506 0.9711 0.9734

DenseNet201 0.9603 0.9652 0.9759 0.9799

MobileNetV2 0.9619 0.9613 0.9819 0.9551

Xception 0.9563 0.9435 0.9940 0.9811

EfficientNetV2S 0.9611 0.9520 0.9916 0.9786

ViT-Linformer 0.6573 0.6810 0.9205 0.5291

Table 7  Evaluation of all the deep learning models for brain 
tumor classification using the BraTS 2021 Dataset. It can be 
observed that the data augmentation using the StyleGANv2-
ADA GAN model achieves the best overall accuracy. The accuracy 
given here is the average of 5-fold training. Data Augmentation 
A = 50% is the parameter that shows how much training data in 
each fold is augmented and appended only to the train data

Models Metrics No Aug. Traditional Aug. StyleGANv2-
ADA A = 
50%

InceptionV3 Acc. 0.7540 0.6570 0.7433

DenseNet201 Acc. 0.7306 0.6624 0.7327

MobileNetV2 Acc. 0.6240 0.5953 0.6454

Xception Acc. 0.7316 0.7018 0.7295

EfficientNetV2S Acc. 0.7455 0.6805 0.7518

ViT-Linformer Acc. 0.5834 0.5312 0.6017
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for three different EfficientNetV2S models on the BraTS 
2021 is shown in Fig. 5a.

Tables 7 and 8 present evaluations of six deep-learning 
models for brain tumor classification using the BraTS 
2021 and Gazi Brains 2020 datasets, respectively. In 
Table  7, employing the StyleGANv2-ADA GAN model 
for data augmentation results in the highest overall 
accuracy across all models. The accuracy averages of 
5-fold training are provided for different augmenta-
tion scenarios, with the parameter A = 50% indicating 
the extent of training data augmentation in each fold. It 
can be observed that the data augmentation using the 
StyleGANv2-ADA GAN model achieves the best overall 
accuracy. The accuracy given here is the average of 5-fold 
training. Data Augmentation (A = 50%) is the param-
eter that shows how much training data in each fold is 
augmented and appended to the train data. Notably, 
StyleGANv2-ADA consistently outperforms both no-
augmentation and traditional augmentation methods for 
all models. The comparison of AUC, recall and precision 
scores for three different EfficientNetV2S on the BraTS 
2021 are presented in Figs. 6a, 7a and 8a, respectively.

Table 8 further corroborates the effectiveness of Style-
GANv2-ADA in achieving the best overall accuracy in 
brain tumor classification using the Gazi Brains 2020 
dataset. The accuracy averages, presented for different 
augmentation scenarios (No Aug., Traditional Aug., 
and StyleGANv2-ADA with A = 50%), highlight the 
superior performance of the GAN-based augmentation 
method across all models. It can be observed that the 
data augmentation using the StyleGANv2-ADA GAN 
model achieves the best overall accuracy. The accu-
racy given here is the average of 5-fold training. Data 
Augmentation (A = 50%) is the parameter that shows 
how much training data in each fold is augmented and 

appended to the train data. These findings underscore 
the significant impact of StyleGANv2-ADA on enhanc-
ing the classification accuracy of deep learning models 
in the context of brain tumor datasets. The comparison 
of accuracies for three different MobileNetV2 models 
on the Gazi Brains 2020 is given in Fig.  5b. Also, the 
comparison of AUC, recall and precision scores for 
three different EfficientNetV2S on the BraTS 2021 are 
presented in Figs. 6b, 7b and 8b, respectively.

Table  9 presents the performance of six deep learn-
ing models (InceptionV3, DenseNet201, MobileNetV2, 
Xception, EfficientNetV2S, and ViT-Linformer) on the 
BR35H dataset for brain tumor classification, compar-
ing three scenarios: no augmentation (No Aug.), tra-
ditional data augmentation (Traditional Aug.), and 
augmentation using the StyleGANv2-ADA model 
with an augmentation parameter (A) of 50%. It can be 
observed that the data augmentation using the Style-
GANv2-ADA GAN model achieves the highest accu-
racy for most models, with DenseNet201 reaching an 
accuracy of 0.9944. The results show that DenseNet201 
benefits most from the StyleGANv2-ADA augmenta-
tion, outperforming both the no-augmentation and 
traditional augmentation scenarios. MobileNetV2 and 
ViT-Linformer also see significant improvements with 
StyleGANv2-ADA, achieving accuracies of 0.9755 and 
0.8403, respectively.

The reported accuracies are averaged across 5-fold 
cross-validation for all experiments conducted on the 
three datasets. The parameter A=50% indicates that 
50% of the training data in each fold is augmented and 
appended to the original training set. This augmentation 
strategy consistently enhances the performance of the 
models, particularly for DenseNet201 and MobileNetV2.

Table 8  Evaluation of all the deep learning models for brain 
tumor classification using the Gazi Brains 2020 Dataset. It can be 
observed that the data augmentation using the StyleGANv2-
ADA GAN model achieves the best overall accuracy. The accuracy 
given here is the average of 5-fold training. Data Augmentation 
A = 50% is the parameter that shows how much training data in 
each fold is augmented and appended only to the train data

Models Metrics No Aug. Traditional Aug. StyleGANv2-
ADA A = 
50%

InceptionV3 Acc. 0.9492 0.9468 0.9936

DenseNet201 Acc. 0.9484 0.9603 0.9928

MobileNetV2 Acc. 0.9349 0.9619 0.9928

Xception Acc. 0.9524 0.9563 0.9928

EfficientNetV2S Acc. 0.946 0.9611 0.9936

ViT-Linformer Acc. 0.7408 0.6573 0.6768

Table 9  Evaluation of all the deep learning models for brain 
tumor classification using the BR35H Dataset. It can be observed 
that the data augmentation using the StyleGANv2-ADA GAN 
model achieves the highest accuracy for most models. The 
accuracy given here is the average of 5-fold training. Data 
Augmentation A = 50% is the parameter that shows how much 
training data in each fold is augmented and appended only to 
the train data

Models Metrics No Aug. Traditional Aug. StyleGANv2-
ADA A = 
50%

InceptionV3 Acc. 0.9911 0.9944 0.9922

DenseNet201 Acc. 0.9911 0.9888 0.9944

MobileNetV2 Acc. 0.9333 0.9611 0.9755

Xception Acc. 0.9766 0.9877 0.9877

EfficientNetV2S Acc. 0.9911 0.9922 0.9899

ViT-Linformer Acc. 0.8180 0.5765 0.8403
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Despite the similar parameter sizes among Incep-
tionV3, DenseNet201, Xception, and EfficientNetV2S, 
MobileNetV2 consistently demonstrates lower accuracy 
across all the datasets. This observation suggests that fac-
tors beyond parameter size, such as architectural design 
and model complexity, are crucial in determining model 
performance. The disparity in performance between 
MobileNetV2 and the other models with similar parame-
ter sizes indicates that architectural differences may have 

a more substantial impact on performance than param-
eter count alone. Furthermore, the consistent trend of 
MobileNetV2 underperforming compared to its counter-
parts across three datasets underscores the importance 
of architectural considerations in model selection for 
brain tumor classification tasks. Additionally, the effec-
tiveness of data augmentation techniques, particularly 
with the StyleGANv2-ADA GAN model, highlights the 
potential for improving model performance irrespective 

Fig. 5  The comparison of accuracies for three different EfficientNetV2S models on the BraTS 2021 (a), the comparison of accuracies for three 
different MobileNetV2 models on the Gazi Brains 2020 (b)
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of parameter size, further emphasizing the multifaceted 
nature of model performance in deep learning tasks.

The Vision Transformer (ViT-Linformer), a trans-
former-based model, exhibits lower performance com-
pared to the CNN models, especially under traditional 
augmentation (0.5765 accuracy for the BR35H Dataset) 
but shows some improvement with the StyleGANv2-
ADA method (0.8403 accuracy). Transformers typically 
require large amounts of data to learn effectively due to 
their high model complexity and lack of strong inductive 

biases (such as translation invariance and locality) that 
are inherent in CNNs. The BR35H dataset may not pro-
vide sufficient data volume or diversity to fully exploit 
the capabilities of transformers, leading to suboptimal 
performance. The results achieved in three datasets 
suggest that while transformer-based models like ViT-
Linformer represent the state-of-the-art in many com-
puter vision tasks, their performance is limited on some 
tasks due to factors such as data scarcity, lack of strong 
inductive biases for local feature extraction, and potential 

Fig. 6  The comparison of AUC scores for three different EfficientNetV2S models on the BraTS 2021 (a), the comparison of AUC scores for three 
different MobileNetV2 models on the Gazi Brains 2020 (b)
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optimization challenges. In contrast, CNN models dem-
onstrate superior performance owing to their suitability 
for medical imaging tasks, leveraging their local feature 
extraction capabilities and benefiting more effectively 
from the provided data augmentation strategies.

As a result, some evaluations are given to pre-
sent the originality of this study. A distinct strategy 
was employed to choose the datasets for testing the 
StyleGAN2-ADA approach in order to strengthen the 

study’s innovative aspect. Gazi Brains 2020, one of 
the datasets used, is obtained within the scope of the 
Turkish brain project and was used for the first time 
in this study for data augmentation purposes. On the 
other hand, it was observed that no data augmenta-
tion-based study was conducted on the BraTS 2021 
and BR35H data sets. For this reason, it is consid-
ered that the findings from the study performed for 
data augmentation offer a novel gain to the literature 

Fig. 7  The comparison of recall scores for three different MobileNetV2 models on the BraTS 2021 (a), the comparison of recall scores for three 
different MobileNetV2 models on the Gazi Brains 2020 (b)
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when assessed on these three data sets. A compre-
hensive comparison of the utilized StyleGANv2-ADA 
with state-of-the-art methods in terms of augmenta-
tion and classification performance is performed by 
using Table  1, [45, 63–65]. It can be concluded from 
the comparison results that using GAN-generated data 
can significantly improve the overall accuracy of deep 
learning models used for brain tumor classification.

Conclusion and discussion
This study employs a novel approach for improving 
brain tumor classification, wherein GAN-based aug-
mentation of MRI slices. The results obtained indicate 
that the utilization of GAN-generated data can lead to 
a significant enhancement in the overall accuracy of 
deep-learning models for brain tumor classification.

Fig. 8  The comparison of precision scores for three different EfficientNetV2S models on the BraTS 2021 (a), the comparison of precision scores 
for three different MobileNetV2 models on the Gazi Brains 2020 (b)
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Promising results have been demonstrated in address-
ing one of the main challenges in medical imaging, 
namely the sparsity of ground truth data, by employing 
the proposed method utilizing StyleGAN to generate 
synthetic MRI slices. These synthetic slices can be used 
to augment the training data, thereby enhancing the per-
formance of deep learning models.

The study also highlights the importance of selecting 
and evaluating deep-learning models for medical imaging 
tasks. The performance of several popular deep learning 
models for brain tumor classification was compared, and 
it was noticed that the EfficientNetV2S model achieved 
the highest accuracy.

Furthermore, the adoption of StyleGANv2-ADA for 
synthesizing realistic, imitated brain MRIs proves to be a 
crucial aspect of the research. The paper rightly highlights 
the first-time usage of GAN-based data augmentation on 
the Gazi Brains 2020 dataset, showcasing the adaptability 
and effectiveness of the proposed method on a meticu-
lously curated dataset of glioma-type brain tumors.

The comparative analysis of classification performances 
among different models, with and without augmentation, 
provides valuable insights into the superiority of the Effi-
cientNetV2S model and the positive impact of GAN-syn-
thesized augmentation. The study’s successful application 
of StyleGANv2-ADA on all three datasets further sub-
stantiates the potential of GANs for data augmentation in 
medical imaging. In conclusion, this research validates the 
efficacy of GANs in augmenting medical imaging datasets 
and contributes valuable knowledge about model selec-
tion and evaluation for brain tumor classification. The 
main findings of this study can be listed as follows:

•	 A novel approach for improving brain tumor classi-
fication is proposed, involving GAN-based augmen-
tation of MRI slices, with results indicating a signifi-
cant enhancement in overall accuracy through the 
utilization of GAN-generated data.

•	 Promising results have been demonstrated in address-
ing one of the main challenges in medical imaging, 
namely the sparsity of ground truth data, by employ-
ing the proposed method utilizing StyleGAN to gen-
erate synthetic MRI slices. These synthetic slices can 
be utilized to augment the training data, thereby 
enhancing the performance of deep learning models.

•	 The importance of selecting and evaluating deep-
learning models for medical imaging tasks is high-
lighted, with the performance of several popular 
deep-learning models for brain tumor classification 
compared, revealing that the EfficientNetV2S model 
achieved the highest accuracy.

•	 Furthermore, the adoption of StyleGANv2-ADA for 
synthesizing realistic, imitated brain MRIs proves to 
be a crucial aspect of the research. The paper rightly 
highlights the first-time usage of GAN-based data 
augmentation on the Gazi Brains 2020 dataset, show-
casing the adaptability and effectiveness of the pro-
posed method on a meticulously curated dataset of 
glioma-type brain tumors.

•	 The comparative analysis of classification perfor-
mances among different models, with and without 
augmentation, provides valuable insights into the 
superiority of the EfficientNetV2S model and the 
positive impact of GAN-synthesized augmentation 
while achieving the highest overall accuracy for brain 
tumor classification on all the three datasets.

•	 The study’s successful application of StyleGANv2-
ADA on three separate datasets, namely Gazi Brains 
2020, BraTS 2021 and the BR35H datasets further 
substantiates the potential of GANs for data augmen-
tation in medical imaging.

•	 In conclusion, this research validates the efficacy of 
GANs in augmenting medical imaging datasets and 
contributes valuable knowledge about model selec-
tion and evaluation for brain tumor classification.

In future works, the integration of emerging technologies 
like the Internet of Things (IoT) will be explored to enhance 
healthcare applications. IoT devices will be utilized for real-
time monitoring and data collection, providing continuous 
and accurate patient health information. AI algorithms will 
be employed to analyze the vast amounts of data collected, 
facilitating early diagnosis, personalized treatment plans, 
and improved patient outcomes. IoT and AI are expected 
to create a more efficient, responsive, and patient-centric 
healthcare system. This approach will be particularly ben-
eficial in remote and underserved areas, where access to 
healthcare services is limited. By leveraging these tech-
nologies, healthcare providers will be empowered to make 
more informed decisions, ultimately improving the quality 
of care and patient satisfaction. Future work will also focus 
on expanding the proposed model to other types of tumors 
and medical conditions. While this study has concentrated 
on brain tumor datasets, the model’s architecture and 
underlying methodologies are adaptable to various medi-
cal imaging tasks. By re-training the model on datasets 
encompassing different tumor types or other medical con-
ditions, the model’s utility could be significantly broadened. 
This approach would allow for a more comprehensive eval-
uation of the model’s performance across diverse medical 
scenarios, ultimately contributing to improved diagnostic 
accuracy and clinical outcomes.
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