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Abstract
Background Predictive modeling based on multi-omics data, which incorporates several types of omics data for the 
same patients, has shown potential to outperform single-omics predictive modeling. Most research in this domain 
focuses on incorporating numerous data types, despite the complexity and cost of acquiring them. The prevailing 
assumption is that increasing the number of data types necessarily improves predictive performance. However, 
the integration of less informative or redundant data types could potentially hinder this performance. Therefore, 
identifying the most effective combinations of omics data types that enhance predictive performance is critical for 
cost-effective and accurate predictions.

Methods In this study, we systematically evaluated the predictive performance of all 31 possible combinations 
including at least one of five genomic data types (mRNA, miRNA, methylation, DNAseq, and copy number variation) 
using 14 cancer datasets with right-censored survival outcomes, publicly available from the TCGA database. We 
employed various prediction methods and up-weighted clinical data in every model to leverage their predictive 
importance. Harrell’s C-index and the integrated Brier Score were used as performance measures. To assess the 
robustness of our findings, we performed a bootstrap analysis at the level of the included datasets. Statistical testing 
was conducted for key results, limiting the number of tests to ensure a low risk of false positives.

Results Contrary to expectations, we found that using only mRNA data or a combination of mRNA and miRNA 
data was sufficient for most cancer types. For some cancer types, the additional inclusion of methylation data led 
to improved prediction results. Far from enhancing performance, the introduction of more data types most often 
resulted in a decline in performance, which varied between the two performance measures.

Conclusions Our findings challenge the prevailing notion that combining multiple omics data types in multi-omics 
survival prediction improves predictive performance. Thus, the widespread approach in multi-omics prediction of 
incorporating as many data types as possible should be reconsidered to avoid suboptimal prediction results and 
unnecessary expenditure.
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Background
Cancer is a global public health problem due to its high 
morbidity and mortality rates [1]. It is associated with 
alterations in genes that control normal cell growth and 
differentiation. Thus, understanding and exploiting the 
molecular basis of cancer has many benefits, including 
the possibility of building prediction models [2, 3], dis-
covering biomarkers [4], identifying abnormal pathways 
[5], and determining optimal treatment options.

Today, various types of omics data exist. These include 
genomic, epigenomic, transcriptomic, proteomic, and 
metabolomic data. Many of these data types are pub-
licly available on The Cancer Genome Atlas (TCGA) [6]. 
In the following, the different types of molecular data 
are often referred to as “blocks”. Omics data have been 
used to develop predictive models for more than 20 
years. These models traditionally used only one block, 
the mRNA block being likely the most commonly used. 
As a well-known example, mRNA data have often been 
found to be useful for predicting survival or response to 
therapy in cancer patients [7]. With the increasing avail-
ability of other types of blocks, the focus has shifted 
towards constructing predictive models based on multi-
omics data, that is, several block types available for the 
same patients. Several analyses allow the interpretation 
that multi-omics data outperform single-omics data in 
predictive modeling [8–11]. For example, Li et al. [12] 
found that using multi-omics data delivered notably bet-
ter results than using single-omics data in the prediction 
of the stage of lung adenocarcinoma.

The prevailing assumption in the field, as evidenced by 
the multi-omics literature, is that incorporating as many 
blocks as feasible optimizes predictive performance. 
However, recent findings have suggested that this strat-
egy may inadvertently lead to suboptimal results if less 
informative or redundant blocks are included (see next 
paragraph for details). To our knowledge, a thorough 
examination of which blocks consistently improve the 
predictive performance and which blocks can and should, 
in general, be left out has not been conducted. Omitting 
certain data blocks could not only potentially enhance 
predictive performance but also lead to cost savings. In 
fact, it is quite costly and laborious to obtain different 
blocks for the same patient. The huge data volume of 
multi-omics data can also lead to long computation times 
and large consumptions of computational memory. Thus, 
ideally, the number of blocks should be small to reduce 
the costs and complexities involved in the clinical imple-
mentation and acquisition of patients’ molecular data. 
Moreover, given the costs and efforts needed to obtain 
multi-omics data, when including multiple blocks at the 

same time the sample sizes associated with these data can 
be expected to be small. Prediction models derived from 
small sample sizes are likely to be less reliable, especially 
when dealing with a large number of features.

Several studies have compared the predictive per-
formance of different block combinations [2, 3, 13–17]; 
however [11], these studies tend to be limited in scope 
and yielded partially inconsistent results. They have 
almost exclusively either considered very few [2, 3, 
15] or a limited number of block combinations [13, 14, 
16]. Only one study [17] followed the comprehensive 
approach used in this paper, evaluating all possible com-
binations of the considered omics blocks, but it relied on 
a single dataset of limited size. Some studies used only a 
few datasets [13, 14] or a single prediction method [16]. 
In general, in these studies, the predictive performance 
tended to be better when using subsets of the available 
blocks compared to the entire set. All of these studies 
found mRNA data to be particularly effective for predic-
tion, with individual studies also highlighting the predic-
tive value of methylation [16], miRNA [14], copy-number 
variation (CNV) [14], and plasma protein data [17]. For 
a more detailed overview of these studies, we direct the 
interested reader to Additional file 1.

In the present study, we conducted a large-scale bench-
mark experiment using TCGA data to explore which 
combinations of blocks tend to provide the most accu-
rate survival prediction results for various cancer types. 
We compared the predictive performance of all possible 
31 combinations that contain at least one of five blocks 
(mRNA, miRNA, methylation, DNAseq, and CNV) 
across 14 cancer datasets with survival outcome, using 
five prediction methods, specifically machine learning 
and statistical approaches for survival outcomes. Clinical 
covariates were included in each combination and priori-
tized for four of the five prediction methods (see “Experi-
mental settings” section for details).

In this work, we focus on the direct, sample-wise con-
catenation of the different omics data types, rather than 
integration through data transformations. As described 
by Picard et al. [18], there are a variety of integration 
strategies applicable to multi-omics data beyond direct 
concatenation. These include classical matrix factoriza-
tion methods as well as more recent techniques using 
graph-based approaches or deep learning. Notably, 
recent developments tailored to multi-omics data include 
UNMF [19], which is based on nonnegative matrix fac-
torization, and TransPro [20], which applies deep learn-
ing for the hierarchical integration of omics data types in 
accordance with the central dogma of molecular biology.

Keywords Multi-omics data, Prediction, TCGA, Benchmark, Cancer, Survival analysis
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In the interest of developing general guidelines for 
omitting non-essential blocks, our initial analysis focuses 
on the average performance of the block combinations 
across all datasets. This step provides insight into which 
combinations are generally effective for most cancer 
types. Subsequently, we examine the performance of 
these combinations individually for each dataset. This 
detailed analysis aims to determine if specific cancer 
types require specific block combinations to achieve 
strong predictive performance. It is also important to 
clarify that our aim is not to make biological interpreta-
tions. The sole objective of our study is to provide guid-
ance for designing (multi-)omics experiments to enhance 
predictive performance and reduce costs in the field by 
identifying which blocks can typically be excluded from 
multi-omics data-based prediction. In contrast, many 
studies primarily seek to disentangle the complexity 
of disease processes. In such cases, where the focus is 
on interpretation, the inclusion of multiple blocks is 
undoubtedly advantageous.

Methods
Aim of the benchmark study
The aim of this study is to determine the combinations 
of blocks that are most effective in survival prediction for 
different types of cancer.

Datasets
The 14 included multi-omics datasets from TCGA were 
the same as those studied in [2], except that we included 
methylation data in addition. For each cancer type, there 
are five omics blocks and clinical covariates, that is, six 
groups of features. An overview of these 14 datasets is 
given in Table 1. We used the same clinical covariates as 

in [2], where covariates most commonly available across 
datasets were selected, as well as cancer-specific covari-
ates identified through an informal literature review. 
In Additional file 1, we provide detailed information on 
which clinical covariates were used for which datasets. 
As outcome we used overall survival.

The 14 datasets are a subset of originally 26 avail-
able datasets. Datasets with missing omics blocks were 
excluded and those where less than 5% of patients had 
observed events, that is, uncensored survival times. 
Moreover, each dataset was subset to include no missing 
values in the clinical covariates. For further preprocess-
ing details, refer to [2].

Feature selection
The permutation-based variable importance measure 
of random survival forests (RF-VI) can be used to rank 
features in terms of their importance to prediction. It 
can be used in feature selection by retaining the best-
ranking variables. In a previous work, we conducted a 
benchmark study of feature selection strategies for multi-
omics data with binary outcomes, where we found that 
RF-VI is quite robust with respect to the number of fea-
tures selected and is relatively fast [21]. Thus, for blocks 
with more than 2,500 variables, we used the RF-VI fea-
ture selection method to perform feature selection on 
the training datasets within (5-fold) cross-validation. 
Here, we selected the 2,500 features with the largest 
variable importance measure values from each of these 
blocks, where Harrell’s concordance index was used as 
performance measure in RF-VI. This was done for com-
putational efficiency and because most variables do not 
carry information in the ultra-high-dimensional blocks. 
Because of the large numbers of features, for some blocks 

Table 1 Overview of the considered datasets. The third to the eighth column show the numbers of features in the respective feature 
blocks (clin: clinical covariates, cnv: CNV, mirna: miRNA, mut: DNAseq, met: methylation, rna: mRNA). The last four columns show, in this 
order, the total number of features (f ), the numbers of observations (n), the numbers of observed events (n_e), and the proportions of 
observed events (r_e)
Dataset Cancer clin cnv mirna mut met rna f n n_e r_e
BLCA Bladder urothelial 5 57,964 825 18,577 382,711 23,081 483,166 382 103 0.27
BRCA Breast invasive C. 8 57,964 835 17,975 21,919 22,694 121,398 735 72 0.10
COAD Colon AC. 7 57,964 802 18,538 22,418 22,210 121,942 191 17 0.09
ESCA Esophageal C. 6 57,964 763 12,628 383,295 25,494 480,153 106 37 0.35
HNSC Head–neck squamous CC. 11 57,964 793 17,248 376,058 21,520 473,597 443 152 0.34
LGG Low grade glioma 10 57,964 645 9235 373,499 22,297 463,653 419 77 0.18
LIHC Liver hepatocellular C. 11 57,964 776 11,821 378,427 20,994 469,996 159 35 0.22
LUAD Lung AC. 9 57,964 799 18,388 22,486 23,681 123,330 426 101 0.24
LUSC Lung squamous CC. 9 57,964 895 18,500 21,364 23,524 122,259 418 132 0.32
PAAD Pancreatic AC. 10 57,964 612 12,392 375,464 22,348 468,793 124 52 0.42
SARC Sarcoma 11 57,964 778 10,001 378,139 22,842 469,738 126 38 0.30
SKCM Skin cutaneous M. 9 57,964 1002 18,593 377,193 22,248 477,012 249 62 0.21
STAD Stomach AC. 7 57,964 787 18,581 22,557 26,027 125,926 295 62 0.21
UCEC Uterine corpus EC. 11 57,447 866 21,053 22,517 23,978 125,875 405 38 0.09
Abbreviations C. indicates carcinoma; AC., adenocarcinoma; CC., cell carcinoma; M., melanoma; EC., endometrial carcinoma
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(particularly the methylation block), we used 10,000 trees 
per random survival forest instead of the 500 trees that 
are default in the R package ranger (version 0.14) used. 
Note that it is crucial to perform feature selection within 
cross-validation on the training datasets. Conducting 
feature selection on the entire dataset before cross-vali-
dation typically results in a substantial overestimation of 
the predictive performance [22, 23]. This overestimation 
occurs even when many features are selected [24], as in 
our study. The choice of 2,500 selected features was not 
based on any specific statistical criteria, such as predic-
tive performance, which could be optimized through 
cross-validation-based tuning. Instead, this number was 
chosen to be sufficiently large to likely include most fea-
tures of notable influence, while balancing the compu-
tational demands. The objective was not to exhaustively 
identify every influential feature while discarding all non-
influential ones, which is the reason behind the absence 
of statistical testing in our feature selection process.

When more blocks are included, the total number of 
features available to the prediction models increases. This 
could potentially benefit combinations that include many 
blocks. To counter this effect, the same total number of 
selected features could be used for each model, irrespec-
tive of the number of blocks. However, this would be 
counterproductive, since in practice there are also more 
features are available in total when more blocks are used. 
As our aim is to provide recommendations that align 
with practical applications, our benchmark study mirrors 
the procedures typically followed in practice. Thus, in 

scenarios with larger numbers of blocks, the models use 
more features, which might give these models an advan-
tage over those with fewer blocks, mirroring the real-
world scenario.

Survival prediction methods
We employed five distinct prediction methods that were 
most commonly used in previous benchmark studies on 
prediction using multi-omics data [2, 3, 13–16]. These 
five approaches include both prediction methods specifi-
cally designed for multi-omics data, as well as methods 
appropriate for high-dimensional data broadly. Unlike 
some earlier studies [15–17], we excluded deep learn-
ing approaches because they typically require Python, 
whereas our study was restricted to methods imple-
mented in R. Additionally, Wissel et al. [15] reported that 
deep learning methods generally exhibit poorer calibra-
tion when applied to (multi-)omics data compared to 
statistical or classical machine learning methods. For 
an extensive review of deep learning methods for sur-
vival outcomes, refer to Wiegrebe et al. [25]. Bayesian 
approaches were also excluded. As noted by Zhao et al. 
[26], while Bayesian methods can readily quantify uncer-
tainty in parameters and predictive outcomes and offer 
flexible modeling, they are computationally intensive for 
high-dimensional data; in their overview paper, Zhao 
et al. provide a detailed discussion of these methods, 
focused on Cox-based ones. Compared to the multitude 
of survival prediction methods available for omics data, 
those specifically tailored to multi-omics data are rela-
tively limited.

Table 2 provides an overview of the five methods used 
in our study, including the R packages that implement 
them and the types of prediction outcomes used to mea-
sure their performance.

Random survival forests
Random forests [28] are ensemble classifiers that use ran-
domly selected training samples as well as repeatedly and 
randomly selected subsets of variables to produce mul-
tiple, heterogeneous decision trees. They have become 
popular due to their ability to capture complex patterns 
of dependencies between the outcome and the input fea-
tures. However, they are not designed to take the multi-
omics group structure into account. We used random 
survival forests (rsf ) [27], a variant of random forests or 
survival outcomes. No hyperparameter tuning was per-
formed for this method, and the default values available 
in the R package “ranger” (version 0.13.1) were used. 
For example, the parameter mtry was set to the rounded 
down square root of the number of features. This use of 
default hyperparameter values is supported by Probst 
et al. [29], who demonstrated in a study involving many 
datasets that the performance of random forests is only 

Table 2 Overview of the survival prediction methods used in 
the benchmark study
Method R package 

(version)
Prediction types

Random survival 
forests (rsf )

ranger 
(0.13.1)

For C-index calculation: Sum of the 
values of the bootstrap ensemble 
cumulative hazard function [27] 
H∗

e (t|xi)  calculated at all unique 
death times.
For integrated Brier score: Sur-
vival function estimated using 
exp(−H∗

e (t|xi ))
Block forests (bf ) blockForest 

(0.2.4)
See rsf above.

Lasso (lasso) glmnet 
(4.1-3)

For C-index calculation: Linear 
predictor xT

i β̂
For integrated Brier score: Sur-
vival function estimated as follows: 
exp(−Λ̂ 0 (t) exp

(
xT
i β̂

)
) , 

where Λ̂ 0 (t)  is an estimate of the 
baseline cumulative hazard function 
obtained using the Efron estimator

IPF-LASSO 
(ipflasso)

ipflasso (1.1) See lasso above.

Priority-Lasso 
(prioritylasso)

prioritylasso 
(0.2.5)

See lasso above.
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slightly affected by the choice of the hyperparameter 
values.

Block forests
The block forests (bf ) algorithm [3] is a variant of ran-
dom forests that modifies the split selection of random 
forests to incorporate the block structure of multi-omics 
data. This algorithm has a weight parameter for each 
block. These hyperparameters were tuned using an opti-
mization procedure described in [3], which is performed 
by default in the R package “blockForest” (version 0.2.4), 
which implements the bf algorithm.

Lasso
The least absolute shrinkage and selection operator 
(Lasso) [30] is a penalized regression method that applies 
an L1 penalty to shrink coefficients of features without 
strong impact on the predictions to zero. When using 
multi-omics data to predict clinical outcomes, Lasso 
regression penalizes each feature equally across all blocks 
by using a single penalization parameter for the entire 
dataset. That is, like rsf, the method does not take the 
multi-omics group structure into account. As the Lasso 
was originally introduced only for predicting continu-
ous outcomes, we used a version (lasso) for predicting 
survival prediction [31] based on the Cox model [32], 
referred to as Cox-Lasso in the following. The penalty 
parameter was tuned using 10-fold cross-validation with 
the function “cv.glmnet” from the R package “glmnet” 
(version 4.1.3).

IPF-LASSO
The IPF-LASSO [33] is an extension of the Lasso that 
takes the group structure into account by using different 
penalty parameter values for each block. Its version for 
survival outcomes is based on the Cox-Lasso. We used 
a variant of the IPF-LASSO, which performs an efficient 
two-step procedure to optimize the penalty parameter 
values (ipflasso) [34].

Priority-Lasso
The priority-Lasso (prioritylasso) [35], like the IPF-
LASSO, is an extension of the Lasso. It is based on the 
principle of defining a priority order on the blocks of 
variables. Subsequently, prioritylasso successively fits 
Lasso regression models to the blocks in the order of 
their priority, where at each step, the resulting linear pre-
dictor is used as an offset for the Lasso model fit to the 
next block.

For the current study, however, we did not have any 
substantial domain knowledge needed for assigning 
the priority order to the blocks for the different cancer 
types. Therefore, we used the ranking of the penalty fac-
tor values determined in the first step of the ipflasso as 

a surrogate for knowledge-based prioritization, that is, 
the block with the smallest penalty factor was given the 
highest priority, the block with the second smallest pen-
alty factor was given the second highest priority, and so 
on. In the case of survival outcomes, the priority-Lasso 
is based on Cox-Lasso models. The penalty parameters 
of the successively fitted Lasso models were optimized 
using 10-fold cross-validation with the function “cv.glm-
net” from the R package “glmnet” (version 4.1.3).

Experimental settings
Clinical covariates carry important predictive informa-
tion and several studies have demonstrated that their 
inclusion improves predictive performance [2, 3]. It is 
important to up-weight or “prioritize” the clinical covari-
ates over the omics blocks to exploit their predictive 
information [36, 37] because there are typically many 
more omics features than clinical covariates. Therefore, 
except for in the case of ipflasso, where this was not pos-
sible, we prioritized the clinical covariates for all predic-
tion methods. For rsf, this was achieved by adding all 
clinical covariates to the randomly sampled covariates for 
each split in the trees constituting the rsf. For bf, simi-
larly, the clinical block was always included in the blocks 
considered for splitting. For lasso, the coefficients of the 
clinical covariates were exempt from the L1 penaliza-
tion-based shrinkage. Finally, for prioritylasso, the clini-
cal block always had the highest priority and, as in the 
case of lasso, no shrinkage was performed for the clinical 
covariates.

For each dataset, we considered all 25 – 1 = 31 possible 
combinations containing at least one of the omics blocks 
(the clinical covariates were always included) and com-
pared the predictive performance achieved with the dif-
ferent combinations. We repeated the analysis for each of 
the five prediction methods considered.

The integrated Brier score (ibrier) [38] and Harrell’s 
concordance index (cindex) [39] were used to evaluate 
the predictive performance. The ibrier is a calibration 
measure that assesses how accurate the predicted sur-
vival functions are. It also measures discrimination and is 
a commonly used scoring rule.

In contrast, the cindex is a discrimination measure 
only. It assesses how well the prediction model can rank 
different patients according to their risk. Specifically, 
it estimates the probability that, when choosing two 
patients at random, the model assigns a higher risk to 
the patient with the shorter survival time. This measure 
depends on the type of risk measure used. Sonabend et 
al. [40] elaborate that an appropriate risk measure for 
the cindex is “expected mortality”, which is calculated by 
summing the predicted cumulative hazard function over 
all observed death times [27]. This approach does not 
necessitate assumptions about the model or the survival 
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distribution beyond the observed time frame and offers 
clear interpretability: a higher value indicates a greater 
risk of death. As shown in Table 2, we use this measure 
for the random forest variants rsf and bf. For the Lasso 
variants, we use the linear predictor in the calculation of 
the cindex. However, it is apparent that this is equivalent 
to using the expected mortality since the formula for the 
individual patient hazard function in the Lasso variants 
mirrors that in the classical Cox model. In the latter, it is 
straightforward to see that the expected mortality mono-
tonically increases with the linear predictor. We used the 
R packages “pec” (version 2022.03.06) and “survcomp” 
(version 1.44.1) for estimating the ibrier and cindex, 
respectively.

As an evaluation scheme, we used 5-fold cross-vali-
dation repeated five times, without stratification based 
on the censoring indicator, although ideally, this should 
have been done. There were no errors in applying the 
five prediction methods across any of the cross-vali-
dation iterations, resulting in no missing values in the 
performance measure values. The benchmark experi-
ment was conducted using R version 4.1.2 [41]. All R 
code written to produce and evaluate our results is avail-
able on GitHub (https://github.com/YingxiaLi2023/
multi-omics-data, commit hash: 5531dcea6f63a08fe9f-
1c02e53b7cc0666751227, accessed on August 12, 2024).

Results
This section presents the full results of our benchmark 
study. Readers seeking a condensed overview are encour-
aged to skip to the “Discussion” section, where the main 
findings are reviewed and contextualized

Ranking of the predictive information contained in all 
block combinations per prediction method
In this subsection, we initially present and discuss the 
results in a purely descriptive manner. We then present 
the results of a bootstrap analysis, aimed at evaluating 
the statistical significance of certain overall patterns in 
the results

For the sake of clarity, we present here only the results 
obtained for the ibrier with rsf [27], bf [3], and the ipf-
lasso [33, 34]. The results obtained for the ibrier with the 
lasso [30] and the prioritylasso [35], as well as all results 
obtained for the cindex are shown in Additional file 1.

Figure 1 shows, for each prediction method, the rank-
ings achieved by each block combination among all 31 
possible block combinations for all datasets. Figures S1 
to S4 in Additional File 1 display these results for the 
raw cross-validated ibrier and cindex values for all pre-
diction methods. The raw performance measure values 
for each combination of block combination, dataset, 
and prediction method are detailed in Tables S2 and 
S3 in Additional File 1. Although the raw performance 

measure values provide direct insights into the absolute 
performance of the various block combinations for dif-
ferent methods, comparing these values across different 
datasets is challenging due to the widely varying signal 
strengths among the datasets. For this reason, the follow-
ing descriptions are based on the ranks rather than the 
raw performance measure values.

The results differ quite considerably across the different 
prediction methods. However, a consistent observation 
we can make is that the best performances were achieved 
with one to three blocks. Adding more blocks did not 
deliver better predictive performance, but actually tended 
to lead to worse results. For rsf and bf, we see that mRNA 
was very important for prediction, as the best-perform-
ing block combinations all included mRNA. Apart from 
the latter specific observation, there is no clear picture 
regarding the importance of each individual block. In 
general, the boxplots in Fig. 1 reveal that the results dif-
fer quite strongly across the datasets, particularly for 
ipflasso. The results obtained for lasso and prioritylasso 
are shown in Figure S5 in Additional file 1. Interestingly, 
lasso was the only method for which using more blocks 
tended to deliver better prediction results. For priority-
lasso, we again see a clear trend towards worse predictive 
performance for block combinations with many blocks, 
while the best results were obtained with single blocks. 
In the next subsection it will, however, be seen that the 
use of prioritylasso tended to lead to worse prediction 
results than the other prediction methods. While we do 
see differences in the results obtained for the cindex (Fig-
ures S6 and S7 in Additional file 1), the general conclu-
sions are very similar to those obtained with the ibrier. 
Exceptions are that for lasso we no longer observe a trend 
towards better predictive performance by including more 
blocks, and that for ipflasso there was less variability of 
the results across datasets.

There is a possibility that the number of observations 
in the available datasets is not sufficient to adequately 
exploit the predictive information contained in combina-
tions with many omics blocks. If this were the case, con-
trary to the results described above, combinations with 
many blocks might outperform combinations with fewer 
blocks for large datasets. If so, a trend should be observ-
able where combinations with many blocks rank better 
for larger datasets than for smaller datasets. Conversely, a 
trend should be observed where combinations with fewer 
blocks rank worse for larger datasets than for smaller 
ones. We investigated this using the available datasets 
in an analysis described in detail in Additional file 1. To 
summarize, this analysis did not suggest that combina-
tions with many blocks would benefit from larger data-
sets in prediction.  Even though the number of datasets 
included in our benchmark experiment is comparably 
large, we still must consider that the mean ranks obtained 

https://github.com/YingxiaLi2023/multi-omics-data
https://github.com/YingxiaLi2023/multi-omics-data
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for the block combinations are associated with consider-
able variability. This was already indicated by the large 
variances observed in the boxplots showing the results 
obtained for the different datasets. To assess statistical 

uncertainty we performed bootstrap analysis [42, 43] 
at the level of the 14 included datasets. This analysis 
was used to construct 95% confidence intervals for the 
means of the dataset-specific ranks for each combination 

Fig. 1 Dataset-specific ranks of each block combination (ibrier). The ranks of each combination among all 31 combinations are shown. The purple 
squares indicate which omics block(s) were included in the respective combinations. The values shown by the boxplots are the ranks achieved across 
all 14 datasets, where the blue diamonds represent the means of the ranks. The upper (a), middle (b), and lower (c) panels show the results obtained for 
rsf, bf, and ipflasso, respectively. Smaller ranks indicate a better predictive performance. The combinations are sorted in increasing order according to 
the mean ranks across the datasets, which is why the combinations further to the left tend to perform better. The combinations using all five blocks are 
marked with red boxes. cnv: CNV, mirna: miRNA, mut: DNAseq, met: methylation, rna: mRNA
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of block combination and prediction method. Through 
this approach, we investigated whether the mean ranks 
for the best-performing combinations were statisti-
cally significantly different from those involving all five 
omics blocks. This was the case for all methods except 
lasso, where the confidence intervals were very wide. The 
results obtained for the two performance measures were 
quite similar, where the confidence intervals for the cin-
dex tended to be narrower. A detailed description of this 
analysis and its results can be found in Additional file 1.

Ranking of the predictive performance of all prediction 
methods for all block combinations
In the previous subsection, we analyzed the results per 
prediction method. This analysis did not allow us to 
judge which combinations of prediction methods and 
blocks tend to deliver the best prediction results. Figure 2 
shows, for all datasets, the ranking achieved by each pre-
diction method-block combination among all 155 predic-
tion method-block combinations. For clarity, only the 30 
combinations with the lowest positions are shown. The 
corresponding results for the cindex are shown in Figure 
S12 in Additional file 1.

The prediction method bf occurred the most often 
in the 30 best combinations, and rsf, lasso, and ipflasso 
occurred about equally frequently in these combinations. 
The method prioritylasso was not featured in the best 

combinations. Almost all of the best combinations fea-
tured mRNA, and the two best combinations used only 
mRNA. We used statistical testing based on the hyper-
geometric distribution to evaluate whether this frequent 
occurrence of mRNA in the top 30 combinations could 
be attributable to random chance. This was found to be 
highly unlikely (p = 5.9× 10−6). Details of the statistical 
test procedure can be found in Additional file 1.

If all 155 combinations were equally important in pre-
diction, the expected number of combinations in the 30 
best combinations that feature a particular block would 
be 15.5. Against this background, the expected number 
of combinations that feature a particular block is 15.5, 
Fig.  2 reveals that the remaining blocks were not over-
represented in the top 30 combinations. In particular, 
DNAseq was featured only in eight of the top 30 com-
binations. Nevertheless, there is again a large variability 
between the results obtained for the different datasets. 
Interestingly, for the cindex (Figure S12 in Additional file 
1), lasso was featured by far the most frequently in the 
top 30 combinations. This result seems surprising at first, 
considering that lasso was among the worst-performing 
methods in the benchmark studies of [2] and [3]. How-
ever, in contrast to these previous benchmark studies, 
we did not penalize the coefficients of the clinical covari-
ates. This likely explains why lasso performed much bet-
ter in our benchmark study given the high predictive 

Fig. 2 Dataset-specific ranks of each combination of prediction method and blocks (ibrier). The ranks of each combination among all 155 combinations 
of prediction methods and blocks are shown. The purple squares indicate which omics block(s) were included in the respective combinations. The values 
shown by the boxplots are the ranks achieved across all 14 datasets, where the blue diamonds represent the means of the ranks. Smaller ranks indicate 
a better predictive performance. The combinations are sorted in increasing order according to the mean ranks across the datasets, which is why the 
combinations further to the left tend to perform better. For reasons of clarity, only the 30 combinations with the smallest positions are shown. cnv: CNV, 
mirna: miRNA, mut: DNAseq, met: methylation, rna: mRNA
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importance of clinical covariates. A disadvantage of the 
lasso, seen in Fig. 2 and Figure S12 (Additional file 1), is 
that it tends to require more blocks than the other meth-
ods. The majority of the 30 best combinations featured 
mRNA also for the cindex. Again, it is important not to 
over-interpret details of the obtained results, as the vari-
ability across the different datasets is large here as well. 
Figures S13 and S14 in Additional file 1 present versions 
of Fig. 2 and S12, displaying the raw cross-validated ibrier 
and cindex values in the boxplots instead of their corre-
sponding ranks.

Best-performing combinations of prediction methods and 
blocks per dataset
As seen above, the rankings achieved by the different 
combinations of prediction methods and blocks varied 
widely between the datasets. It is interesting to learn 
which prediction methods and block combinations are 
most successful for which datasets. Table  3 shows, for 
each dataset, the combinations of prediction methods 
and blocks associated with the smallest cross-validated 
ibrier values and the largest cross-validated cindex val-
ues. For the great majority of datasets, the best per-
formance was achieved using only up to two blocks. 
Statistical tests based on the binomial distribution con-
firmed that this is unlikely to occur by chance, with p-val-
ues of 0.022 for ibrier and 3.9× 10−5 for cindex. For a 

detailed description of the testing procedure, refer to 
Additional file 1.

We observed quite large variability in the performance 
of the block combinations across the datasets, and, for 
each dataset, between the two performance measures. 
While it is not clear how much of this is due to random 
variation, it is congruent with the observation made in 
the previous subsections that there is large variability in 
the ranks of the block combinations across datasets. For 
more than half of the datasets, mRNA was used, with 
miRNA in second place.

In the case of the cindex, for five datasets only mRNA 
was used. Another difference observed between the 
results obtained for the ibrier and the cindex is that 
methylation data was used quite frequently in the case 
of the ibrier, but only for one dataset in the case of the 
cindex.

For the cindex, which assesses discrimination alone, 
the best-performing combinations tended to use few 
blocks. This suggests that a small number of blocks may 
be sufficient to achieve good discrimination. Conversely, 
for the ibrier, which assesses both discrimination and 
calibration, the best-performing combinations tended 
to have more blocks. This pattern suggests that achiev-
ing good calibration in addition to discrimination may 
require the integration of more blocks.

Regarding the prediction methods, we do not see a 
clear winner. For both performance measures, each pre-
diction method was used at least for one dataset.

In the previous paragraph, we noted that mRNA and 
miRNA were the most frequent blocks in the optimal 
combinations. We again used statistical testing to evalu-
ate whether the occurrence of these blocks significantly 
exceeds what would be expected by random chance. 
Here, only mRNA was found to be statistically signifi-
cantly overrepresented in the best-performing combina-
tions, and solely for the cindex (p-value: 0.031). However, 
these findings should be interpreted considering the lim-
ited number of cases (14, the number of datasets), which 
means that these tests may have relatively low statistical 
power. We refer the interested reader to Additional file 1 
for details on the statistical testing procedure.

In Table  3, we observed that the block combinations 
that yielded the best predictive performance varied con-
siderably between the different datasets. At the same 
time, mRNA and miRNA were the most frequent blocks 
in these optimal combinations (although only partially 
statistically significant). Consequently, we examine a cru-
cial practical question: Is the availability of only mRNA 
and miRNA typically sufficient to achieve near-optimal 
predictive performance compared to the availability of all 
blocks?

To investigate this, we conducted an analysis of the 
performance rankings of all block combinations by 

Table 3 The best-performing combinations of prediction 
methods and blocks per dataset. Cnv: CNV, mirna: miRNA, mut: 
DNAseq, met: methylation, rna: mRNA

ibrier cindex
dataset prediction 

method
blocks prediction 

method
blocks

BLCA lasso rna, mirna prioritylasso rna
BRCA bf rna, met bf rna, 

mirna
COAD bf met bf rna, mut
ESCA ipflasso mut rsf mirna, 

mut
HNSC ipflasso rna, mirna rsf rna
LGG ipflasso met, cnv prioritylasso rna
LIHC bf rna, mirna, 

met, cnv
lasso rna, cnv

LUAD lasso mirna ipflasso mut
LUSC ipflasso mirna, met prioritylasso rna, 

mirna
PAAD prioritylasso rna bf rna
SARC prioritylasso met, cnv rsf mirna, 

met, 
mut

SKCM lasso rna, mut, 
cnv

bf rna

STAD rsf rna, mirna, 
mut

rsf mirna

UCEC bf rna, cnv rsf mirna
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dataset, presented in detail in Additional file 1. Here 
combinations involving only mRNA or miRNA (exclud-
ing other blocks, i.e., solely mRNA, miRNA, or a combi-
nation of both) ranked in the top 30% for all datasets and 
both performance measures. For the ibrier, after addi-
tionally including the methylation data for the datasets 
COAD, LGG, LIHC, LUSC, and SARC, top 10% rankings 
were achieved for all datasets. This additional inclusion 
of methylation data also enhanced the rankings for the 
cindex. For both performance metrics, the best combina-
tions after additional consideration of methylation data 
outperformed those using all five blocks across all data-
sets. For further insights into this analysis, interested 
readers are referred to Additional file 1.In summary, 
when only mRNA and miRNA are available, it is gener-
ally possible to achieve predictive performance close to 
that attainable when all considered blocks are available 
for potential use. However, for certain datasets, the addi-
tional inclusion of methylation data can lead to improved 
prediction results

Discussion
Despite notable variations in outcomes across different 
datasets, in our analysis, predictive models incorporat-
ing the entire array of available omics data consistently 
exhibited poorer performance compared to models using 
only a subset of omics blocks. This challenges the prevail-
ing approach in multi-omics data prediction and sug-
gests that maximal utilization of diverse omics blocks is 
not always optimal, despite the limitations present in our 
study (see below).

Moreover, it is important to emphasize that not all 
omics blocks are equal in their predictive capabilities. 
Our findings underscore the importance of data source 
in this context. Specifically, among the various omics 
data blocks, mRNA data emerged as the most informa-
tive and impactful. In most cancer types, predictive per-
formance achieved through combinations of mRNA and 
miRNA approached the levels attainable with the com-
plete spectrum of analyzed omics blocks. Notably, in 
specific instances, the incorporation of methylation data 
contributed to additional enhancements in predictive 
performance.

Focusing on mRNA, miRNA, and, for certain cancer 
types, additional methylation data, not only enhances 
predictive performance but also contributes to resource 
conservation in terms of time, materials, and finances. 
Furthermore, the field of multi-omics prediction faces 
the challenge that the data to which the prediction mod-
els are applied often do not contain all of the necessary 
blocks required by those models, complicating their 
application [44, 45]. The use of fewer blocks for predic-
tion modeling is anticipated to mitigate this issue. Note 
that while focusing on a few blocks seems to be beneficial 

for prediction, integrating many blocks in multi-omics 
data is informative for understanding cancer biology [46, 
47].

As described in the ”Background” section, other studies 
have also compared different combinations of blocks with 
respect to their predictive performance [2, 3, 13–17]. Our 
results are consistent with these studies despite the dif-
ferences in study designs (refer to the “Background” sec-
tion for details). The study detailed in this paper is unique 
in that it used a multitude of datasets and survival pre-
diction methods to examine all possible combinations 
of available omics blocks. This approach enables more 
reliable conclusions about the efficacy of different block 
combinations. Crucially, due to the overlap and inter-
action of predictive information among blocks, it was 
important to consider all possible combinations, rather 
than limiting the analysis to combinations where each 
block independently carries substantial predictive infor-
mation. Based on the results of our study, future inves-
tigations need not evaluate every possible combination. 
Instead, combinations containing blocks that did not 
improve prediction when combined with others in our 
study could be excluded.

As depicted in Figs.  1 and 2, the rankings of distinct 
block combinations exhibited pronounced variations 
across diverse datasets. Consequently, as illustrated in 
Table 3, varying cancer types called for distinct optimal 
block combinations. Remarkably, for certain datasets, 
neither mRNA nor miRNA were part of the optimal 
block combinations. These findings emphasize that there 
is no universally superior block combination that outper-
forms all others across all datasets. However, when inter-
preting the results in Table 3, it should also be noted that 
for many datasets, several similar combinations yielded 
similar performance to the best-performing one (results 
not shown). This suggests that the findings in Table 3 may 
be influenced by random variation. Similar statements 
can be made with respect to Figs. 1 and 2, where the dif-
ferences in performance between the best-performing 
combinations were small. The large variability observed 
in our study emphasizes the importance of large-scale 
benchmark studies using many datasets, as performed 
in this paper. It is well known that many observations are 
necessary to draw valid statistical conclusions, which is 
due to the large variability between these observations. 
However, this issue is often overlooked when design-
ing benchmark experiments where the datasets play the 
roles of the observations [48]. It is common in published 
benchmark studies that only few (e.g., 5 to 7) datasets are 
considered. This limitation is occasionally due to the lim-
ited availability of suitable datasets in certain fields.

The ranks of the different block combinations also varied 
quite strongly between the considered prediction meth-
ods. However, we did not observe structural differences 
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between methods that do (bf, ipflasso, prioritylasso) and 
do not consider the group structure of the multi-omics 
data (rsf, lasso). The best-performing prediction mod-
els (Fig.  2) also included many prediction methods that 
do not consider the group structure of the multi-omics 
data. In contrast, in the large-scale benchmark studies by 
Herrmann et al. [2] and Hornung and Wright [3], most 
prediction methods that consider the group structure out-
performed those that do not. This discrepancy can likely 
be explained by the fact that we prioritized the clinical 
covariates also for those methods that do not consider 
the group structure (see “Experimental settings” section), 
which was not done in Herrmann et al. [2] and Hornung 
and Wright [3]. In addition, Nießl et al. [49] have shown 
that the results of benchmark studies in general are vari-
able and sensitive to analytic choices even if large numbers 
of datasets are used.

Lastly, the results also varied between the two consid-
ered performance metrics. The concordance index is not 
a scoring rule as it only measures discrimination. It is not 
suitable in situations where the interest is in predicting 
the risk for a given time horizon [50]. Additionally, Har-
rell’s version of the concordance index has been shown to 
be influenced by the censoring distribution [51], and its 
estimator is increasingly biased for higher censoring rates 
[52, 53]. Uno et al. proposed an alternative version of the 
concordance index that is not affected by the censoring 
distribution [51]. Pencina et al. [54] demonstrated notable 
variations in estimates obtained from different versions of 
the concordance index. However, in our benchmark study, 
our focus was not on the absolute cindex values but on 
the relative performances of different block combinations. 
Therefore, the bias in the cindex is of lesser concern here, 
provided it is consistent across the different combinations.

In contrast, the ibrier assesses both discrimination and 
calibration. As a scoring rule, it evaluates the quality of 
survival function predictions, offering a more comprehen-
sive assessment of the predictive performance of models. 
Therefore, the ibrier should be considered as the primary 
measure of predictive accuracy.

Given the strong variability across datasets it is difficult 
to judge how strongly the aggregated results are affected 
by random variation. We took great care not to interpret 
details of the obtained results but focused on general 
observations that could be made across the different pre-
diction methods and performance metrics. Using boot-
strap analysis, we were able to strengthen important broad 
patterns in the results by accounting for result variability 
among datasets. Additionally, we conducted a series of sta-
tistical tests to examine the robustness of a limited number 
of specific key aspects of the results. This approach was 
adopted to minimize the risk of generating false positive 
results.

By prioritizing the clinical covariates, we exploited the 
predictive information contained in them to a large degree. 
Given that the predictive information contained in the 
clinical covariates and the omics features is overlapping, it 
might be assumed that, if we had not prioritized the clini-
cal covariates, more omics blocks would have been neces-
sary to achieve optimal predictive performance. However, 
this seems unlikely because few blocks were necessary for 
almost all datasets, the number of clinical covariates varied 
widely across datasets, and we made the same observation 
in the case of ipflasso, the only method for which we did 
not prioritize the clinical covariates. Irrespective of this, it 
is always important to prioritize the clinical covariates to 
exploit their strong predictive information. Furthermore, 
including clinical covariates is typically feasible, as they are 
cost-effective and easily obtainable, both in the develop-
ment and application of the prediction model.

We did not include models that use only the clinical 
variables in the benchmark study. Unlike the omics blocks, 
where the included variables within the same block are 
very similar across different data sources, the same can-
not be expected for the clinical variables. The specific sets 
of clinical variables available in the datasets used in our 
analysis will often not be available in applications. It can 
be safely assumed that the predictive performance of mod-
els that rely solely on clinical variables strongly depends on 
the specific clinical variables used. For this reason, the per-
formance of such models in our benchmark study would 
likely not have been representative of real-world analyses. 
This would have been problematic considering our goal 
was to draw generalizable conclusions.

However, it is important to emphasize that models 
based exclusively on clinical variables can achieve high 
predictive performance. The large-scale comparison study 
by Herrmann et al. [2] demonstrated that such models can 
outperform those based on multi-omics data. Additionally, 
in the field of predictive modeling based on single-omics 
data, it is known that omics data often do not provide an 
additive predictive value over clinical variables alone [37, 
55]. Therefore, it is crucial to also evaluate the predictive 
performance of models based solely on the clinical vari-
ables. This evaluation can prevent the unnecessary use of 
complex omics predictive models in situations where sim-
pler clinical models are equally effective or superior.

There exists a possibility that current prediction meth-
ods for multi-omics data do not optimally exploit the 
interplay among multiple omics blocks. If so, it would be 
possible to develop methods that leverage this interplay 
very efficiently, potentially leading to improved predictive 
performance with multiple omics blocks, contrary to our 
findings. However, this may be a challenging endeavor. 
Across all methods in our benchmark study, combina-
tions with fewer blocks consistently outperformed those 
with all available blocks. Additionally, the studies by 
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Wissel et al. [15], Vale-Silva and Rohr [16] and Osipov et 
al. [17], which included several methods not used in our 
study, support our observations. These studies also found 
that selected block combinations yielded better prediction 
results compared to the use of all blocks. Given the consis-
tency of these findings across diverse methods, it is crucial 
to properly address the challenges associated with multi-
omics data, particularly overlapping predictive informa-
tion and feature interactions across omics blocks, in the 
development of future prediction methods. The results of 
our benchmark study may offer valuable insights for meth-
odological researchers in this field. Beyond predictive per-
formance, future prediction methods for multi-omics data 
could place greater emphasis on sparsity and interpretabil-
ity. A recent notable example of a method that prioritizes 
these aspects is Stabl [56].

In our benchmark study, we employed prediction meth-
ods most commonly used in previous benchmarks. How-
ever, these previous studies included varying methods. 
Future benchmark studies could broaden their scope to 
include an even wider range of prediction methods, fur-
ther enhancing the generalizability of the results. A partic-
ular challenge in this effort is that these methods are often 
implemented in different software environments, com-
plicating direct comparisons within a unified benchmark 
setting. The benchmark study by Wissel et al. [15] is exem-
plary in this context. Wissel et al. compared (multi-)omics 
prediction methods implemented in both R and Python. 
They have made their code publicly available on GitHub, 
enabling others to adopt a similar approach.  As noted 
above, different datasets were associated with markedly 
different best-performing block combinations in our study. 
While this result can be expected to be subject to some 
degree to random variation, it is also likely to reflect dif-
ferent information structures across cancer entities. It may 
be the subject of future research whether this formal result 
can be related to specific biological information structures 
within specific cancer entities.

In the following we will discuss several limitations of 
our study. We exclusively used multi-omics datasets from 
TCGA, which offers the currently largest collection of 
such datasets. To draw broader conclusions, we implicitly 
assumed these datasets are representative of multi-omics 
datasets generally beyond TCGA. In particular, when per-
forming statistical inference using bootstrap analysis and 
statistical tests, we treated the TCGA multi-omics datasets 
as a random sample from the entire spectrum of potential 
multi-omics datasets.

While the quality of the omics data in TCGA datasets 
has often been praised, there have been concerns about 
the accompanying clinical data [57]. In particular, it has 
been noted that the follow-up interval in these data is rela-
tively short [58], resulting in comparatively large propor-
tions of censored survival times. In addition, it has been 

noted that data from databases containing processed ver-
sions of TCGA data can feature error-prone survival infor-
mation [59]. However, the latter is not an issue in our study 
because we used the data provided directly by TCGA.

We avoided interpreting finer details of the results to 
reduce the risk of obtaining nongeneralizable results. 
However, this risk cannot be excluded, especially given 
the relatively short follow-up time in TCGA, the impact of 
preprocessing, and the heterogeneity between data from 
different sources. Given these issues, more open-source 
cancer datasets with survival outcomes from different 
sources are needed. These would provide a good basis for 
further benchmark studies on various topics. Such bench-
mark studies are critical in areas such as predictive model-
ing based on (multi-)omics data, where analytical results 
are difficult to obtain due to the complexity of these data.

We used exclusively overall survival as the outcome. 
Depending on the application, progression-free survival 
can also be relevant. Typically, there is only a modest cor-
relation between overall survival and progression-free 
survival [60, 61]. A statistical benefit of using progression-
free survival is the reduced number of censored observa-
tions, as the time to progression is shorter than the time to 
death. This advantage becomes more important in cancers 
with longer survival. However, the definition of progres-
sion-free survival can vary between studies and its mea-
surement can contain subjective components. In contrast, 
overall survival is clearly defined, which makes it better 
comparable across studies. Consequently, overall survival 
is likely more appropriate for benchmark studies like ours, 
where the aim is to draw generalizable conclusions.

We did not investigate how sensitive our results are to 
the number of features selected. The choice of 2,500 fea-
tures was not based on statistical criteria. Instead, this 
number was selected as a compromise, balancing the need 
to capture the relevant predictive information from the 
omics blocks with maintaining computational demands 
consistent with practical applications.

However, our findings align with those of previous stud-
ies that used different numbers of features. For example, 
Wissel et al. [15] did not perform feature selection and 
found that models based solely on mRNA typically outper-
formed those that incorporated all available omics blocks. 
Similarly, Vale-Silva et al. [16] and Osipov et al. [17], who 
selected fewer features than in our study, observed that 
models with fewer omics blocks generally provided bet-
ter predictive performance than those incorporating all 
blocks. Given these previous findings, our results are 
likely sufficiently robust to the specific number of features 
selected.

The multi-omics analyses conducted in our study do 
not pertain to single-cell omics datasets. Whether com-
parable results can be found in this context should be 
considered in future analyses.
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Conclusions
The use of multi-omics data to predict clinical outcomes 
has been an active and productive area of research in 
recent years. However, obtaining such data is complex 
and costly, which is why for prediction purposes it would 
be beneficial to only collect omics data types that contrib-
ute to improving the predictive performance. Note that in 
contrast, if the goal is to better understand cancer biology, 
the integration of multiple omics data types is likely always 
beneficial in multi-omics data analysis.

In the extensive benchmark study outlined in this 
paper, in alignment with prior findings, we observed that 
the amalgamation of numerous omics data types can 
impede the effectiveness of multi-omics survival predic-
tion. Our results strongly suggest that employing only 
a handful of data types tends to yield superior perfor-
mance. In most instances, leveraging mRNA alone or in 
combinations with miRNA is sufficient. Yet, for certain 
cancer types, the inclusion of methylation data demon-
strates an ability to enhance predictions.

We anticipate that our results will augment the predic-
tive potential of multi-omics data within the field, simul-
taneously optimizing resource allocation and minimizing 
endeavors.
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