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tasks and can improve autonomously based on data. In 
recent years, advances in natural language processing 
(NLP) have facilitated the extraction of valuable informa-
tion from large amounts of unstructured data, such as 
electronic medical records and clinical research data [1, 
2]. Major innovations in this field include large language 
models (LLMs) and multimodal models (MLLMs) [3]. 
The former can analyze and generate text in natural lan-
guages, while the latter combine text, images, and other 
types of data to provide richer and more complex analy-
ses. For example, AI can be used to detect infectious dis-
ease outbreaks early by analyzing data from sources such 
as surveillance reports and social media, thus providing 
early warning systems that enable timely and targeted 
responses [4]. Moreover, AI chatbots such as ChatGPT, 
are increasingly being used to assist public health prac-
titioners in co-designing mathematical transmission 
models, enhancing strategies for infection control and 
outbreak management [5]. ML is a sub-discipline of AI 
that focuses on using algorithms to analyze data and 
make predictions or decisions based on it. For example, 
ML can be used to analyze antimicrobial prescribing 
patterns and identify optimal practices, thus helping to 
slow the development of antimicrobial resistance. These 
tools can also be used to tailor treatment regimens to 
patient and pathogen characteristics, maximizing treat-
ment efficacy and reducing the risk of resistance [6, 7]. 

Main text
The modern era is characterized by an explosion of com-
putational innovations that are revolutionizing every 
aspect of our lives, including healthcare. In the face of the 
growing challenges posed by infectious diseases and anti-
microbial resistance, it is critical to take full advantage of 
the transformational potential of computational tools to 
reform and improve infection control strategies. Infec-
tious diseases place a significant burden on healthcare 
systems around the world. Despite medical advances, we 
are continually engaged in a battle against the emergence 
of new pathogens and the rapid spread of already known 
infectious agents. In addition, growing antimicrobial 
resistance threatens to render some of our most valuable 
treatments ineffective. These challenges require an inno-
vative and enhanced approach to surveillance, preven-
tion, and infection control.

In this context, computational tools such as Artificial 
Intelligence (AI), Machine Learning (ML) and Big Data 
Analytics (BDA) are emerging as crucial allies. AI refers 
to systems that simulate human intelligence to perform 
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Abstract
This paper explores the potential of artificial intelligence, machine learning, and big data analytics in revolutionizing 
infection control. It addresses the challenges and innovative approaches in combating infectious diseases and 
antimicrobial resistance, emphasizing the critical role of interdisciplinary collaboration, ethical data practices, and 
integration of advanced computational tools in modern healthcare.
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Studies have shown that ML models can predict antibi-
otic resistance based on patient data and local micro-
bial trends, leading to more personalized and effective 
treatments [8]. BDA refers to the use of advanced tech-
niques to collect, process, and analyze large volumes of 
data from a variety of sources. By combining different 
types of data, BDA enables the development of more 
accurate predictive models and a better understanding of 
the mechanisms underlying the spread of infections and 
the emergence of antimicrobial resistance. A significant 
example is the use of genomic data with epidemiologi-
cal information, which has enabled researchers to trace 
the origins and transmission routes of various pathogens, 
providing crucial information for epidemic control [9]. 
The volume of Internet of Things (IoT)-generated data is 
considered a major source of big data and in healthcare 
also offers promising opportunities for infection control 
[10]. IoT devices can continuously monitor patient health 
parameters, environmental conditions, and equipment 
status, providing real-time data that can be analyzed to 
detect early signs of infection and prevent the spread of 
diseases within healthcare facilities [11]. Additionally, 
blockchain technology holds potential for improving data 
security and integrity in infection control efforts. By pro-
viding a decentralized and tamper-proof ledger for health 
data, blockchain can ensure the accuracy and trust-
worthiness of data used in computational analyses and 
decision-making processes [12]. In summary, while AI 
and ML provide predictive analytics and pattern recogni-
tion capabilities, BDA provides the necessary context for 
understanding and interpreting such analytics on a large 
scale.

Despite considerable potential, the implementation and 
evaluation of these computational methods in infection 
control present significant challenges that deserve careful 
consideration. A major problem is clinical validation and 
generalizability. Many AI and ML models are developed 
and validated on specific datasets, often from individual 
institutions, which limits their applicability in different 
clinical settings and populations [13]. This lack of gener-
alizability can lead to models that work well in one setting 
but fail in another, with the risk of suboptimal results for 
different patient groups [14]. The issue of interpretabil-
ity and transparency is equally crucial. Advanced mod-
els, particularly those based on deep neural networks, 
often operate as “black boxes” [15, 16], making it difficult 
for clinicians to understand the reasoning behind their 
predictions or recommendations. In infection control, 
where decisions can have vital consequences, the abil-
ity to interpret these models is critical to building trust 
and ensuring widespread adoption. Clinicians must be 
able to understand and explain how these tools arrive at 
their conclusions, especially in high-risk scenarios. How-
ever, a significant challenge is the gap between healthcare 

professionals and experts in information technology and 
data analytics. To fully harness the power of these tools, 
we need to foster multidisciplinary collaborations and 
improve mutual understanding between these fields. 
Bringing together clinicians, data scientists, and com-
putational experts is essential to successfully integrate 
these technologies into healthcare [17]. Bias and equity 
are additional concerns arising from the fragmented 
and incomplete nature of health data. AI and ML mod-
els trained on biased data may unintentionally perpetu-
ate or even exacerbate existing disparities in healthcare 
[18, 19]. For example, models that do not account for 
socioeconomic or racial differences may produce skewed 
outcomes, potentially leading to inequitable treatments 
for different groups of patients. This is of particular con-
cern in infection control, where health disparities could 
worsen if these biases are not adequately addressed dur-
ing the development and dissemination of these models. 
Another challenge is ensuring data quality and represen-
tativeness. Infection control activities often rely on data 
from a variety of sources, including electronic health 
records [20], surveillance systems and laboratory data 
[21]. However, these sources often have inconsistencies, 
incompleteness or structural inadequacy, complicating 
their use in computational analysis for the development 
of reliable models. Integrating these advanced tools into 
existing clinical workflows introduces significant orga-
nizational challenges, including the need for alignment 
between technology and healthcare practices, which is 
critical for effective implementation [22, 23].  Finally, it is 
important to consider ethical and regulatory aspects. The 
use of AI and ML in infection control raises important 
questions about data privacy, consent, and potential 
misuse of sensitive health information [24, 25]. Robust 
data governance frameworks are needed to ensure the 
protection of patient privacy while enabling meaningful 
research and innovation. These frameworks must strike a 
delicate balance between facilitating the advancement of 
AI and ML technologies and protecting individual rights.

The convergence of computational science and infec-
tion control represents an exciting and promising fron-
tier for public health. As we move toward a future in 
which advanced digital tools become an integral part of 
our prevention and control strategies, it is necessary to 
maintain a balanced approach. Technological innova-
tion must go hand in hand with ethical considerations, 
interdisciplinary collaboration, and an ongoing commit-
ment to improving the quality and accessibility of health 
data. Only through this holistic approach can we hope 
to take full advantage of the transformative potential of 
these technologies, creating more responsive, effective, 
and resilient infection control systems. Success in this 
area will not only improve our ability to address current 
challenges, but also enable us to anticipate and mitigate 
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future threats to global health. As we advance into this 
new era of technology-enhanced infection control, let us 
remember that our ultimate goal remains unchanged: to 
protect and improve human health. Computational inno-
vations are powerful tools in this mission, but it is the 
wisdom, empathy and dedication of healthcare workers 
that will continue to drive progress in this crucial field.
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