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Abstract 

Background  Modeling patient data, particularly electronic health records (EHR), is one of the major focuses 
of machine learning studies in healthcare, as these records provide clinicians with valuable information that can 
potentially assist them in disease diagnosis and decision-making.

Methods  In this study, we present a multi-level graph-based framework called MedMGF, which models both patient 
medical profiles extracted from EHR data and their relationship network of health profiles in a single architecture. The 
medical profiles consist of several layers of data embedding derived from interval records obtained during hospitaliza‑
tion, and the patient-patient network is created by measuring the similarities between these profiles. We also propose 
a modification to the Focal Loss (FL) function to improve classification performance in imbalanced datasets with‑
out the need to imputate the data. MedMGF’s performance was evaluated against several Graphical Convolutional 
Network (GCN) baseline models implemented with Binary Cross Entropy (BCE), FL, class balancing parameter α , 
and Synthetic Minority Oversampling Technique (SMOTE).

Results  Our proposed framework achieved high classification performance (AUC: 0.8098, ACC: 0.7503, SEN: 0.8750, 
SPE: 0.7445, NPV: 0.9923, PPV: 0.1367) on an extreme imbalanced pediatric sepsis dataset (n=3,014, imbalance ratio 
of 0.047). It yielded a classification improvement of 3.81% for AUC, 15% for SEN compared to the baseline GCN+α FL 
(AUC: 0.7717, ACC: 0.8144, SEN: 0.7250, SPE: 0.8185, PPV: 0.1559, NPV: 0.9847), and an improvement of 5.88% in AUC 
and 22.5% compared to GCN+FL+SMOTE (AUC: 0.7510, ACC: 0.8431, SEN: 0.6500, SPE: 0.8520, PPV: 0.1688, NPV: 
0.9814). It also showed a classification improvement of 3.86% for AUC, 15% for SEN compared to the baseline GCN+α
BCE (AUC: 0.7712, ACC: 0.8133, SEN: 0.7250, SPE: 0.8173, PPV: 0.1551, NPV: 0.9847), and an improvement of 14.33% 
in AUC and 27.5% in comparison to GCN+BCE+SMOTE (AUC: 0.6665, ACC: 0.7271, SEN: 0.6000, SPE: 0.7329, PPV: 0.0941, 
NPV: 0.9754).

Conclusion  When compared to all baseline models, MedMGF achieved the highest SEN and AUC results, demon‑
strating the potential for several healthcare applications.
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Introduction
Making an accurate medical diagnosis for a patient 
requires consideration of several aspects of clinical 
information and evidence. This includes reviewing the 
patient’s medical history, performing physical examina-
tions, ordering tests, interpreting test results, and con-
sulting with other professionals if necessary. The data 
collected during this process are mainly stored as tabular 
Electronic health records (EHR) (e.g., vital signs, labo-
ratory results), high-frequency physiologic waveforms 
(e.g., electrocardiogram), imaging (e.g., radiograph), or 
other forms of medical data. Using these data, clinicians 
are able to monitor the patient’s disease progression and 
make informed treatment decisions. As it contains a large 
volume of rich clinical information, EHR can potentially 
be used to support clinical research as well [1, 2]. The use 
of EHR as a data source for Machine learning (ML) stud-
ies has increased significantly over the past few years, and 
modeling EHR data has been one of the major focuses of 
ML applications in the healthcare sector [3, 4].

The concept of Patient similarity network (PSN) is an 
emerging research field within the context of precision 
medicine [5, 6]. The diagnosis made using this network 
is based on the premise that if patients’ medical data are 
similar in several aspects, then their clinical progress 
should be similar as well. It is hypothesized that a com-
mon disease trajectory resulting in a specific outcome 
may establish a similarity between patients, thereby mak-
ing the insight gained using PSN more reliable and robust 
[7]. Recent advances in ML techniques have led to the 
development of a variety methods to construct PSN. The 
International classification of diseases (ICD) was often 
utilized to establish connections between patients [8, 9]. 
In some instances, medical inputs are converted into fea-
ture vectors and the distance between these vectors will 
determine the degree of similarity between them [7, 10]. 
Studies usually treat the medical inputs as a flat structure 
or embed them within several layers of neural networks 
without preserving their structure or interpretation. The 
latter often requires a separate training process to create 
the medical embedding before they are introduced into 
the PSN for further training, which could result in an 
increase in training costs.

In this work, we propose Medical Multilevel Graph-
based Framework (MedMGF), a framework that is capa-
ble of modeling medical data, as well as representing the 
patient’s individual medical profile and their similarity to 
other patients within a single architecture. Depending on 
data availability, the medical profile can be constructed 
from EHR, physiologic waveforms, imaging data, or a 
combination thereof. In this study, we demonstrate the 
feasibility of the framework using EHR data. In contrast 
to most studies which treat EHR as a flat structure, we 

preserve its natural hierarchical structure and provide an 
intuitive way to describe it by incorporating interval data 
from multiple hospitalizations. A multi-level embed-
ding process allows the medical inputs to pass directly 
through the PSN, where embedding and PSN are opti-
mized through a single training procedure. We also pro-
pose a modification of the Focal Loss (FL, [11]) function 
to improve classification performance on imbalanced 
datasets without having to imputate the data, thus reduc-
ing the amount of preprocessing needed. In general, 
MedMGF encapsulates the following characteristics: (1) 
generality and modality, (2) multi-purpose, (3) intuitive 
interpretation, and (4) minimal data requirements.

In this study, our objective is to present the framework 
architecture and feasibility of MedMGF on an imbal-
anced pediatric sepsis EHR datasets and evaluate its 
classification performance against several Graph Con-
volutional Network (GCN, [12]) baselines implemented 
with Binary Cross Entropy (BCE, [13]), FL, class balanc-
ing parameter α , and Synthetic Minority Over-sampling 
Technique (SMOTE, [14]).

Related works
Electronic health record modeling
The use of ML in modelling EHR has become more 
prevalent as EHR contains rich clinical information that 
can potentially assist clinicians in making diagnosis and 
treatment decisions. Although most studies model the 
EHR in a flat manner [15, 16], exploring its structural 
aspects may reveal new possibilities for enhancing the 
model. In particular, Choi et  al. developed Multi-layer 
Representation Learning for Medical concepts (Med-
2Vec, [17]), and continue to explore this approach with 
Graph-based Attention Model (GRAM, [18]) and Multi-
level Medical Embedding (MiME, [19]). By leveraging 
the parent-child relationship on the knowledge-based 
directed graph, GRAM can learn the representation of 
medical concepts (e.g., ICD codes) with attention mecha-
nisms and predict the next hospital visit’s diagnosis code. 
Based on GRAM, Li et  al. developed Multimodal Diag-
nosis Prediction model (MDP, [20]) that allows clini-
cal data to be integrated into the framework. Although 
clinical data from EHR can be weighed dynamically to 
highlight the most important features, the data is still 
processed in a flat manner. With MiME, Choi et al. con-
structed a hierarchical structure of EHR data based on 
the relationship between symptoms and treatments, 
where the hospital visit consists of a number of symp-
toms, each corresponding to a number of specific treat-
ments. This influential interaction is encapsulated in the 
patient’s data embedding representation, which is used 
for prediction purposes. The precision-recall area under 
the curve (PR-AUC) for heart failure prediction showed 



Page 3 of 16Nguyen et al. BMC Medical Informatics and Decision Making          (2024) 24:242 	

a 15% improvement compared to the baseline model. As 
most EHR datasets lack the connection between symp-
toms and treatments, MiME may require extensive data 
preprocessing, and EHR data may need to undergo a rig-
orous pre-processing procedure before being mapped to 
MiME. In addition, the current MiME structure may not 
capture all aspects of EHR data, other than the relation-
ship between symptoms and treatments. In light of these 
two drawbacks, we propose MedMGF, a framework for 
modeling EHR data that can capture all aspects of EHR 
efficiently and effectively with minimal data preprocess-
ing required.

Patient similarity network
There are several approaches to constructing a PSN using 
ICD codes [8, 9]. One of the approaches is to create a 
bipartite graph to connect patients to their correspond-
ing ICDs in a similar manner to what Lu and Uddin did 
in 2021. This bipartite graph is then converted into a 
weighted PSN, in which the weight of the edge is deter-
mined by the number of mutual ICD codes between the 
patients [9]. In this approach, the number of mutual ICD 
codes used to connect patients is highly dependent upon 
cohort and ICD code selection. In Rouge et  al.’s study, 
an inverse document frequency measured vector of 674 
ICD10 codes was constructed for each patient. A cosine 
similarity between these vectors was calculated for all 
possible pairs of patients. The PSN was then constructed 
using a pre-defined threshold on the calculated distances 
[8]. As the number of patients increases, it becomes more 
difficult to process the large ICD matrix computationally. 
In other cases, the medical input is mapped into feature 
vectors, and distance metrics (e.g. Euclidean, Cosine, 
Manhattan) are applied to determine the degree of simi-
larity [8, 10]. In the work of Navaz et  al., two similarity 
matrices were calculated separately for static data (e.g. 
age) and dynamic data (e.g. vital signs). These matrixes 
were then fused together to construct the PSN [7].

Focal loss function
FL function was first introduced by Lin et al. in 2018 [11]. 
On the training data D = {(xi, yi)}Ni  independently drawn 
from an i.i.d probability distribution, the FL for a binary 
classification problem is defined as follows:

where p is the predicted probability and γ ≥ 0 is a user-
defined hyperparameter to control the rate at which easy 
samples are down-weighted. It can be observed that FL 

(1)LFL(pt) = −(1− pt)
γ log(pt)

(2)pt =
p, if y = 1

1− p, otherwise

reduces to the Cross Entropy (CE) when γ = 0 . FL intro-
duces a modulating factor (1− pt)

γ to the CE to dynami-
cally adjust the loss based on the difficulty of each sample. 
This factor is higher for misclassified samples and lower 
for well-classified samples. Thus, FL reduces the impact 
of the dominant class by focusing on difficult samples. 
Researchers typically perform cross-validation to find 
the optimal value of gamma [11, 21]. In a strategic policy 
proposed by Mukhoti et al., a higher value of γ would be 
allocated to predicted probabilities, which is less than a 
pre-calculated threshold and a lower value of γ for prob-
abilities greater than the threshold [22]. The results of 
their work showed that the dynamic value of γ could 
improve FL calibration. In another work, Ghosh et  al. 
proposed to dynamically adjusted γ based on its value 
from the previous steps [23]. Either way, the classification 
performance is strongly influenced by and dependent on 
the value of γ . Considering this dependence, we propose 
a modification that allows us to dynamically adjust the 
modulating factor in a similar manner without relying on 
the hyperparameter γ.

Methods
The framework consists of three main components: the 
patient’s medical profile, which represents the health data 
extracted from the EHR data, the patient-patient net-
work, which represents the similarity among the patients, 
based on their profiles, and the modification of FL func-
tion. An individual’s medical profile is constructed based 
on a hierarchical representation that embeds several lay-
ers of information derived from interval data collected 
during hospitalizations and medical modules. In this 
study, we present the medical representation for EHR 
data. The overall framework is illustrated in Fig.  1. The 
notation for patient’s medical profile and patient-patient 
network are listed in Tables 1 and 2.

Patient’s medical profile
Suppose that an individual’s medical profile for a spe-
cific disease contains health data from a sequence of 
hospitalizations 

(

V(1),V(2), ...,V(i), ...,V(T )

)

 , whereat each 
hospitalization V(i) , a sequence of medical data 
(

D(1),D(2), ...,D(j), ...,D(t)
)

 is entered at time intervals 
(

�1,�2, ...,�j , ...,�t

)

 , with �j being the time interval 
between D(j) and D(j−1) . Medical data D(j) collected at 
interval j-th includes medical module from EHR data 
S
(j)
E  , imaging data S(j)

I  , signal data S(j)
S  , or a combina-

tion thereof, then D(j) = ⊕
(

S
(j)
E ,S

(j)
I ,S

(j)
S , ...

)

 , where 
⊕(.) represents the CONCAT data aggregation func-
tion. Let d(j) be the vector representation of D(j) at j-th 
interval, v

(i) be a vector representation of i-th 
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hospitalization V(i) , and s(j)E , s
(j)
I , s

(j)
S  be the vector repre-

sentation of S(j)
E ,S

(j)
I ,S

(j)
S  , then d(j) = ⊕

(

s
(j)
E , s

(j)
I , s

(j)
S , ...

)

 
and v(i) = ⊕

(

d
(1),d(2), ...,d(j), ...,d(t)

)

∈ R
t×z , where z 

represents the number of the medical modules. We 
define h to be the vector presentation of a patient’s 
medical profile, then h = ⊕

(

v
(1), v(2), ..., v(i), ..., v(T )

)

.
The interval sequence (�1,�2...,�t) represents the 

irregular periodicity of the hospital data, where �i can 
vary to match the requirement of the desired analysis. 
For this study, we fix �1 = �2 = ... = �t = � so that the 
medical data will be extracted at a fixed interval � . Dif-
ferent variables are collected at different intervals, result-
ing in three possible scenarios: no value is recorded, one 
value is recorded, or multiple values are recorded. We 
extract the variables value of an interval as follows: if no 
data are available for interval j-th, the value from the pre-
vious interval will be carried forward. If more than one 

Fig. 1  The MedMGF framework consists of several layers of medical data embedding

Table 1  Notation for patient’s medical profile

Notation Definition

y A vector represent patient’s outcome

h A vector represent patient’s medical profile

D(j) A patient’s medical data collected at j-th interval

V(i) A patient’s i-th hospitalization

d
(j) ∈ R

z A vector representation of D(j)

v
(i) ∈ R

t×z A vector representation of V(i)

�j The time interval between D(j) and D(j−1)

⊕(.) An aggregation CONCAT function

S
(j)
E

EHR dataset at interval j-th

S
(j)
I

Signal dataset at interval j-th

S
(j)
S

Imaging data at interval j-th

s
(j)
E

A vector represent EHR data at interval t-th

s
(j)
I

A vector represent Signal data at interval j-th

s
(j)
S

A vector represent Imaging data at interval j-th



Page 5 of 16Nguyen et al. BMC Medical Informatics and Decision Making          (2024) 24:242 	

value is recorded in the interval, the worst value will be 
taken (Fig. 2).

Patient‑patient medical profile network
The patient’s medical profile network is defined as a graph-
ical network G = (V ,E,X ,A) with |V | = N  nodes and 
|E| edges, where nodes represent patients and the edge 
weights represent the degree of similarity between them. 
The node feature matrix X = (x1, x2, x3, ..., xn) ∈ R

N×T 
contains the feature vector of all nodes. A single row xi 
from the node matrix X is a representation of a patient’s 
medical profile from T hospitalizations that has been 
described in “Patient’s medical profile”  section. Hence, 
xi = hi =

{

v
(1), v(2), ..., v(i), ..., v(T )

}

 . In order to deter-
mine a the similarity between patients, we measure the 
similarity between their medical profiles. Since the medi-
cal profile is represented as a data vector, we can measure 
the similarity between patient’s medical profile by calcu-
lating the Euclidean distance between them. Let u, v ∈ V  
be the two nodes representing patient u and v on G , the 
similarity distance d(u, v) is defined as follows:

Using Eq. 3, an Euclidean distance matrix can be con-
structed for G . This distance matrix allows us to construct 
a patient-patient medical profile network G . If we assume 
that no two patient’s profiles are absolutely identical, then 
G will be a complete network. Patients with similar pro-
files will stay close to each other, forming several clusters 
in the network representation. As connections between 
very different profiles may produce noise data for classi-
fication, we define a similarity threshold ξ to control the 
number of connections on G.

The connection between nodes u,  v is represented 
by (u, v) ∈ E , and (u, v) = 1{d(u, v) ≤ ξ : u, v ∈ V } . 
The adjacency matrix is then expressed as A ∈ R

N×N , 
Auv = 1{(u, v) = 1 : (u, v) ∈ E,u, v ∈ V } . The construc-
tion of patient’s medical profile network consists of the 
following steps: 

1.	 Calculate the Euclidean similarity matrix using the 
node feature matrix X and Eq. 3.

2.	 Setting a threshold ξ for the similarity matrix .

(3)d(u, v) = d(hu,hv) = ||hu − hv||2

Fig. 2  Data extraction rule at an interval: when no value is available during the interval, the value from previous interval is carried forward. A worst 
value is selected if more than one value is available in the interval

Table 2  Notation for patient-patient medical profile network

Notation Definition

G A graphical network for patients’ medical profile

V A set of nodes, each node represent a patient

E A set of edges representing the similarity between patients’ medical profile

X ∈ R
N×T A node feature matrix representing the patients’ medical profiles

A ∈ R
N×N An adjacency matrix of G

xi A vector represent patient’s medical profiles. xi = hi

ξ A predefined similarity threshold to determine the edges of the network

d(u, v) Euclidean distance between node u and v
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3.	 Using the thresholded similarity matrix, construct 
the adjacency matrix A and network [G].

Tree‑structure representation of EHR
EHRs are often formatted similarly to relational data-
bases, where variables are categorized by their interpre-
tation into tables, such as demographic information, vital 
signs, and laboratory results. By leveraging this relation-
ship, the EHR can be easily represented as a tree struc-
ture, where a table i is mapped with an object denoted 
as o(t)i  and variable j recorded under the table is denoted 
as o(t)ij  (Fig.  3). In this section, the t-th interval will be 
dropped to simplify the notation. i and j will be used as 
the notation for the nodes representing the correspond-
ing objects. The tree-based representation of EHR data 
is defined as a T = (P , C,A) , where P is a set of parent 
nodes and C is a set of child nodes. Let i ∈ P and j ∈ C 
then the connection between parent and child is repre-
sented by (i, j) ∈ A . The adjacency matrix is expressed 
as A ∈ R

|P|×|C| , Aij = 1 if there is a connection between 
them or Aij = 0 otherwise. An empty root node RT  is 
added to P to receive the final data embedding and its 
connection to the existing parent nodes are added to A . 
The data embedding in the tree structure is carried from 
child node to parent node recursively from the bottom to 
the root node. The notation summary is listed in Table 3. 
The data embedding at any parent node is as follows:

(4)oi = σ





�

j∈C(i)∪{i}

1
√
|C(i)|.

�

|C(j)|
.
�

Wi.oij
�





In Eq. 4, the data of child nodes oij are transformed by 
multiplying with weight matrix Wi ∈ R

j , which are then 
summed together to obtain the embedding of the object 
group oi . At the root node, the data is aggregated with a 
CONCAT function. Hence, the data embedding vector 
at the root node sE ∈ R

|C(RT )| will have the dimension of 
the number of its child nodes (Eq. 5) .

Proposed modification of loss function
Given the training data D = {xi, yi}Ni=1 , where xi ∈ R

d is 
the feature vector of d dimensions and yi ∈ {0, 1} is the 
label of the sample i-th. xi is extracted from EHR data 
and is used to construct the patient’s medical profile and 
patient-patient network as described in the previous sec-
tions. Let pt be the predicted probability of a patient at 
node i in the positive class, αt is a balancing parameter for 
imbalanced class, and γ is a user-defined hyperparameter, 

(5)sE = ⊕({oi : i ∈ C(RT ) ∪ {RT }})

Fig. 3  Tree-structure representation of the EHR data

Table 3  Notation for tree-structure representation of EHR

Notation Definition

S
(t)
E

EHR dataset at interval t-th

s
(t)
E

A vector represents EHR data at interval t-th

T A tree structure represent EHR data

P A set of parent nodes, contains all o(t)i
C A set of child nodes, contains all o(t)ij
A ∈ R

|P|×|C| An adjacency matrix of T

RT ∈ P An empty root node to receive the EHR data embedding

σ(.) A non-linear activation function, default to sigmoid

⊕(.) An aggregation CONCAT function
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we propose a modification of the FL function for binary 
classification as follows:

We propose to use (1− ept )−1 instead of the original 
factor (1− pt)

γ to control the sample weight. Figure  4 
shows the weight distribution the modulating term 
assign to different predicted probability. The proposed 
modulating factor imposes a more severe penalty for a 
predicted probability that is further away from the actual 
probability as compared to the original modulating fac-
tor. In this way, it strongly draws the attention of the loss 
function during the learning process to the wrongly pre-
dicted sample, emphasizing the punishment for predicted 
probabilities that are close to zero. The advantage of this 
approach over the original FL is that the sample weight 
can be dynamically adjusted without being dependent on 
γ , thereby eliminating the need to tune a hyperparameter. 
A large penalty assigned to a sample that is greatly mis-
predicted is the driving force behind an improved clas-
sification (Fig. 4).

Multi‑level data embedding & model learning
The data is embedded in a bottom-up manner, fold-
ing several layers of the information: medical modules 
embedding, interval data embedding, and hospitaliza-
tion embedding. A patient’s medical profile is encoded 
through the following embedding sequence:

(6)LeFL = −αt(1− ept )−1log(pt)

In Eqs. 7, 8, and 9, ⊕(.) represents a CONCAT aggre-
gation function. The embedding h is then used to 
construct the patient-patient network G described in 
“Patient-patient medical profile network”  section. Let 
n be a node on G and N (n) be the neighbors of n on 
the network, then the final embedding of node n on G is 
encoded as follows:

where W is a trainable weight matrix to transform the 
embedding of the neighbor nodes, σ is a softmax acti-
vation function. The learning loss is measured by the 
proposed loss function as described in “Proposed modifi-
cation of loss function” section. The framework is trained 
and validated in a transductive manner. The training 
algorithm is shown in Algorithm 1.

(7)d
(j) = ⊕

(

s
(j)
E , s

(j)
S , s

(j)
I , ...

)

(8)v
(i) = ⊕

({

d
(j) : 0 < j ≤ t

})

(9)h = ⊕
({

v
(i) : 0 < i ≤ T

})

(10)

hn = σ





�

u∈N (n)∪{n}

1
√
|N (n)| ·

√
|N (u)|

· (W · hu)





Fig. 4  The visualization of the sample weight assigned to sample in the original FL and the proposed modification of FL function
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Algorithm 1 Psuedo code of the framework training

Dataset and data processing
This study was conducted using the public dataset Pedi-
atric intensive care dataset (PICD), version 1.1.0, which 
is available in the PhysioNet repository [24]. The data-
set consists of patients aged 0-18 years admitted to the 
Intensive care units (ICUs) at the Children’s Hospital 
of Zhejiang University School of Medicine, Zhejiang, 
China, from 2010-2019. Our previous work, published 
in 2023, described the method of selecting cohort sam-
ples and extracting data [25]. We follow the same pro-
cedure for collecting data and defining sepsis in this 
study. However, in the current study, only continuous 
variables were used, and raw demographic, vital sign, 
and laboratory data were used instead of category-
coded data. This study was approved by the National 
University of Singapore’s Institutional Review Board 
(NUS-IRB-2024-396).

Evaluation metrics
The evaluation task is to predict the sepsis outcome of 
the patients in the test set. As it is a binary classifica-
tion task, we used Accuracy (ACC), Sensitivity (SEN), 
Specificity (SPE), Negative predictive value (NPV), 
Positive predictive value (PPV), and Area under the 

Table 4  Performance confusion matrix

Positive (P) Negative (N)

Prediction Positive True positive (TP) False positve (FP)

Prediction Negative False negative (FN) True negative (TN)

receiver operating characteristic curve (AUC) to evalu-
ate the model performance.

AUC was measured by comparing the true positive 
rate against the false positive rate. A high AUC indi-
cates the model ability to distinguish the classes in 
binary classification. The rest of the metrics are derived 
from the confusion matrix (Table  4). SEN, SPE is the 
proportion of TP among all positives and TN among 
all negative while PPV, NPV measures the TP and TN 
among predicted positives and predicted negatives.

Study design
The data was masked in 70% for training and 30% for 
testing. We trained the MedMGF on training data and 
reported the model performance on the masked testing 

(11)

ACC = TP+TN
TP+N

SEN = TP
TP+FN

SPE = TN
TN+FP

PPV = TP
TP+FP

NPV = TN
TN+FN
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data (Fig.  5). The evaluation aimed: (1) to validate the 
overall performance of the framework compared to the 
baseline models, (2) to compare its effectiveness against 
the oversampling method, and (3) to verify that the 
proposed loss function is comparable to existing loss 
functions. In the first evaluation, we used three sets of 
baseline models, including Logistic Regression (LR), 
GCN implemented with BCE, FL, and balancing param-
eter α . In the second evaluation, we used GCN+BCE 
and GCN+FL+SMOTE as the baseline models. As 
SMOTE is the most common oversampling technique 
for imbalance data, it was selected for this study. In 
the third evaluations, we implemented our proposed 
framework using BCE, FL, with balancing parameter 
α as the baseline models. Finally, we used t-distributed 

stochastic neighbor embedding (t-SNE) plot to visual-
ize the data embedding produced by the MedMGF+eFL 
and the best two baseline models (GCN+α FL and 
GCN+αBCE) to demonstrate the learning process. The 
performance of all models was summarized in Table 5. 
A summary of the proposed MedMGF and the previous 
studies (MiME, GRAM, and MDP) was also provided 
in Table 6 to highlight the differences of our approach.

Models were fine-tuned to perform optimally. γ was 
selected in the manner that would optimize the model 
performance and the balancing parameter was set at 
the imbalance ratio of the dataset α+ = 0.047 . All mod-
els except LR models were trained with Adam opti-
mizer, 10,000 maximum epochs, a learning rate of 0.01. 
The training was implemented with an early-stopping 

Fig. 5  The training and validation workflow of MedMGF

Table 5  Performance results on public dataset PICD

Abbreviation: ACC​ Accurary, AUC​ Area under the receiver operating characteristic curve, BCE Binary Cross-Entropy, FC Focal Loss, LR Logistic regression, MedMGF Multi-
level graph-based framework for medical knowledge representation, NPV Negative predicted value, PPV Positive predicted value, SEN Sensitivity, eFL Modified focal 
loss, SMOTE Synthetic Minority Oversampling Technique, SPE Specificity

Models + Methods γ AUC​ ACC​ SEN SPE PPV NPV

LR (Baseline) - 0.5110 0.9546 0.0256 0.9965 0.25 0.9578

LR + SMOTE (Baseline) - 0.7740 0.8252 0.7179 0.8300 0.1600 0.9849

GCN+BCE (Baseline) - 0.5000 0.9558 0.0000 1.0000 - 0.9558

GCN+αBCE (Baseline) - 0.7712 0.8133 0.7250 0.8173 0.1551 0.9847

GCN+SMOTE+BCE (Baseline) - 0.6665 0.7271 0.6000 0.7329 0.0941 0.9754

GCN+FL (Baseline) 4.0 0.5000 0.9558 0.0000 1.0000 - 0.9558

GCN+α FL (Baseline) 4.0 0.7717 0.8144 0.7250 0.8185 0.1559 0.9847

GCN+SMOTE+FL (Baseline) 4.0 0.7510 0.8431 0.6500 0.8520 0.1688 0.9814

MedMGF+αBCE - 0.7975 0.7724 0.8250 0.7699 0.1422 0.9896

MedMGF+αFL 5.0 0.7998 0.7768 0.8250 0.7746 0.1447 0.9897

MedMGF+ e FL - 0.8098 0.7503 0.8750 0.7445 0.1367 0.9923
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mechanism, such that the training would be stopped 
when the validation loss did not decrease after 10 epochs, 
otherwise the results would be reported at the conclusion 
of the training process. BCE with logit loss was set up 
with a mean reduction. The data split in 70% for training 
and 30% for testing using the sklearn library. The SMOTE 
oversampling algorithm was implemented using the 
imblearn library. The t-SNE plot was produced by sklearn 
library. The framework was implemented in Spyder IDE 
(MIT, version 5.5.0, Python version 3.9.14).

Statistical methods
We calculated medians [interquartile ranges (IQRs)] and 
absolute counts (percentage) for continuous and cat-
egorical variables, respectively. Differences between the 
sepsis and non-sepsis cohort were assessed with Mann-
Whitney U on continuous and Pearson’s Chi-squared 
tests on categorical variables. All statistical analyses were 
performed using Microsoft Excel (version 16.55, Micro-
soft, USA) with a statistical significance taken as p < 0.05.

Results
Demographic and baseline clinical characteristics 
of patients
The cohort contains 3,014 admissions with a median age 
of 1.13 (0.15-4.30) years old and 1,698 (56.3%) males. 
The number of sepsis-positive cases is 134 (4.4%), which 
results in an imbalance ratio of 0.047 between classes. A 
total of three demographic variables (age, length of stay 
in the intensive care unit, length of stay in the hospital), 
five vital signs (temperature, heart rate, respiratory rate, 
diastolic and systolic blood pressure), and 15 laboratory 
variables are included in the study (Appendix A). An 
overview of cohort demographics and clinical outcomes 
can be referred to [25].

Model performance comparison against baseline model
On PICD (imbalance ratio of 0.047), LR produced pre-
dictions overwhelmingly in favor of the dominant class, 
resulting in a low SEN (0.0256), high ACC (0.9546), 
SPE (0.9965), and NPV (0.9578). With LR+SMOTE, the 
classification improved significantly in AUC and SEN 
(AUC: 0.7740, SEN: 0.7179). Comparing to these base-
line models, MedMGF+eFL showed higher classification 
performance for AUC, SEN, and NPV (AUC: 0.8098, 
ACC: 0.7503, SEN: 0.8750, SPE: 0.7445, PPV: 0.1367, 
NPV: 0.9923). Specifically, MedMGF+eFL obtained an 
increase of 29.88% in AUC, and 84.94% in SEN when 
compared to LR.

For both GCN+BCE and GCN+FL, we observed that 
there was no effective learning for the minority class. 
However, integrating with balancing parameter, α , 
improved the results. α FL (AUC: 0.7717, ACC: 0.8144, 

SEN:0.7250, SPE: 0.8185, PPV: 0.1559, NPV: 0.9847) 
gave a slightly higher performance than αBCE (AUC: 
0.7712, ACC: 0.8133, SEN: 0.7250, SPE: 0.8173, PPV: 
0.1551, NPV: 0.9847), though the difference was not 
considered significant. Compared to the αFL, the pro-
posed MedMGF+eFL framework demonstrated a 3.81% 
increase in AUC and a 15% increase in SEN.

Model performance comparison with different loss 
functions & SMOTE
Using BCE and FL alone does not lead to effective 
learning during training due to the extreme imbal-
ance ratio of the dataset. Performance improvements 
were only achieved with the inclusion of SMOTE. The 
GCN+SMOTE+FL model (AUC: 0.7510, ACC: 0.8431, 
SEN: 0.6500, SPE: 0.8520, PPV: 0.1688, NPV: 0.9814) 
yielded better results compared to GCN+SMOTE+BCE 
(AUC: 0.6665, ACC: 0.7271, SEN: 0.6000, SPE: 0.7329, 
PPV: 0.0941, NPV: 0.9754).When compared with 
GCN+SMOTE+FL, the MedMGF+eFL model showed 
a 5.88% increase in AUC and a 22.5% increase in SEN, 
although there was a decrease of 8.05% in SPE and 3.21% 
in PPV. Additionally, MedMGF+eFL achieved a 3.58% 
increase in AUC and a 4.98% increase in SEN when com-
pared to LR+SMOTE.

Model performance comparison for the proposed loss 
function
We observed that MedMGF achieved high SEN ( αBCE: 
0.8750, αFL: 0.8250, eFL: 0.8750), high AUC ( αBCE: 
0.7975, αFL: 0.7998, eFL: 0.8098), and high NPV ( αBCE: 
0.9896, αFL: 0.9897, eFL: 0.9923) when compared to all 
baseline models. The best SEN (0.8750), AUC (0.8098), 
and NPV (0.9923) were achieved with the proposed loss 
function eFL. However, MedMGF+eFL experienced a 
decrease in PPV (0.1367) and SPE (0.7445) compared to 
the other two models.

Figure  6 presents the final patient embeddings 
within the patient network, generated by the proposed 
MedMGF+eFL framework, alongside GCN+α FL and 
GCN+αBCE. In this visualization, yellow dots repre-
sent the positive class, while purple dots represent the 
negative class. For MedMGF+eFL, we observed that 
the yellow dots initially intermingle with the purple 
dots, making it challenging to establish a clear bound-
ary between them. However, as training progresses, the 
yellow dots gradually cluster together, and by epoch 
700, most of them have concentrated at one end, facili-
tating easier classification. In contrast, the other two 
baseline models quickly separated the dots, but the sepa-
ration process slowed down starting from epoch 300 for 
GCN+α FL and from epoch 400 for GCN+αBCE. Learn-
ing in these models ceased around epoch 500, whereas it 
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continued with MedMGF+eFL, leading to a higher SEN 
for MedMGF+eFL.

Discussion
In this study, we propose a novel multi-level graph-based 
framework designed to represent clinical knowledge 
that can be utilized for several downstream applica-
tions. It consists of three components: a tree structure 
that captures an individual patient’s medical informa-
tion, a patient-patient network, and an modified loss 
function specifically for imbalanced datasets. The inte-
gration of patient medical profiles and patient networks 
within a unified architecture facilitates multiple types 
of analyses, including patient stratification and cohort 
discovery. Our results demonstrated the framework’s 
effectiveness, achieving improved classification perfor-
mance on a highly imbalanced pediatric sepsis data-
set (imbalance ratio of 0.047) compared to baseline 

models. Furthermore, the proposed loss function has 
shown improvements in classification performance over 
BCE and FL. In the following section, we will discuss 
the framework’s properties, its clinical implications, as 
well as its limitations and potential direction for future 
research.

Framework approach. Our approach focuses on pre-
serving the EHR’s inherent structure and interpretabil-
ity by leveraging its existing groupings. By utilizing this 
structure and organizing it in a tree-like manner, we 
effectively reduce the dimensionality of the data input 
while maintaining a minimum level of data embedding 
interpretation. This dimensionality reduction leads to 
faster training times and a less complex learning pro-
cess. The approach has also been designed to facilitate 
the integration of domain experts’ knowledge, allow-
ing them to construct the structure intuitively, thereby 
enhancing interpretability. Compared to the creation of 

Fig. 6  The data embedding transformation during training with MedMGF+eLF, GCN+αFL, and GCN+αBCE. Yellow dots represent positive samples 
and purple dots represent negative samples
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graphical models like Bayesian networks [26] by domain 
experts, constructing a tree structure is simpler and more 
cost-effective. Through this graph-based architecture, we 
can visually represent both the patient’s medical profile 
and their relationships with other patients. This architec-
ture incorporates several layers of information, includ-
ing interval data and hospitalization records. Essentially, 
it encompasses the entire hospitalization of the patient 
and the data for each visit in a compact, easily visualized 
format. Depending on the context, this can be presented 
either as an individual medical profile or as a cluster of 
similar patients. Furthermore, by integrating patient 
medical profiles and patient networks into a unified 
architecture and training process, we achieve a reduction 
in training costs.

Framework properties. MedMGF has the following 
key properties: (1) generality and modality, (2) multi-
purpose functionality, (3) intuitive interpretation, and (4) 
minimal data processing requirements.

Firstly, the framework is designed to seamlessly inte-
grate with various types of medical data by embedding 
and extending the number of modules to accommodate 
additional data sources. This modular approach allows 
for the effortless incorporation of new information, ena-
bling the framework to be easily modified and updated 
in response to evolving medical data. With its flexible 
module structure, the MedMGF framework efficiently 
utilizes available information, enhancing its adaptability 
and scalability.

Secondly, the framework demonstrates potential for 
a wide range of tasks, such as disease diagnosis, cohort 
discovery, and risk prediction. For instance, the similar-
ity between patient profiles can be leveraged to predict 
another patient’s risk of rehospitalization or their likely 
response to treatment. Clinicians can also utilize the 
framework to identify individuals at risk for certain dis-
eases or adverse reactions by comparing medical profiles. 
Additionally, MedMGF can serve as a bedside monitor-
ing system, tracking patients’ conditions and the progres-
sion of their diseases. In some scenarios, the framework 
could be adapted to alert clinicians when a patient’s med-
ical profile closely resembles that of a specific disease or 
when certain characteristics are present, enhancing early 
detection and intervention.

A third characteristic of the framework is its ease of 
interpretation, which enables clinicians to easily under-
stand concepts related to the structure of the EHR, 
patient profiles, and the patient network. By presenting 
the data in a clear and concise manner, the framework 
can assist clinicians in making informed decisions and 
gaining valuable insights from framework visualizations. 
This intuitive interpretability enhances the framework’s 
effectiveness and usability in various medical contexts, 

ultimately contributing to improved patient care and 
outcomes.

Last but not least, it requires minimal processing of 
EHR data since it does not require oversampling tech-
niques to improve learning, or additional processing 
to map data to the multilevel graph-based structure. 
However, it still requires basic processing tasks such as 
handling missing data, removing outliers, and selecting 
variables for the EHR tree-based structure.

Handling data imbalance. Class imbalances in medi-
cal data are common and can significantly impair classifi-
cation performance [27, 28].Due to these imbalances, ML 
models may struggle to accurately differentiate between 
classes, often leading to biased predictions that favor 
the dominant class. Various techniques can address this 
issue at both the data and algorithmic levels. Data-level 
approaches include oversampling and undersampling, 
while algorithmic-level approaches involve heuristics that 
prioritize minority classes [29].

Oversampling techniques, such as SMOTE, have 
shown effectiveness in improving ML model perfor-
mance by generating synthetic samples during train-
ing. This, however, may introduce unwanted additional 
noise and bias to the training process. On the other hand, 
undersampling, which reduces the number of samples in 
the dominant class, is not beneficial when dealing with 
extremely imbalanced or small medical datasets. In this 
study, we address the imbalance problem at the algorith-
mic level by modifying the focal loss function. By assign-
ing a modulating term to samples, the loss function can 
concentrate more on hard-to-classify samples during 
training. The modulating term proposed in our study cre-
ates a flexible sampling weight that adapts based on the 
framework’s learning at each training round, eliminating 
the need to rely on a hyperparameter.

Framework explainability. It is essential for clinicians 
to understand how machine learning models make deci-
sions to apply these models to their practice. For this rea-
son, models should be able to explain how data is used, 
identify the factors influencing decisions, and clarify how 
those decisions are reached. Given this need, it is not sur-
prising that Explainable AI (XAI) has seen rapid growth 
in recent years [30–32]. XAI plays a critical role in bridg-
ing the gap between proof-of-concept studies and applied 
ML in medicine [33]. By leveraging XAI, potential biases 
or errors in the model can be identified, offering insights 
into the reasons behind specific decisions. Moreover, it 
can be used to tune parameters or correct errors in the 
model. XAI techniques commonly used in ML-based 
studies include Shapley Additive Explanations (SHAP, 
[34]) and Local Interpretable Model-Agnostic Expla-
nations (LIME, [30]). Currently, our framework does 
not use XAI, but it can easily be adapted to do so. For 
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example, it is possible to identify different nodes’ atten-
tion weights with SHAP or LIME or with Graph Atten-
tion Networks (GAT, [35]) integrated into the framework. 
An alternative is to integrating a GAT-like approach to 
the hierarchical embeddings to enhance its explainability 
during the model learning.

Framework complexity. The framework consists of 
four operations: (1) the tree-structure representation 
and embedding for EHR data OT  , (2) the multilevel data 
embedding for patient’s medical profile OP , (3) the con-
struction of patient-patient medical profile network OG , 
and (4) inference for downstream tasks on the medical 
profile network OI . Hence, the time complexity of the 
overall framework will be the sum of these operations:

The patient’s medical profile network is constructed 
based on a Euclidean distance matrix ∈ R

N×N with N 
number of patients. Hence, the complexity is estimated 
to be O(N 2

) . The core operation in (1), (2), and (4) is 
based on the message passing mechanism. This mecha-
nism includes the feature transformation, neighborhood 
aggregation, and updating via activation function in both 
forward and backward pass for one layer. In the for-
ward pass, the feature transformation is a multiplication 
between node feature matrix X ∈ R

N×T and transforma-
tion weight matrix W ∈ R

T×T , hence, O(NT 2
) . Neighbor 

aggregation is a multiplication between matrices of size 
N × N  and N × T  , yielding O(N 2T ) . Finally, the cost for 
using activation function is a O(N ) . In practice, we could 
use a sparse operator, therefore the cost of the neighbor 
aggregation can be reduce to O(|E|T ) . Hence, the total 
cost of the forward pass is O(NT 2

)+O(|E|T )+O(N ) . 
In the backward pass, the cost of performing the back-
probagation for X and W is O(NT 2

)+O(|E|T ).
In the tree-structure representation T  for EHR data, 

there are (|P − 1|) message passing and one aggrega-
tion operation at the root node. Additionally, the mul-
tilevel data embedding for interval and hospitalizations 
consist of three aggregation functions. Hence, the time 
complexity of the framework from the four mentioned 
operations is:

As we used embedding to reduce the dimension of the 
feature vectors, T is rather small compared to the original 
dimension of the feature vectors. Therefore, overall com-
plexity of MedMGF is reduced to O(N 2

) . The complexity 
depends on the number of sample in the dataset. As the 
number of sample grows, it will be taxing to construct 
the patient network.

(12)OMedMGF = OT +OP +OG +OI

(13)OMMGF = OT ((|P| − 1)(|C| + |A|))+OP(N )+OG(N
2
)+OI(NT

2 + |E|T + N )

Comparison with previous studies. Table  6 pro-
vides a summary of our proposed framework, Med-
MGF, in comparison with MiME, GRAM, and MDP, all 
of which employ a multi-level embedding approach to 
medical data representation. While MiME and GRAM 
may be limited to diagnosis and treatment codes, Med-
MGF encompasses more aspects of EHR data and can be 
extended to incorporate imaging, signals, and other data 
types into the representation. Although MDP integrated 
clinical data into GRAM, the data is still handled in a 
flat manner. While existing works exploit the hierarchy 
between medical codes, MedMGF exploits the hierarchy 
between EHR data itself. MiME and GRAM are capable 
of representing complex and general medical concepts 
beyond just data alone.

All methods are capable of handling both small and 
large medical datasets. With MedMGF, the complex-
ity increases significantly as the number of patients 
increases. None of the methods have integrated XAI, 
with model interpretation primarily derived from the 
framework architecture. GRAM and MDP are notable for 
their use of attention mechanisms, which allow for bet-
ter model interpretation and feature importance deter-
mination. In this regard, MedMGF relies on the intuitive 
tree structure of EHR data as well as the integration of a 
network of patient similarity to enhance the interpreta-
tion of the model. As of now, MedMGF does not have a 
mechanism for determining the importance of features.

In comparison with existing methods, MedMGF has 
the advantage of handling imbalanced data and does not 
require additional data processing. Existing methods do 
not address imbalanced data directly and may require 
additional steps to process medical codes when applied 
to other EHR datasets.

Clinical impact. The MedMGF framework demon-
strates significant improvements in AUC and SEN when 
compared to the baseline models on an extremely imbal-
anced dataset. The improvement in these metrics sug-
gests that MedMGF may improve diagnostic precision 
and accuracy in real-world medical settings, such as sep-
sis diagnosis, where the sepsis population is much smaller 
than the healthy population. Furthermore, a false nega-

tive in a sepsis diagnosis can have a more detrimental 
effect on the patient’s well-being than a false positive. It 
is therefore more desirable to achieve a high level of per-
formance in SEN to reduce the number of false negatives. 
It cannot be ignored that false positives can result in a 
greater incidence of antibiotic resistance. However, the 
well-being of the patient as well as his or her mortality 
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status should usually take precedence. Our MedMGF 
framework is therefore advantageous, since it can deliver 
a high SEN on imbalanced data. By effectively addressing 
the challenges posed by imbalanced datasets, MedMGF 
can potentially open up new possibilities for more accu-
rate and reliable clinical applications. In terms of devel-
opment, deployment, and application, MedMGF can be 
tailored to meet a variety of needs in the hospital, includ-
ing disease diagnosis, bedside monitoring, and research 
assistance. With its versatility, it can be used for a variety 
of purposes, thereby eliminating the need for multiple 
systems and frameworks, resulting in cost savings.

Study limitation & future works. There are, how-
ever, a number of limitations to our study. First, the 

limited number of datasets used for evaluation may 
raise concerns about MedMGF’s generalizability, which 
is an important aspect of ML to ensure that the model 
can perform well on unseen data. Without a diverse 
range of datasets, the model may fail to accurately pre-
dict outcomes in real-world scenarios, leading to unreli-
able results and limited practical applications. Second, 
for demonstration purposes, we used only a portion of 
the data collected within 24 hours of ICU admission. To 
validate the generality of the framework when modeling 
patient medical profiles with several hospitalizations and 
intervals, more data points should be included. The num-
ber of features in the dataset is relatively small to be able 
to validate the complexity of the framework, as discussed 

Table 6  Comparison between the proposal MedMGF and previous studies

The comparison between the proposed MedMGF, MiME [19], GRAM [18], and MDP [20]. Each method demonstrates distinct strengths and approaches in various 
aspects. It is essential to note that the criteria listed in this table are not intended to be comprehensive. Abbreviations: EHR Electronic health records, XAI Explainable AI

Criteria MedMGF MiME GRAM MDP

Architecture
     Multilevel embedding Hospitalization data + inter‑

val medical data
Hospital visit data Hospital visit data Hospital visit data

     EHR representation Demographic + vital signs 
+ laboratory + symptoms 
+ etc.

Diagnosis codes (e.g., 
cough, fever) + treatment 
codes (e.g., Acetaminophen)

Medical codes + medical 
concepts

Diagnosis codes + clinical 
data

     Approaches EHR tree-based structure Medical code tree-based 
structure

Medical code knowledge-
graph

GRAM’s knowledge-graph

Patient similarity network Clinical data vector

Efficiency
     Complexity O(N2

) Not mentioned Not mentioned Not mentioned

     Parameters Embedding weightsNet‑
work similarity threshold

Embedding weights Embedding weightsAtten‑
tion weights

Embedding weightsAttention 
weights

Robustness & Scalability
     Small Dataset Yes Yes Yes Yes

     Large Dataset Yes, complexity will increase Yes, not clear on the com‑
plexity

Yes, not clear on the com‑
plexity

Yes, not clear on the com‑
plexity

     Data types EHR, imaging, signal data, 
etc.

Diagnosis, procedure, medi‑
cation codes

Diagnosis, procedure, 
medication codes, medical 
concepts

EHR, diagnosis codes

     Modularity Yes No No No

Interpretability & Explainability
     XAI Incorporation No No No No

     Feature Importance No No No Yes, via attention mechanism

     Model Interpretation Yes, via framework represen‑
tation & patient network

Yes, via framework repre‑
sentation

Yes, via framework rep‑
resentation & attention 
mechanism

Yes, via framework represen‑
tation & attention mechanism

Data Processing
     Missing Data Yes No No Yes

     Outlier Data No No No No

     Imbalanced Data Yes Yes Yes Not validated

     Additional processing No Yes, preprocess medical 
codes

Yes, preprocess medical 
codes

Yes, preprocess medical codes
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in the section on complexity analysis. As our experi-
ment only work on EHR data, more research should be 
conducted to validate on other data types (e.g., imaging, 
waveforms).

Furthermore, a comparison of our work with previous 
studies would provide additional evidence and validation 
of the MedMGF’s efficiency. However, previous studies 
such as MiME and Med2Vec require data on the rela-
tionship between symptoms and treatments, which is not 
available in our dataset. The implementation of MiME or 
GRAM with our current data is therefore challenging. 
We did not include the performance results of MedMGF 
with MiME, GRAM, and MDP in our comparison for the 
following reasons. Each framework uses different perfor-
mance metrics to measure the performance: MiME uses 
PR-AUC for predicting the onset of Heart Failure (HF), 
GRAM uses Accuracy@K (where K represents the top 
diagnosis code guesses of the next hospital visit) to count 
the number of correct-predicted codes and AUC for pre-
dicting the onset of HF, MDP measures Accuracy@K for 
the top k diagnosis code guesses of the next hospital visit, 
our MedMGF uses AUC, ACC, SEN, SPE, NPV, PPV for 
sepsis prediction. Considering the differences in nature 
of the tasks defined in the various experiments and the 
metrics used, it is challenging for us to compare the 
results among studies. In addition, we were not able to 
reproduce MiME or GRAM as our dataset lacks the rela-
tionship between treatment and diagnosis codes.

In addition, the inferred characteristics of the frame-
work are inferred from its design. Currently, demonstrat-
ing modality characteristics is challenging due to our 
dataset lacking imaging or waveform data. Therefore, 
more research is needed to confirm the feasibility of the 
framework for a variety of other analysis purposes as well 
as to confirm its multipurpose characteristic. Finally, we 
have not yet incorporated an XAI mechanism into the 
framework. To address these limitations, future research 
can consider collecting data over a longer period in order 
to conduct evaluations that are more comprehensive 
and diverse. Additionally, incorporating data from mul-
tiple healthcare institutions or collaborating with other 
researchers could enhance the framework’s generalizabil-
ity and validate its effectiveness across different settings. 
It is also beneficial to integrate an XAI mechanism into 
the framework in order to enhance its interpretability. 
XAI is an emerging area in applied ML within healthcare, 
and it has the potential to significantly enhance model 
interpretation and promote the practical ML application 
in clinical settings. Literature reviews and model devel-
opment related to XAI and the contribution of various 
types of medical data to clinical prediction models, could 
be valuable areas for further research.

Conclusion
Our study proposes MedMGF, a framework that inte-
grates medical profile representation and patient-patient 
profile network within a single architecture. It utilizes 
the hierarchical structure of EHR data to represent the 
patients’ medical data and the graphical structure of 
patient-patient networks to perform supervised tasks. 
Additionally, the proposed modification to the focal 
loss resulted in improved classification performance on 
imbalance datasets compared to the baseline models. 
Generally, the framework encapsulates both generality 
and modality that can easily be adapted to a variety of 
analyses and applications. Furthermore, it can be further 
extended by incorporating XAI to enhance its interpreta-
tion and transparency in future research.
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