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Abstract
Objective To analyze primary angle closure suspect (PACS) patients’ anatomical characteristics of anterior chamber 
configuration, and to establish artificial intelligence (AI)-aided diagnostic system for PACS screening.

Methods A total of 1668 scans of 839 patients were included in this cross-sectional study. The subjects were 
divided into two groups: PACS group and normal group. With anterior segment optical coherence tomography 
scans, the anatomical diversity between two groups was compared, and anterior segment structure features of 
PACS were extracted. Then, AI-aided diagnostic system was constructed, which based different algorithms such as 
classification and regression tree (CART), random forest (RF), logistic regression (LR), VGG-16 and Alexnet. Then the 
diagnostic efficiencies of different algorithms were evaluated, and compared with junior physicians and experienced 
ophthalmologists.

Results RF [sensitivity (Se) = 0.84; specificity (Sp) = 0.92; positive predict value (PPV) = 0.82; negative predict value 
(NPV) = 0.95; area under the curve (AUC) = 0.90] and CART (Se = 0.76, Sp = 0.93, PPV = 0.85, NPV = 0.92, AUC = 0.90) 
showed better performance than LR (Se = 0.68, Sp = 0.91, PPV = 0.79, NPV = 0.90, AUC = 0.86). In convolutional 
neural networks (CNN), Alexnet (Se = 0.83, Sp = 0.95, PPV = 0.92, NPV = 0.87, AUC = 0.85) was better than VGG-16 
(Se = 0.84, Sp = 0.90, PPV = 0.85, NPV = 0.90, AUC = 0.79). The performance of 2 CNN algorithms was better than 
5 junior physicians, and the mean value of diagnostic indicators of 2 CNN algorithm was similar to experienced 
ophthalmologists.

Conclusion PACS patients have distinct anatomical characteristics compared with health controls. AI models for 
PACS screening are reliable and powerful, equivalent to experienced ophthalmologists.

Keywords Primary angle closure suspect, Anatomical characteristics, Machine learning, Convolutional neural 
network, Screening
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Introduction
Glaucoma is the second blindness disease in the world. 
The abnormal anatomical structure is the main cause, 
which leads to outflow of aqueous humor blocked. The 
pathological high intraocular pressure (IOP) brings about 
loss of visual field and irreversible damage of optic nerve 
[1]. In 2013, the number of primary angle closure glau-
coma (PACG) patients reached 23.36 million worldwide. 
It is estimated that there will be 32.04  million PACG 
patients in 2040, 87% of which will be from Asia [2, 3].

The International Society of Geographical and Epide-
miological Ophthalmology (ISGEO) delimits three stages 
of the pathogenesis of PACG: primary angle closure sus-
pect (PACS), primary angle closure (PAC) and PACG 
[4]. PACS shows normal intraocular pressure (IOP), 
non-peripheral synechia, and iridotrabecular contact 
(ITC) ≥ 180° [4]. PAC possessed some pathological ana-
tomical characteristics such as thick cornea [5], pleated 
or bulging iris [6], thick or anteriorly positioned lenses 
[7], narrow or shallow anterior chamber [7]. Those fea-
tures are also present in PACS [8]. Laser perioridectomy 
for patients with PACS can reduce the risk of angle clo-
sure progression [9].

Population screening is beneficial, which can diagnose 
disease and manage patients at the earliest stage [10]. For 
PACS screening, the devices include gonioscopy, ante-
rior segment optical coherence tomography (AS-OCT) 
and others. Gonioscopy is gold standard for diagnosis, 
however the accuracy is affected by the operating of the 
technician and the cooperation of the subjects; strong 
light and excessive pressure may cause false results, and 
the contact between lens and cornea often brings dis-
comfort and risk for patients [11]. AS-OCT is an opti-
cal imaging technique, which is widely used for anterior 
segment screening in clinical practice. The advantages of 
AS-OCT include rapidity, non-invasiveness, high resolu-
tion and high consistency. The diagnostic results showed 
a correlation between AS-OCT and gonioscopy [12]. 
Importantly, when angle changes from wide to narrow, 
AS-OCT is more sensitive than gonioscopy [13]. So AS-
OCT is a promising tool for PACS screening.

In recent years, artificial intelligence (AI) shows tre-
mendous application foreground in auxiliary diagnos-
ing, which meets screening requirements of sensitivity, 
specificity, objectivity, cost, convenience [14, 15]. Several 
studies report deep learning models are expert in angle 
classification, and the diagnostic performance reaches 
professional level [16, 17].

Screening for PACS in a large population is labor-
intensive and inefficient. Inexperienced physicians have 
low diagnostic accuracy, and staff are susceptible to 
environmental and attention influences, resulting in 
erratic results. AI technology can compensate for these 
shortcomings. In this study, to analyze PACS patients’ 

anatomical characteristics of anterior chamber configu-
ration, and to establish AI-aided diagnostic system for 
PACS screening, we enrolled 839 subjects from multiple 
medical centers, with 1668 AS-OCT scans, to compare 
the anatomical characteristics between normal sub-
jects and PACS. Different AI models were trained with 
machine learning algorithms and convolutional neural 
network (CNN) approaches, and their performances to 
screen PACS were compared. Their performances were 
also compared with junior physicians and experienced 
ophthalmologists. Finally, the application prospect of 
these models, the advantages and limitations of the pres-
ent work, were discussed.

Methods
Data preparation
This study adhered to the guidelines of Declaration of 
Helsinki, and approved by the Ethics Committee of the 
Second Affiliated Hospital of Xi’an Medical College. 
Patients who accepted AS-OCT examination in the 
hospital, from September 2019 to January 2022, were 
enrolled. All subjects understood the research content 
and signed informed consent document voluntarily.

Inclusion criteria for normal control group are as fol-
lows: (1) Age > 40 years old; (2) Best corrected visual acu-
ity (BCVA) [Log minimum angle resolution (MAR)] ≤ 0.3; 
(3) Diopter < 3.00 D, binocular difference ≤ 1.00 D; 
(4) 21 ≤ axial length (AL) ≤ 25  mm, binocular differ-
ence ≤ 0.5 mm; (5) IOP < 21 mmHg;

Inclusion criteria for the PACS group are as follows: (1) 
the examined eye didn’t appear clinical symptoms and 
the fellow eye had an episode of primary angle closure; 
(2) there were anatomical features of PACG such as shal-
low anterior chamber and narrow angle; (3) ITC > 180° 
under gonioscopy; (4) there was no peripheral synechia. 
Exclusion criteria are as follows: (1) IOP ≥ 21 mmHg; (2) 
a history of glaucomatous attack with structural damage; 
(3) glaucoma led to visual field loss or fundus damaged; 
(4) some drugs which affected anterior segment struc-
ture or aqueous humor circulation were used or being 
used; (5) patients suffered from diseases affecting ante-
rior segment structure; (6) history of trauma, surgery, 
and laser treatment; (7) poor cooperation with inspec-
tion; (8) AS-OCT image with poor quality. All subjects 
underwent standardized ophthalmic examination includ-
ing LogMAR chart, Auto-Refractor, slitlamp microscope, 
Goldmann applanation tonometer, ophthalmoscope, 
intraocular len-master, ophthalmic ultrasonography, 
automatic perimetry, gonioscope, and AS-OCT.

Image acquisition and data measurement
Operation of AS-OCT was accomplished by the same 
expert technician. Patients sat on the chair in natu-
ral light, whose eyes are opened as much as possible. 
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Operator scanned anterior segment by 16  mm wide-
angle lens under specific mode, and moved focus to 
the center of anterior chamber. When the structure of 
anterior chamber was presented clearly, the operator 
captured image by 1310 nm near-infrared laser. The fre-
quency of volume scanning was 30,000  Hz, range was 
16  mm, depth was 6  mm. lens’ vertical resolution was 
10  μm, and the horizontal resolution was 30  μm. After 
shooting, the image obtained was divided automatically 
into 360° sites according to clockwise direction. The 
scans of 180° and 0° sites were selected to observed, for 
that the influence of eyelid extrusion and personal errors 
was minimal. The quality of every scan must be enough 
for making a diagnosis, before stored with non-destruc-
tive PNG format. The evaluation included three indica-
tors: centered position of shooting; complete structure of 
anterior chamber; clear structure of cornea, sclera, iris, 
chamber angle and lens. The position of the scleral spur 
was determined independently by three ophthalmologist. 
If the result was not certain, it would be handed over to 
the fourth ophthalmologist for judgment. Finally, we use 
the instrument’s software to measure anterior chamber 
parameters: anterior chamber depth (ACD), central cor-
neal thickness (CCT), anterior chamber width (ACW), 
lens dome (LV), the angle of opening distance at 500 μm 
(AOD500), angle opening distance at 750 μm (AOD750), 
corneal recess area at 500 μm (ARA500), corneal recess 
area at 750  μm (ARA750), trabecular inter-iris area at 
500  μm (TISA500), trabecular inter-iris area at 750  μm 
(TISA750), the angle between the trabecular iris at 
500 μm (TIA500), the angle between the trabecular iris at 
750 μm (TIA750).

Design of artificial intelligence (AI) approaches to screen 
PACS
The AS-OCT scan was cut into two halves with mid-
axis of anterior chamber, then each part was mirror-
flipped along the cutting edge to compound complete 
scan. Three machine learning algorithms and two CNN 
approaches were constructed on the 12 parameters and 
the scans to diagnose PACS, respectively. 10-fold cross-
validation or 5-fold cross-validation was applied to evalu-
ate the performance of the AI models. The performance 
of the models were tested, and compared based on sen-
sitivity (Se), specificity (Sp), positive predictive value 
(PPV), negative predictive value (NPV), and area under 
curve (AUC). The proposed methods were implemented 
on the PyTorch platform and trained with a single 
NVIDIA GeForce RTX3090 GUP. The time consumption 
for the training for the model based on machine learning 
algorithms was less than 1  min, and that for the model 
based on CNN approaches was less than 2 h.

1) The classification and regression tree (CART) 
algorithm is applied for decision tree method, which 
the Gini index is adopted for dividing indicators. 
Starting from the root node, the Gini index is 
calculated after all features are divided into the 
training sample. The feature with the smallest Gini 
index value is selected as the optimal bisection 
feature and optimal segmentation point of the 
training set, and the data of this node are divided 
into left and right nodes. The above steps are 
repeated for recursive division. When the number 
of node samples or the Gini index is less than the 
threshold, the classification result is obtained, that is, 
the leaf node [18, 19].

2) The random forest (RF) method belongs to the 
integrated machine learning algorithm, and 
bootstrap sampled method is used for training 
model. Each training sample had multiple features. 
When a node is split, one optimal feature is selected 
as the split feature until it could not be split, and the 
leaf node category is obtained. Multiple intact trees 
are constituted random forest method. The bagging 
method is applied for result prediction, and the most 
categories are the final results [20].

3) Logistic regression (LR) as a classical classification 
method, belongs to log linear model, which is 
expressed by conditional probability distribution. In 
the conditional probability distribution, the random 
variable is the input (i.e., real number), the random 
variable is set as the output with a value of 1 or 0. 
For a given X, the conditional probability value could 
be obtained. X belongs to the category with a large 
probability value. It is used to solve the problem 
of “yes” or “no” in two classifications. It had the 
advantages of simplicity and fast training speed [21].

4) CNN is a kind of neural network with multi-layer 
depth structure in DL algorithm, which can perform 
convolution operation. It uses the existing model 
training network to realize the mapping from 
original input to output label, and is often used to 
analyze visual images. VGG net (visual geometry 
group, VGG) architecture includes 16 layers of 
weight parameters. VGG-16 model is composed 
of 13 convolution layers, 5 pooling layers and 3 
full connection layers. Unified setting: 3 × 3-size 
convolution kernel, step size of 1, same filling, 2 × 2 
maximum pooled nuclei in steps of 2 [22] (Fig. 1).

5) The architecture of Alexnet uses two service 
processors, consisting of five convolution layers 
and three full connection layers. Each convolution 
layer introduces the excitation function relu, which 
accelerates the convergence speed of the model 
and enhances the nonlinear mapping ability. At the 
same time, local corresponding homogenization 
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processing (LRN) is carried out to help model 
generalization. The pool processing adopts the 
maximum pool that can be covered. In the full 
connection layer, dropout method is used to 
ignore some neural nodes to reduce over-fitting 
phenomenon [23] (Fig. 2).

Comparison of the diagnostic ability between physicians 
and digital approaches
The test set of CNN was hided classified labels and 
patient-related information for conducting contest with 
physicians. After same training, 5 junior ophthalmolo-
gists were selected randomly. When each ophthalmolo-
gist made the diagnosis independently, tester recorded 
results. Next, two ophthalmologists who specialized in 
glaucoma more than 10 years were invited to diagnose 

PACS professionally. All results were compared with 
CNN model.

Statistical analysis
The diagnostic results included four parameters: true 
positive (TP), false positive (FP), false negative (FN), true 
negative (TN). Se, Sp, PPV, NPV, and AUC were accord-
ingly calculated (Table 1). GraphPad Prism 8.0 (Graphpad 
software, La Jolla, CA, USA) was applied for statistical 
analyzing. Chi-square test or independent sample t test 
was used for data analysis. When P value < 0.05, the dif-
ference was statistically significant.

Results
Subjects’ characteristics
In this study, a total of 839 subjects from 5 medical 
centers were enrolled, with 1668 OCT scans. Most of 

Fig. 2 Structure of Alexnet

 

Fig. 1 Structure of VGG16
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subjects came from Northwest China, accounting for 
69.60%, and 30.40% came from other regions (Fig.  3). 
The patients’ information: 50 ~ 88 years old; 283 males, 
556 females; 442 cases of right eye, 417 cases of left eye, 
and more details were shown in Table  2. The patients 
were divided into the normal control group and the 
PACS group according to the the criterion mentioned 
above (Fig. 4). There were not any statistical differences 
in age, gender, and IOP pressure between the two groups 

(P > 0.05), but there were significant differences in gender 
and visual acuity (P < 0.05) (Table 2).

Anterior chamber measurement and anatomy analysis
ACD, CCT, ACW, and LV were located in the axial posi-
tion of anterior chamber, these values held stable in all 
sites. AOD500, AOD750, ARA500, ARA750, TISA500, 
TISA750, TIA500, and TIA750 were located in the angle 
of anterior chamber, and these values were mutative in 
different sites. The parameters representing the distance 
of anterior chamber were AOD500 and AOD750. The 
values at 0° site were slightly larger than 180° site, but 
there was no statistical difference (P > 0.05) (Table  3); 
TIA500 and TIA750 represented the angle of anterior 
chamber. The value at 0° site was slightly larger than 180° 
site, and the comparison showed no significant differ-
ence (P > 0.05) (Table  3). The four parameters ARA500, 
ARA750, TISA500, TISA750 indicated the area of ante-
rior chamber. The mean values of the two group were 
equal, with no significant differences (P > 0.05) (Table 3). 
Overall, the values of angle had no statistical difference 
at 180° sites and 0° sites (Table 3). In normal group and 
PACS group, all parameters were statistically different. 
ACD, ACW, AOD500, AOD750, ARA500, ARA750, 
TISA500, TISA750, TIA500, and TIA750 in normal 
group were significantly higher than those in PACS 

Table 1 The mathematical equations used for the evaluation 
metrics

Mathematical euations
Se TP / (TP + FN)
Sp TN / (FP + TN)
PPV TP / (FP + TP)
NPV TN / (FN + TN)
AUC AUC=[∑i∈positive class ranki-M×(M + 1)/2]/(M×N)
Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative 
predictive value; AUC: area under curve; TP: true positive; FN: false negative; 
TN: true negative; FP: false positive; i, the number of the sample after the 
probability scores of all samples were ranked from smallest to largest; M, the 
number of postive sample; N, the number of negative sample

Table 2 Biometric data of subjects in PACS group and normal 
group

Normal Group PACS Group P Value
No. of Patients (eyes) 368 (736) 471 (932) /
No. Of OCT scans 736 932 /
Age (yrs), Mean(SD) 70.38 (9.07) 68.72 (8.51) 0.99
Sex male(%) 148 (40.15%) 135 (28.68%) 0.00

female(%) 220 (59.85%) 336 (71.32%)
Eye right(%) 197 (53.57%) 225 (47.83%) 0.65

left(%) 171 (46.43%) 246 (52.17%)
BCVA (LogMAR), Mean 
(SD)

4.60 (0.28) 4.43 (0.83) 0.00

IOP (mmHg), Mean (SD) 14.88 (3.02) 15.68 (4.39) 0.19
No.: number; SD: standard deviation; /: not available; BCVA: best corrected 
visual acuity; MAR: minimum angle resolution; IOP: intraocular pressure

Fig. 4 The representative AS-OCT images of PACS (upper) and healthy 
control (below)

 

Fig. 3 Most of subjects came from the Northwest China, accounted for 
69.60%, and 30.49% were from other regions
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group (P < 0.001); LV and CCT in the normal control 
group were significantly smaller than those the PACS 
group (P < 0.001) (Table 4). Additionally, all AUC values 
of these parameters were > 0.5, the order from high to 
low was: ACD, LV, TIA750, AOD750, TIA500, AOD500, 
TISA750, ARA750, TISA500, ARA500, ACW and CCT 
(AUC = 0.9217, 0.9003, 0.8995, 0.8927, 0.8859, 0.8853, 
0.8767, 0.8630, 0.8554, 0.8369, 0.6652, 0.6033, respec-
tively) (Table 4; Fig. 5).

Performance of three machine learning algorithms in test 
set
The Se of CART, RF, LR achieved 0.76 (95%CI: 0.68–
0.84), 0.84 (95%CI: 0.80–0.89) and 0.68 (95%CI: 0.61–
0.76), respectively, and the Sp achieved 0.93 (95%CI: 
0.68–0.84), 0.92 (95%CI: 0.86–0.97) and 0.91 (95%CI: 
0.84–0.97), respectively. The PPV of CART, RF, LR 

achieved 0.85 (95%CI: 0.74–0.95), 0.82 (95%CI: 0.70–
0.93) and 0.90 (95%CI: 0.88–0.92), respectively, and the 
NPV achieved 0.92 (95%CI: 0.90–0.95), 0.95 (95%CI: 
0.93–0.96) and 0.90 (95%CI: 0.88–0.92), respectively. 
The AUC of RF was 0.91 (CI: 0.86–0.96), better than that 
of CART (0.90, 95%CI: 0.85–0.92) and that of LR (0.86, 
95%CI: 0.79–0.93) (Table 5) (Figs. 6, 7 and 8). The mean 
of the evaluation indicators of the three models was com-
pared. In the Se comparison, the RF was 0.84, higher than 
that of the other two groups (Table 5). In the Sp compari-
son, the CART had a value of up to 0.93 (Table 5). In the 
comparison of PPV, the CART had a maximum value of 
0.85 (Table 5). In the comparison of NPV, the RF was 0.95 
higher than the other two groups (Table 5). In the AUC 
value comparison, the RF had the highest value of 0.91 
(Table 5).

Table 3 Angle parameters measured by AS-OCT in 180° site and 
0° site

180° 0° P Value
AOD500 0.27 ± 0.18 0.28 ± 0.19 0.39
AOD750 0.38 ± 0.24 0.39 ± 0.25 0.29
ARA500 0.16 ± 0.10 0.16 ± 0.10 0.56
ARA750 0.24 ± 0.15 0.24 ± 0.16 0.87
TISA500 0.12 ± 0.07 0.12 ± 0.08 0.87
TISA750 0.21 ± 0.12 0.21 ± 0.13 0.83
TIA500 18.35 ± 11.09 19.06 ± 11.70 0.16
TIA750 19.20 ± 11.00 19.80 ± 11.14 0.14
AOD500: angle opening distance at 500 μm; AOD750: angle opening distance 
at 750 μm; ARA500: angular recess area at 500 μm; ARA750: angular recess area 
at 750  μm; TISA500: trabecular iris space area at 500  μm; TISA750: trabecular 
iris space area at 750  μm; TIA500: trabecular-iris angle at 500  μm; TIA750: 
trabecular-iris angle at 750 μm

Table 4 Anterior segment parameters measured by AS-OCT in 
PACS and normal control group

Normal 
Group

PACS 
Group

P 
Value

AUC(95%CI)

ACD 2.50 ± 0.38 1.86 ± 0.23 0 0.9217(0.8803–0.9632)
ACW 11.25 ± 0.41 10.96 ± 0.46 0 0.6652(0.5742–0.7563)
LV 0.39 ± 0.31 0.90 ± 0.24 0 0.9003(0.8495–0.9511)
CCT 0.52 ± 0.03 0.53 ± 0.03 0.03 0.6033(0.5129–0.6938)
AOD500 0.33 ± 0.18 0.11 ± 0.09 0 0.8853(0.8509–0.9197)
AOD750 0.46 ± 0.23 0.16 ± 0.11 0 0.8927(0.8601–0.9253)
ARA500 0.18 ± 0.10 0.07 ± 0.06 0 0.8369(0.7909–0.8830)
ARA750 0.29 ± 0.15 0.11 ± 0.08 0 0.8630(0.8231–0.9030)
TISA500 0.14 ± 0.07 0.06 ± 0.04 0 0.8554(0.8150–0.8958)
TISA750 0.24 ± 0.12 0.09 ± 0.06 0 0.8767(0.8409–0.9125)
TIA500 22.18 ± 10.42 7.83 ± 6.34 0 0.8859(0.8495–0.9223)
TIA750 22.91 ± 10.12 8.49 ± 5.44 0 0.8995(0.8674–0.9316)
AUC: area under the curve; CI: confidence interval; CCT: central corneal 
thickness; ACD: anterior chamber depth; ACW: anterior chamber width: LV: lens 
vault; AOD500: angle opening distance at 500  μm; AOD750: angle opening 
distance at 750 μm; ARA500: angular recess area at 500 μm; ARA750: angular 
recess area at 750 μm; TISA500: trabecular iris space area at 500 μm; TISA750: 
trabecular iris space area at 750  μm; TIA500: trabecular-iris angle at 500  μm; 
TIA750: trabecular-iris angle at 750 μm

Table 5 Se, Sp, PPV, NPV, AUC of traditional machine learning 
algorithms

Se (95%CI) Sp 
(95%CI)

PPV 
(95%CI)

NPV 
(95%CI)

AUC 
(95%CI)

CART 0.76 (0.68,0.84) 0.93 
(0.87,0.99)

0.85 
(0.74,0.95)

0.92 
(0.90,0.95)

0.90 
(0.85,0.92)

RF 0.84(0.80,0.89) 0.92 
(0.86,0.97)

0.82 
(0.70,0.93)

0.95 
(0.93,0.96)

0.91 
(0.86,0.96)

LR 0.68(0.61,0.76) 0.91 
(0.84,0.97)

0.79 
(0.66,0.92)

0.90 
(0.88,0.92)

0.86 
(0.79,0.93)

Se: sensitivity; Sp: Specificity; PPV: positive predict value; NPV: negative predict 
value; AUC: area under the curve; CART: classification and regression tree; RF: 
Random forest; LR: logistic regression

Fig. 5 The AUC values of different chamber parameters. The order from 
high to low: ACD, LV, TIA750, AOD750, TIA500, AOD500, TISA750, ARA750, 
TISA500, ARA500, ACW, CCT. AUC: area under the curve; ACD: anterior 
chamber depth; ACW: anterior chamber width: AOD500: angle opening 
distance at 500 μm; AOD750: angle opening distance at 750 μm; ARA500: 
angular recess area at 500 μm; ARA750: angular recess area at 750 μm; CCT: 
central corneal thickness; LV: lens vault; TISA500: trabecular iris space area 
at 500 μm; TISA750: trabecular iris space area at 750 μm; TIA500: trabecu-
lar-iris angle at 500 μm; TIA750: trabecular-iris angle at 750 μm
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Performance of two CNN approaches in validation set
The Se of Alexnet and the Se of VGG-16 were similar, 
which achieved 0.83 (95%CI: 0.74–0.93) and 0.84 (95%CI: 
0.74–0.94), respectively. But Sp of Alexnet was better 
than that of VGG-16, the values reached 0.95 (95%CI: 
0.93–0.97), compared with (0.90, 95%CI: 0.85–0.95). 
The NPV of Alexnet and VGG-16 achieved 0.90 (95%CI: 
0.85–0.95) and 0.90 (95%CI: 0.85–0.96), respectively, 
which showed no significant differences. But for PPV, 
Alexnet (0.92, 0.89–0.95) was better than VGG-16 (0.85, 
95%CI: 0.80–0.90). AUC of Alexnet was 0.85 (95%CI: 
0.77–0.92), far better than that of VGG-16 (0.79, 95%CI: 
0.74–0.84) (Table 6; Fig. 9).

Comparation of the diagnostic ability between physicians 
with different experience and different AI models
The Se of junior physicians was 0.71 (95%CI: 0.59–0.85), 
and the Sp was 0.70 (95%CI: 0.61–0.80), and the PPV 
was 0.69 (95%CI: 0.54–0.84), and the NPV was 0.71 
(95%CI: 0.55–0.87), and AUC was 0.70 (95%CI: 0.62–
0.78) (Table 7). These parameters were much inferior to 
AI models. The mean values of all indexes in the junior 
physician group were lower than those of the two CNN 
models, and the difference was statistically significant 
(P < 0.05). Comparing the ophthalmologist and the AI 
models, it was found: the AUC of ophthalmologist was 
slightly higher than VGG-16, while the Sp, PPV, and NPV 

Fig. 8 The AUC value of LR

 

Fig. 7 The AUC value of RF

 

Fig. 6 The AUC value of CART

 



Page 8 of 12Fu et al. BMC Medical Informatics and Decision Making          (2024) 24:251 

were far lower than those of VGG-16. Additionally, the 
Se of ophthalmologist was slightly higher than Alexnet, 
while the Sp, PPV and NPV were far lower than those of 
Alexnet (Table 8).

Discussion
During PACG progression, in the stage of PACS, laser 
iridotomy can prevent seizures of disease effectively and 
protect the optic nerve to the greatest extent [24]. In 
addition, some patients with high risk of PAC present 
with chronic episodes and progressive vision loss [25]. 
The visual fate of these patients depends on the timing 
of diagnosis and treatment. Therefore, early screening for 
high-risk patients is critical. Screening requires easy-to-
use instruments and reliable tools for diagnosing. Goni-
oscopy is a relatively subjective technique, which requires 
considerable expertise and patient’s cooperation [26]. 
Ultrasound biomicroscopy (UBM) probes anterior seg-
ment structures by transmitting and receiving high-fre-
quency ultrasonic pulses; the pressure on the eye caused 
by the UBM probe, and the water in cup can cause subtle 
deformation of the anterior segment tissue, which may 

Table 6 Se, Sp, PPV, NPV, AUC of CNN algorithms
Se Sp PPV NPV AUC

VGG-16 1 0.83 0.93 0.88 0.9 0.73
2 0.94 0.86 0.81 0.96 0.79
3 0.89 0.86 0.8 0.92 0.82
4 0.83 0.93 0.88 0.9 0.82
5 0.72 0.93 0.87 0.84 0.79
M
(95%CI)

0.84 (0.74,0.94) 0.90 (0.85,0.95) 0.85 (0.80,0.90) 0.90 (0.85,0.96) 0.79 (0.74,0.84)

Alexnet 1 0.89 0.93 0.89 0.93 0.81
2 0.89 0.93 0.89 0.93 0.94
3 0.89 0.96 0.94 0.93 0.8
4 0.72 0.96 0.93 0.84 0.86
5 0.78 0.96 0.93 0.87 0.82
M
(95%CI)

0.83
(0.74,0.93)

0.95
(0.93,0.97)

0.92
(0.89,0.95)

0.90
(0.85,0.95)

0.85
(0.77,0.92)

Se: sensitivity; Sp: Specificity; PPV: positive predict value; NPV: negative predict value; AUC: area under the curve; CNN: convolutional neural network; VGG-16: Visual 
Geometry Group-16

Table 7 Performance of junior physicians compared with CNN 
algorithms

Se Sp PPV NPV AUC
Physician 1 0.73 0.75 0.76 0.72 0.74
Physician 2 0.89 0.72 0.64 0.92 0.78
Physician 3 0.68 0.79 0.84 0.6 0.72
Physician 4 0.63 0.65 0.68 0.6 0.64
Physician 5 0.65 0.6 0.52 0.72 0.62
M
(95%CI)

0.71
(0.59,0.85)

0.70
(0.61,0.80)

0.69
(0.54,0.84)

0.71
(0.55,0.87)

0.70
(0.62,0.78)

P1 Value 0.02 0.01 0.06 0.02 0.08
P2 Value 0.03 0 0.01 0.02 0.01
CNN: convolutional neural network; Se: sensitivity; Sp: Specificity; PPV: 
positive predict value; NPV: negative predict value; AUC: area under the curve; 
CNN: convolutional neural network; VGG-16: Visual Geometry Group-16. 
P1:Comparison between junior physician and VGG-16; P2: Comparison between 
junior physician and Alexnet

Table 8 Performance of expert ophthalmologists
Se Sp PPV NPV AUC

Expert ophthalmologists 1 0.88 0.8 0.81 0.87 0.84
2 0.8 0.8 0.8 0.8 0.8
M 0.84 0.8 0.81 0.84 0.82

Fig. 9 The AUC value of VGG-16 (left) and Alexnet (right)
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lead to a false-negative result of widening of the angle; 
additionally, due to the risk of infection, UBM is contra-
indicated in patients who are difficult to cooperate, suffer 
from open trauma, or postoperative [27]. AS-OCT may 
be a promising strategy to conduct screening in a large 
population, because its superiority such as rapid, non-
invasive and high resolution [28]. So in the current work, 
AI models were established and tested based on AS-OCT 
images. AS shown in Fig.  10. first, general information 
and anterior chamber parameters were analyzed. After 
that, three machine learning models were built accord-
ing to the anterior chamber parameters. Then, two CNN 
models were established based on the anterior chamber 
images. Finally, the optimal model was compared with 
the clinician’s diagnostic ability.

The majority of subjects in the dataset were from 
Shaanxi Province, China. Most of them are women, and 
over 50 years old. This is consistent with the conclusion 
of previous epidemiological studies in China: incidence 
of PACG is gradually increased in people over 50 years 
old, and women have a higher incidence [29, 30]. Patients 
with better vision and without clinical symptoms are 
more likely to be submerged in healthy population, so we 
selected the majority of patients with normal vision and 
IOP in the dataset.

The parameters of anterior chamber in PACS group 
showed different characteristics from those in the normal 
group. ACD and ACW in the PACS group were smaller 
than those in the normal group, which were similar to 
previous reports [31, 32]. LV is a comprehensive index 
representing the degree of lens thickening or forward 
relative to scleral spur, and it is an independent predic-
tor of pupillary block [33]. This study showed LV of PACS 
patients was significantly larger than which of healthy 
population. PACS group was characterized by a front 
lens, which is consistent with a previous report [32]. 
Additionally, it was revealed that CCT of PACS group 
was slightly larger than normal control group, which 
also aggravated the crowding of anterior chamber. The 
angle parameters such as AOD500, AOD750, ARA500, 
ARA750, TISA500, TISA750, TIA500, and TIA750 in the 
PACS group were smaller than those in the normal con-
trol group, which could probably be resulted from lens 
advancement, pupillary blocking, and iris bulging [34]. 
In addition, the difference between the two groups at the 
parameters at 750 μm was greater than at 500 μm, which 
is consistent with the phenomenon observed by a previ-
ous study [35].

According to ROC, all of the 12 parameters are mean-
ingful for disease diagnosis. ACD and LV have the highest 

Fig. 10 Overall framework of the proposed approach
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values. LV is regarded as the most valuable indicator for 
distinguishing mature cataract and angle closure in Asia 
[36, 37]. ACD is the most accessible indicator, many stud-
ies have used it to establish threshold standards for angle 
closure risk [38, 39]. The parameters reflecting angle and 
distance have greater diagnostic value, while the param-
eters reflecting area have a slightly worse diagnostic 
value. A previous study reports that the AUC values of 
anterior chamber parameters, from high to low, were: 
AOD750, AOD500, TISA750, ARA750, TISA500 [40], 
and the order is completely consistent with our study. 
Its indicates the angle parameters are stable and repeat-
able in diagnosing angle closure. The diagnostic value of 
area is not as strong as distance and angle. Because the 
degree of iris moving forward is affected by morphology 
and attachment points of root. When angle is narrow or 
closed, the deformation of corner has a buffer space, and 
the narrowing of the area doesn’t happen immediately 
[41]. Parameters at 750  μm generally have higher diag-
nostic value than 500 μm because they are more sensitive 
and less affected by iris surface morphology. Compared 
with others, the significance of ACW and CCT is rela-
tively weak in diagnosing PACS, which is consistent with 
a previous report [42].

Recently, a study reports that three machine learning 
models were established by anterior chamber param-
eters for the diagnosis of PACS, and the AUC reached 
a high level, but Se and Sp were lower than 0.8 [43]. 
Those weren’t qualified for population screening, prob-
ably because three mechanisms of angle-closure were 
included (pupillary block, plateau iris configuration and 
thick peripheral iris roll). Afterwards, the team found 
those models were more suitable for populations with 
pupillary block [44]. In this study, PACS group was 
mainly composed of angle-closure cases with pupillary 
block. The value of Sp were better than these reports 
mentioned above [43, 44], but the value of Se and AUC 
were inferior. The reason might be the influence of iris 
root on anterior chamber angle was not considered in 
light or dark environments. In this study, we found LR 
cannot handle multiple parameters well, and the diagnos-
tic ability is poor. CART and RF showed their own out-
standing merit.

In these models, we found RF had high value of Se, 
NPV, and AUC, and CART had high value of Sp and 
PPV. In practically screening, missed diagnosis rate is a 
more serious error than misdiagnosis rate, and the goal 
of model training is to improve diagnostic sensitivity and 
avoid patients being missed [45]. In addition, the compre-
hensive diagnostic ability of RF is stronger. Therefore, RF 
is the best candidate of parametric models. A previous 
study established a VGG-16 model with 39,936 scans of 
anterior segment images to diagnose angle closure, and 
the AUC was 0.85, sensitivity was 0.83, and specificity 

was 0.87 [46]. Compared with PAC or PACG, the ana-
tomical structure of PACS is closer to normal anterior 
chamber, so diagnosis of PACS is more difficult. How-
ever, in this study, the diagnostic performance of VGG-
16 and Alexnet is better than the above study. Although 
VGG-16 has slight advantage in NPV and Se, Alexnet has 
significant advantage in Sp, PPV, and AUC. Generally, 
the Se increased, the Sp decreased. The threshold param-
eters of models should to be customized according to dif-
ferent scenarios. we should program models to ensure 
the diseases are not missed, it will not cause too much 
false negative cases [47]. However, VGG-16 showed high 
false-positive rate, it may bring patients’ panic, suspicion, 
and disgust for screening, it also caused waste of medical 
resources, which will make the screening effect reduced 
greatly. In contrast, in our opinion, Alexnet is more con-
ducive for promotion and implementation of screening 
projects.

It is reported that, ResNet-50 surpasses all scoring phy-
sicians in accuracy of diagnosing, and surpasses all oph-
thalmologists who as reference standard in repeatability 
[48]. This study reached similar conclusions. Junior doc-
tors’ performances were inferior than AI model in diag-
nostic indicators. We compared diagnostic results of 
ophthalmologists with AI, and found VGG-16 and 
Alexnet reached the level of ophthalmologists in diagnos-
tic capabilities, which can be a reliable auxiliary tools for 
PACS screening and diagnosis, especially in community. 
Our findings also suggest that, deep learning may also be 
a promising teaching tool to promote the diagnostic abil-
ity of young physicians.

This study has some limitations. This study was used 
for angle screening of PACG high-risk groups, without 
considering interpretation of fundus and visual field. 
The positive cases should be referred to ophthalmology 
hospital for further diagnosis. The number of patients is 
also limited, and most of whom came from Shaanxi prov-
ince, and more patients from medical centers of different 
regions should be enrolled, which will further validate the 
values of these models. The suitable strategies to screen 
the subjects with plateau iris configuration and thick 
peripheral iris roll are also necessary to be explored in the 
future. More extensive, multi-type, and multi-center data 
will be included in frame of AI models. From a technical 
point of view, data augmentation techniques like CutMix, 
MixUp, and AutoAugment may help improve the perfor-
mance of CNN models, which may be explored in the fol-
lowing work. Increasing studies have indicated that other 
CNN architectures, such as EfficientNet, ResNet and 
MixNet, have their respective advantages in making diag-
nosis based on medical images [49, 50]. These approaches 
are also needed to be compared in the following work.
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Conclusion
In this study, we provide an early screening strategy for 
PACS based on AS-OCT images. AI-assisted diagnosis of 
PACS is credible, and it is expected to become a clinical 
auxiliary tool for early glaucoma screening in the future. 
Additionally, deep learning may improve the diagnostic 
ability of young physicians.
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