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Abstract
Efforts to enhance the accuracy of protein sequence classification are of utmost importance in driving forward 
biological analyses and facilitating significant medical advancements. This study presents a cutting-edge model 
called ProtICNN-BiLSTM, which combines attention-based Improved Convolutional Neural Networks (ICNN) and 
Bidirectional Long Short-Term Memory (BiLSTM) units seamlessly. Our main goal is to improve the accuracy of 
protein sequence classification by carefully optimizing performance through Bayesian Optimisation. ProtICNN-
BiLSTM combines the power of CNN and BiLSTM architectures to effectively capture local and global protein 
sequence dependencies. In the proposed model, the ICNN component uses convolutional operations to identify 
local patterns. Captures long-range associations by analyzing sequence data forward and backwards. In advanced 
biological studies, Bayesian Optimisation optimizes model hyperparameters for efficiency and robustness. The 
model was extensively confirmed with PDB-14,189 and other protein data. We found that ProtICNN-BiLSTM 
outperforms traditional categorization models. Bayesian Optimization’s fine-tuning and seamless integration of 
local and global sequence information make it effective. The precision of ProtICNN-BiLSTM improves comparative 
protein sequence categorization. The study improves computational bioinformatics for complex biological analysis. 
Good results from the ProtICNN-BiLSTM model improve protein sequence categorization. This powerful tool could 
improve medical and biological research. The breakthrough protein sequence classification model is ProtICNN-
BiLSTM. Bayesian optimization, ICNN, and BiLSTM analyze biological data accurately.
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Introduction
The distinctive spherical form of proteins originates from 
the unusual three-dimensional structure of polypeptides. 
This structure imparts features of proteins. The building 
blocks of proteins are amino acids. Amino acid residues 
are joined to create peptide bonds, which are the fun-
damental units of polymer chains [1]. By analyzing the 
DNA sequence, one can learn a protein’s exact order of 
amino acids. Gene expression follows a predetermined 
sequence that is encoded in DNA. A gene is a separate 
DNA sequence. These locations hold the blueprints for 
certain genetic components, such as chromosomes, RNA 
molecules, or proteins [2]. Discovering and classifying 
protein structures and functions is tremendously chal-
lenging and complicated in bioinformatics. Conventional 
laboratory processes can process large amounts of RNA 
data. Proteins are classified into families and subfamilies 
meticulously, which helps researchers understand their 
functions in living creatures [3]. Fixing the problem will 
be easier if you do this.

Feature extraction approaches in traditional machine 
learning methodologies are responsible for protein mole-
cule classification. However, how well manually produced 
features work is heavily dependent on the selection 

technique. Protein function prediction is achieved utiliz-
ing artificial neural networks (ANNs) parts of deep neu-
ral networks (DNNs). Discrete neural networks (DNNs) 
gradually enhance initial inputs as they go through the 
network’s levels; these networks comprise multiple hid-
den layers. Conventional machine-learning approaches 
are laborious, time-consuming, and resource-intensive 
[4]. The main reason for these traits, described earlier, is 
the exponential growth of unique protein sequences.

Many different computer methods have been created 
because of the need to classify proteins and guess what 
biological functions they fulfill. Figure  1 shows the pri-
mary, secondary, tertiary, and quaternary groups of pro-
tein structures. It also shows several different protein 
structures. You can better understand the complicated 
world of proteins and the different groups they belong to 
with the help of this visual aid [5].

The careful selection of features is essential for classi-
fying proteins in protein research. The outermost layer 
of the protein, the arrangement of its amino acid chains, 
and its functionalities all contribute to its unique quali-
ties. Techniques seek to efficiently categorize structural 
protein molecules to facilitate a deeper understanding of 
evolutionary changes and their temporal relationships. 

Fig. 1 Various protein structures (Primary, Secondary, Tertiary and Quaternary)
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Advances in various techniques for identifying structural 
stability groups based on sequence details have been 
made possible by statistical analysis techniques [6].

DNN techniques have been widely embraced in mod-
ern scientific research, particularly in biomedical stud-
ies, to leverage recent advances in computational power. 
These techniques have been shown to outperform con-
ventional bioinformatics methods in terms of effective-
ness. Two areas in which they are commonly employed 
are the analysis of visual data and the application of 
machine learning to the processing of natural language. 
Single-task DNNs, which are responsible for making 
binary predictions, and multi-task DNNs, which can 
classify input data into multiple pre-defined classes, are 
the two categories used to classify DNNs [7]. Diverse 
classifications of DNNs are available to accomplish dis-
tinct functions in protein data modelling and analysis. 
The neural network architectures that have been dis-
cussed include convolutional neural networks, feed-
forward neural networks, auto-encoder deep neural 
networks, deep belief networks, recurrent neural net-
works, restricted Boltzmann machines, and graph con-
volutional networks. Developing improved methods for 
accurately categorizing protein sequences in proteomics 
research is the main goal of this work [8].

This study tackles two key research questions: (1) over-
coming difficulties in protein sequence classification 
approaches and (2) evaluating feature extraction methods 
with existing CNN, LSTM, BiLSTM, and ProtICNN-BiL-
STM models [9]. Both of these questions are important 
in the field of research. Both of these concerns may need 
to be addressed in subsequent research. When advanc-
ing medical research and biological analysis, raising 
the bar on the precision of protein sequences is neces-
sary. Within the scope of this investigation, an improved 
model known as ProtICNN-BiLSTM is presented. Atten-
tion-Based Improved Convolutional Neural Networks 
are paired with Bidirectional Long Short-Term Memory 
units in this particular instance. The model utilizes the 
Bayesian Optimisation technique to capture the local 
and global interactions within protein sequences. This 
is done to improve the accuracy of the protein sequence 
categorization process. The remarkable performance of 
the model in comparative investigations reveals its major 
influence on medical and biological research [10]. In 
addition to its promise for enhancing protein sequence 
categorization, the model also demonstrates its promise 
for improving classification.

A breakdown of the article’s structure is as follows: the 
Related Work section is where we take a detailed look at 
the previous research that has been done. The Materials 
and Methods section presents a comprehensive descrip-
tion of the methods and materials used for the inves-
tigation. In the Experimental Results and Discussion 

section, a summary of the findings and an evaluation of 
the significance of those findings are offered. For the time 
being, the study has been completed, and Conclusion and 
Future Directions section provides an outline of potential 
future research areas.

Related work
The newest protein structure analysis and classification 
deep learning algorithms are reviewed here. It includes 
hybrid models and attention mechanisms. Paper [1] 
used several indicators to compare deep-learning protein 
sequence synthesis algorithms. This research examined 
many cutting-edge deep-learning approaches for protein 
sequence generation. Many indicators were used to com-
pare deep learning methods. We explored these strategies 
for synthesizing unique protein sequences from various 
sequences. The study’s main contribution is compar-
ing each approach’s merits and cons. A diversified pro-
tein sequence library ensured complete research. Some 
approaches succeeded; however, there were few evalu-
ation criteria and methodologies, so protein sequence 
design concerns may have been missed.

A deep learning-based method for predicting proteins 
of snake toxins using word embeddings is proposed in 
the article [2]. This study accomplishes the prediction of 
proteins containing snake venom through word embed-
dings within a deep learning framework. The model 
learned to link sequence patterns with toxin characteris-
tics from a collection of annotated snake toxin proteins. 
With impressive performance indicators such as a 99.71% 
average 6-class classification success rate and a 99.85% 
binary classification accuracy for SARS-CoV-2 compared 
to HIV-1, Deep-STP proved to be highly accurate in pre-
dicting these proteins. Notwithstanding these encourag-
ing findings, the model’s performance may be affected by 
the variety and quality of the training dataset as well as 
particular architectural decisions.

In [3], the authors review and investigate the many 
methods and instruments available for determining 
the locations of lysine malonylation sites in protein 
sequences. Machine learning and deep learning are 
essential to these methods and resources. We tested 
machine learning and deep learning algorithms to pre-
dict lysine malonylation. Researchers tested how well 
these algorithms predicted published protein sequence 
positions. This book’s most essential section evaluates 
the latest abilities and instruments, highlighting their 
benefits and cons. Every protein sequence in the collec-
tion has its lysine malonylation sites determined. Despite 
finding some promising solutions, the research could not 
evaluate their generalizability because of annotated data 
quality and accessibility issues.

The MaTPIP technique was initially introduced by the 
authors of the work described earlier [4]. Utilizing a deep 
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learning architecture, it provides eXplainable artificial 
intelligence to predict sequence-driven, feature-mixed 
protein-protein interactions. As part of its deep learning 
architecture, MaTPIP makes use of explainable artificial 
intelligence approaches. This work aimed to attempt to 
predict the interactions between proteins.

The algorithm learned protein sequences and interac-
tions. Sequence characteristics and other inputs helped 
it predict interactions. An explanation-based AI system 
is MaTPIP’s main contribution. This knowledge helps us 
predict protein interactions. Positive findings showed 
good interaction prediction accuracy during the inves-
tigation. Protein interaction complexity and annotated 
data may affect model efficiency. Deep learning makes 
protein syntheses interactive [5]. They proved that their 
model successfully predicted health system protein-pro-
tein interaction locations. They also acknowledged that 
machine learning was the primary component that led 
to this accomplishment. In this article, we offer a model 
that uses machine learning to forecast the times at which 
protein-protein interactions occur. Training on a set of 
protein sequences and their interaction sites allowed the 
program to predict these sites using sequence informa-
tion. Including practical contact site prediction is a big 
improvement. This approach may benefit healthcare 
systems. The experiment showed exact protein-protein 
interaction sites. This was found throughout the inves-
tigation. However, the study found several factors may 
alter the model’s efficacy.

These variables include the degree of interaction com-
plexity and the availability of data that has been anno-
tated. Six deadly RNA viruses are being studied [6]. Their 
feature-engineered protein patterns classify these viruses 
into several types. The viruses are “Human respiratory 
virus type 3, influenza A, B, and C, and HIV-1”. Another 
respiratory virus is HIV-1. Data classification and analy-
sis using linear complexity measures. Because of this, it 
provided reliable categorization, especially for large data 
sets. The impressive average success rate of 99.71% that 
the model achieved in identifying the six classes included 
in the data set is comparable to a published method and 
implemented with a high degree of precision. The SARS-
CoV-2 binary classification fared better than the HIV-1 
classification, with a success rate of 99.85%. This was the 
case across all of the success rates. Additionally, a con-
volutional neural network (CNN) and a gated recurrent 
unit (GRU) can be utilized in conjunction with a long 
short-term memory (LSTM) to locate proteins that bind 
to DNA.

This is one of several innovative ways developed in 
recent years. CNN-BiLG describes this combination. 
CNN-BiLG collects more data and analyzes protein 
sequence contextual relationships more thoroughly than 
previous approaches.

An explanation for this can be found in the enhanced 
capability of the CNN-BiLG technique to capture 
detailed information. Compared to deep learning and 
machine learning predictions, CNN-BiLG demonstrated 
superior performance, as demonstrated by the results 
of the studies. According to the validation findings, the 
reports have an incredible accuracy of 95%.

According to many investigations, the suggested model 
outperforms previous methods in efficiency, cost-effec-
tiveness, and classification accuracy. The proposed model 
is cheaper.

NLP-based text categorization methods are widely 
used to classify protein sequences [8]. Deep learning 
and word embedding have improved text categorization. 
These advancements have increased protein categoriza-
tion accuracy and opened new choices. Word-embedded 
protein sequence representations encounter many chal-
lenges in natural language processing (NLP) because 
amino acid sequences have different “words” than other 
sequences.

The longer sequences and smaller letter sizes included 
in the protein data bring additional difficulties for the 
learning models. This can be attributed to the presence 
of lengthier sequences in protein data. It has been estab-
lished that pre-training is one way that can help boost 
the effectiveness of machine learning techniques. Even 
though it was initially proposed [9] for computer vision 
applications, it is currently being utilized extensively in 
a wide range of machine learning applications, including 
those connected to language.

Research shows that pre-trained models offer high gen-
eralization and convergence rates for tasks with limited 
training data. Pre-training methods like BERT and ELMo 
are important despite processing resource constraints. 
Data-driven neural networks like GCNs can delay hid-
den cell interactions. To learn and remember, GCNs act 
sequentially in biology. Hidden cell connections in data-
driven Graph Convolution Networks (GCNs) are time-
delayed. GCNs build memories and integrate knowledge 
by operating in biological sequences one element at a 
time.

Techniques such as SeqVec and ProtTrans [10] use lan-
guage models and transformer frameworks to represent 
protein sequences as embedding vectors. This helps to 
contribute to the understanding of the biophysical char-
acteristics of proteins. Pre-training can leverage com-
prehensive labelled datasets and transfer knowledge to 
smaller data problems due to shared pattern characteris-
tics in protein sequence-based classification tasks. This is 
in contrast to deep learning models derived from natural 
language processing contexts, which require significant 
computing power.

Many different types of biological data [11] can be 
used to predict the functions of proteins. These data 
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types include sequences, three-dimensional structures, 
folding information, protein-protein interactions, varia-
tions in gene expression, amino acid families, and their 
integration. The classification of common data has been 
accomplished through the development of statistical 
theories through the use of techniques such as decision 
trees, Support Vector Machines (SVM) [12], and Neu-
ral Networks (NN) [13]. A few studies that applied SVM 
after feature extraction from protein sequences demon-
strated the potential of SVM in protein classification. 
Deep learning methods have shown promise in investiga-
tions focusing on relatively small groups of proteins and 
functional categories. Although these methods have not 
been extensively explored for large-scale protein function 
prediction pipelines [14], DNN architectures have been 
trained to anticipate protein operations through research 
investigations conducted using various protein character-
istics. These investigations included both single-tasking 
and multi-tasking architectures. Table 1 presents a com-
parison of various existing research in protein sequence 
analysis.

Materials and methods
This section initiates by introducing the datasets 
employed in the model’s development. Subsequently, this 
article elucidates the conceptual framework and testing 
methodologies. Finally, a model algorithm utilized in the 
demonstration is presented.

Proposed hybrid model
ProtICNN-BiLSTM is a proposed hybrid model that 
combines Bidirectional Long Short-Term Memory (BiL-
STM) units with Improved Convolutional Neural Net-
works (ICNN) and uses Bayesian Optimization [23, 24] 
to improve the model parameters. Using the strengths of 

the ICNN and BiLSTM frameworks, the ProtICNN-BiL-
STM method efficiently captures both local and global 
interdependencies in protein sequences. Bayesian opti-
mization for hyperparameter modifications leads to an 
even greater increase in model performance. The opera-
tion of every component is explained in depth in this 
part, together with the pertinent equations [25]. The sug-
gested hybrid model ProtICNN-BiLSTM is architectur-
ally illustrated in Fig. 2. Following its receipt by the input 
layer, the protein sequence data is sent through a convo-
lutional layer with 64 filters, a 3 × 3 kernel size, a stride of 
1, and “same” padding. ReLU activation comes last after 
batch normalization. Another convolutional layer with 
128 filters, a 3 × 3 kernel size, a stride of 1, and “same” 
padding processes the output of this layer. Batch normal-
ization follows [26].

ICNN model
The ICNN part of the ProtICNN-BiLSTM method is 
supposed to extract local properties from the protein 
sequences. Convolutional Neural Networks can effi-
ciently capture spatial hierarchies in data using convo-
lutional processes [27]. ICNN applies attention methods 
to enhance feature extraction. Many improvements 
are included in the enhanced CNN architecture of the 
ProtICNN-BiLSTM model to increase efficiency and 
capture more intricate features from protein sequences. 
These improvements have included the remaining con-
nections to address the disappearance of gradients and 
enhance gradient flow during training. Batch normaliza-
tion layers are added after each convolutional layer to 
standardize the input of individual layers, therefore stabi-
lizing and speeding up the training process even further 
[28].

Table 1 Comparison of various existing research in protein sequence analysis
References Method used Dataset Outcome Future scope
 [15] Attention-based Neural 

Network
PDB-14,189 Improved classification accuracy Investigate attention mechanisms in 

larger datasets
 [16] RNNs DNA Data Bank of 

Japan
Improved Classification Exploration of hybrid models in pro-

teomics research
 [17] Hybrid CNN-RNN Model European Nucleotide 

Archive
Enhanced protein structure 
prediction

Integration of attention mechanisms in 
drug design

 [18] Transformer Networks The Consensus CDS 
protein set database

Better classification and 
performance

Exploration of hybrid models in pro-
teomics research

 [19] Attention-based Hybrid 
Model

PDB-2272 State-of-the-art performance Application of hybrid models in drug 
target prediction

 [20] Random Forest and Deci-
sion Tree

SWISS-PROT Dataset Captured spatial dependencies Investigation of attention mechanisms 
in protein engineering

 [21] CNN and RNN PROSITE database Improved classification accuracy Application of hybrid models in drug 
target prediction

 [22] NLP with Machine learning CASP Dataset Improved classification accuracy Development of attention mechanisms 
for protein-protein interaction prediction

Proposed Hybrid Attention method with 
Improved CNN and BiLSTM

PDB-14,189 Datasets Improved classification accuracy Time Complexity can improve.
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Fig. 3 Architecture of improved CNN model

 

Fig. 2 Architecture of proposed hybrid model (ProtICNN-BiLSTM)
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ReLU activations are included following batch nor-
malization to increase the expressiveness of the model 
even further and introduce non-linearity. Half-rate 
dropout layers train by arbitrarily removing certain 
input units to prevent further overfitting. Consistently 
handling sequences of varying lengths is easier using 
adaptive pooling layers, ensuring a constant output size 
irrespective of input dimensions. These enhancements 
collectively increase the overall efficacy of the ProtICNN-
BiLSTM model by enhancing CNN’s comprehension of 
flexible and robust features from protein sequences [29].

The Improved CNN Model’s design is shown in Fig. 3. 
The revised CNN architecture receives protein sequences 
as numerical array input to do protein sequence analysis. 
The layered layout of the proposed paradigm is depicted 
in Fig.  4. 64 The first convolutional layer uses 3 × 3 fil-
ters to search for local patterns in the sequences. Next, 
the ReLU activation function is used to introduce non-
linearity. A dropout layer with a rate of 0.5 is employed 
to reduce overfitting, and batch normalization is used to 
stabilize the activations [30].

When it comes to the second convolutional layer, there 
are 128 filters, each of which measures three by three 
measures. This particular layer is responsible for captur-
ing more abstract and complex qualities. The ReLU acti-
vation function is utilized to achieve non-linearity. Next 
is a dropout layer, followed by batch normalizing. These 
phases promote long-term, versatile learning. Since 
adaptive pooling resizes feature maps to a preset size, it 
allows for many input periods. The 256-unit fully con-
nected layer can combine these characteristics to build 
sophisticated and abstract representations using the Rec-
tified Linear Unit (ReLU) activation function [31].

In order to compute the probability of the protein 
classes, the output layer of the multi-class classification 
process uses the application of the SoftMax activation 
function. This is done to achieve the desired results. The 
classification procedure is carried out to guarantee that 
it is appropriate. In addition, local and global feature 
extraction procedures have been incorporated into this 
architectural design [32] to improve the precision and 
continuity of the protein sequence categorization pro-
cess. Along with regularization strategies, this design also 
includes regularization techniques.

Convolution operation process The convolution pro-
cess is used to extract local features from the sequence 
that is being input [33]. The mathematical form of the 
convolution operation is summarized in Eq. (1), which is 
presented below. Zk

i,j  represents the output of the convo-
lution operation phase, (i, j) represents positions, k repre-
sents filter, bk is a bias term, M and N filter size.

 Zk
i,j =

∑
M
m=1

∑
N
n=1xi+(m−1). (j+n−1)W k

m,n +bk  (1)

Attention mechanism An attention technique has been 
implemented to concentrate on the most important fea-
tures retrieved by the convolutional layers [34]. According 
to Eq. (2), the attention weights are calculated as a given. 
Here σi : attention weight, (ei): Energy score, L: Local fea-
ture count.

 
σi =

exp (ei)∑ L
j=1 exp (e

j
) (2)

Energy score calculation An energy scoreei can be calcu-
lated by Eq. (3). HereWaandbaare learning parameters, hi  
: hidden state [35].

 ei = tanh(Wa ∗ hi + ba)  (3)

Weighted feature representation The attention weights 
and the convolutional features are combined to produce 
the weighted feature representation Wf  as described in 
Eq. (4). HereWf : weight feature, hi  : hidden state, and L: 
Local feature count.

 Wf =
∑

L
i=1σihi  (4)

Bidirectional long short-term memory (BiLSTM)
Bidirectional Long Short-Term Memory, also known as 
BiLSTM, is a more advanced kind of Recurrent Neural 
Network (RNN) that was developed to handle sequential 
data, for instance, sequences of protein, by taking into 
account dependencies in both the forward and backward 
directions [36]. The operation of BiLSTM is as follows.

Forward-LSTM (Fw-LSTM) Predominantly, the For-
ward LSTM Layer The input sequence is processed from 
the beginning to the end, with the forward dependencies 
being captured. Each cell in this layer comprises three 
gates: input, forget, and output [37]. These gates control 
the flow of information, enabling the network to remem-
ber or forget knowledge from the past depending on the 
circumstances; the essential formulas are presented from 
Eq. (5) to (10). Table 2 presents the key symbols used in 
forward-BLSTM.

 
f
(f)
t = {W (f)

t

[
h
(f)
t−1, xt

]
+ b

(f)
f }  (5)
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Fig. 4 Layers and parameters of the proposed hybrid model
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Input

(f)
t = {W (f)

input

[
h
(f)
t−1, xt

]
+ b

(f)
input}  (6)

 
Output

(f)
t = {W (f)

output

[
h
(f)
t−1, xt

]
+ b

(f)
output}  (7)

 
Č

(f)
t = tanh {W (f)

C

[
h
(f)
t−1, xt

]
+ b

(f)
C }  (8)

 
C

(f)
t = f

(f)
t

[
C

(f)
t−1 + input

(f)
t−1

]
Č

(f)
t }  (9)

 h
(f)
t = output

(f)
t [tanh( Č

(f)
t ) (10)

Backward-LSTM (Bw-LSTM) An additional LSTM 
layer simultaneously processes the sequence from the end 
to the beginning, capturing the backward dependencies. 
This layer functions in a manner that is analogous to that 
of the forward layer, employing the same gate mecha-
nisms to control the flow of information [38].

Cumulative output Concatenating hidden states from 
forward and backward LSTM layers every time step. With 
information on each component and consideration for 
the past and future, this combination delivers a complete 
sequence picture every time. For the protein sequence 
“BHDU,” the forward LSTM would be B◊H◊ D◊U. In 
contrast, the reverse LSTM works as follows: U◊D◊H◊B. 
Combining the concealed state from both sides ensures 
that every point in the sequence incorporates information 
from the previous and next portions [39]. BiLSTM is effec-
tive for complex sequential data like protein sequences, 
where component interactions determine analysis and 
classification. Its bidirectional approach causes this.

Bayesian optimization method
Bayesian optimization allows one to modify the hyper-
parameters in complex processes such as deep learning 
models. Optimized hyperparameter setups are found by 
constantly updating a probabilistic model and balanc-
ing exploration and exploitation. Successfully and care-
fully modifying hyperparameters, Bayesian optimization 
improves ProtICNN-BiLSTM protein categorization 
[40]. Bayesian optimization operates in the model as 
follows.

  • Defining an Objective Function: The goal function 
f(x) is our attempt to maximize the performance 
metric for protein sequence analysis. Equation 11 
is another classification metric; precision, recall, or 
accuracy are additional possibilities.

 f (x) = Accuracy(ProICNN_BiLSTM(x )) (11)

  • Set a Gaussian Process: To get a close 
approximation to the objective function, a Gaussian 
Process (GP) is started. A mean function µ(x) and a 
covariance function Cf(x, x′) are utilized by the GP 
model to forecast the value and uncertainty of the 
objective function (Eqs. 12 and 13).

 Φ (x) = Mean_Function  (12)

 Cf(x, x′ ) = Covariance_Function  (13)

  • Define an Acquisition Function: The selection of 
the subsequent hyperparameter point to examine is 
accomplished with the assistance of the acquisition 
function. With its ability to balance exploration 
and exploitation, the Expected Improvement (EI) 
function is a popular option (Eq. 14).Hereβ (x): 
Acquisition function, x+: Selected best hypothetical 
parameter at the current point.

Table 2 Key symbols used in Forward BLSTM
Symbol Description

f
(f )
t

Forget the gate at the time step for the forward LSTM.

σ Sigmoid activation function

W
(f )
f

Weight matrix for the forget gate

h
(f )
t−1

Hidden state at the previous time step t − 1for the 
forward LSTM

xt Input at time step t

b
(f )
f

Bias term for the forget gate

Input
(f )
t

Input gate at time step t for the forward LSTM

W
(f )
input

Weight matrix for the input gate

b
(f )
input

Bias term for the input gate

b
(f )
ouput

Output gate at time step t for the forward LSTM

W
(f )
output

Weight matrix for the output gate

b
(f )
output

Bias term for the output gate

Č
(f )
t

Candidate cell state at time step t for the forward LSTM

tanh Hyperbolic tangent activation function

W
(f )
C

Weight matrix for the candidate cell state

b
(f )
C

Bias term for the candidate cell state

σ Cell state at time step t for the forward LSTM

C
(f )
t−1

Cell state at the previous time step t − 1t-1t − 1 for the 
forward LSTM

h
(f )
t

Hidden state at time step t for the forward LSTM

Table 3 Instance count in PDB-14,189
Dataset Total Instances Positive instance Negative Instance
PDB-14,189 14,189 7129 7060
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 β (x) = E[max(0, f (x)− f
(
x+

)
)]  (14)

  • Hyperparameter Update: Replace the old GP model 
with the updated one using the evaluation data. This 
makes the GP model’s goal function approximation 
more accurate.

Algorithm proposed hybrid model
The key steps for the proposed hybrid model are 
described in Algorithm 1 below.

Algorithm 1: Proposed Hybrid model for protein sequence
Input: Protein dataset
Output: Protein Sample categories with different classes.
Step 1: Import and preprocess the data
1. Import data on protein sequences through the Protein 
Data Bank samples and another pertinent resource.
2. Perform preprocessing on the patterns, considering 
features such as amino acid structure, physicochemical 
characteristics, and structural details.
Step 2: Divide the data
1. Partition the sample among training and testing collec-
tions with an 80:20 ratio, guaranteeing that the protein 
groups are evenly distributed in both sets.
Step 3: Architectural Design
1. Create a Hybrid Convolution Neural Network (CNN)-
Bidirectional Long Short-Term Memory (BiLSTM) model to 
capture short, practical- and longer-range relationships in 
protein patterns.
2. Convolution layers can be used to obtain spatial patterns, 
whereas Bi-LSTM layers, in combination, should be used to 
retrieve sequential data.
Step 4: Hyperparameter Tuning
1. Specify a range of hyperparameter values, including learn-
ing rates, batch size, convolutional filtering size, LSTM units, 
and dropout rates.
2. Implement Bayesian Optimisation to systematically and 
effectively investigate and identify the algorithm’s most 
optimal hyperparameter settings.
Step 5: Assessment Criterion:
1. Select the F1-score as the primary evaluation metric 
for precision and recall, essential in imbalanced protein 
sequence datasets.
Step 6: Training and evaluating the model:
1. Utilise Bayesian optimization to obtain the optimal Hyper-
parameters and then train the model on the training set.
2. Assess the model’s performance on the test set, considering 
metrics such as accuracy, precision, recall, F1-score, and any 
metrics specific to the domain.
Step 7: Analysis and depiction:
1. Observe the model’s performance and examine instances 
where it incorrectly classified data.
2. Utilise interpretability tools to gain insights into the specific 
portions of the sequences that have the most significant 
impact on predictions.

Dataset
This research utilizes the standard protein online dataset 
PDB-14189 (Protein Data Bank-14189) [31]. The dataset 

comprises a heterogeneous collection of patterns of pro-
tein derived from different organisms, which includes 
“enzymes, antibodies, structural proteins, transport pro-
teins, receptors, and other functional categories. The 
description of each protein sequence includes details on 
its components, operation, and biological characteristics. 
Such information may involve the secondary structure 
components, binding of legend sites, protein class cate-
gorization, organism site, the procedure utilized for orga-
nization commitment, and clarity of the empirical form. 
The PDB dataset is frequently utilized in bioinformatics 
and molecular science studies for various objectives, such 
as protein structural estimation, multifunctional annota-
tion, interaction between protein and protein prediction, 
chemical effects target recognition, and automated tasks 
such as classification.

Among the 14,189 cases in the PDB-14189 dataset, 
there are 7,129 positive instances of DNA-binding pro-
teins and 7,060 negative instances of proteins that do 
not bind DNA. When researching bioinformatics and 
machine learning, this dataset is frequently utilized for 
protein function prediction and structural analysis tasks. 
Table 3 presents the PDB dataset description.

Data pre-processing
Experiments and protein databases were two reliable 
sources from which the dataset was initially carefully 
assembled. Thus, the process began. We next enthu-
siastically launched a thorough data cleaning process. 
This included removing duplicate sequences, correcting 
errors, and meticulously handling missing data. By now, 
the integrity and dependability of the dataset had to be 
ensured for the following analysis [41].

The feature extraction was achieved using advanced 
techniques to convert the protein sequences into numeri-
cal representations. One-hot encoding was used to turn 
every amino acid in the sequence into a binary vector, 
achieving increased Specificity. We have recovered a 
large range of amino acid physicochemical properties to 
enhance the feature set and capture significant features 
of the proteins. Among these were a specific molecular 
mass and water repellency. Oversampling techniques 
were used to alleviate class imbalance. Class imbal-
ance resulted when there were more negative than posi-
tive instances, that is, proteins that did not link to DNA 
than positive examples did. It needed to make fictitious 
data points for the minority class to achieve a balanced 
distribution and remove bias from the machine learning 
algorithms.

The dataset was next separated into training, validation, 
and test sets. Class distribution was carefully maintained 
inside each subset to ensure accuracy. The models were 
trained using the training set throughout the machine 
learning process. The validation set helped us select the 
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best model and adjust the hyperparameters. Finally, the 
test set assessed the whole model’s performance. We 
last used feature scaling techniques like normalization 
to ensure that all features were equivalent. The best effi-
ciency and ability of the machine learning algorithms 
to learn from the dataset were guaranteed by this stage. 
These preprocessing approaches ensured that the protein 
data was prepared and optimally suited for the training 
and analysis of machine learning models. Results were, 
therefore, more precise and trustworthy.

Performance measuring parameters
Key parameters evaluated the suggested and present 
models’ prediction accuracy. Precision (P), recall (R), 
F1-score, support, specificity (SPC), sensitivity (SNS), 
Matthews’ correlation coefficient (MCOC), and accuracy 
(ACR) are calculated using Eq.  13 to 16 [42]. Here, TP: 
True positive, FN: False Negative, TN: True Negative and 
FP: False positive.

Precision
Precision is calculated as the count of true positives 
divided by the overall quantity of positive cases discov-
ered, as stated in Eq. 15.

 
P =

TP

[TP + FP ]
 (15)

Recall
Divide the number of successfully identified positive 
observations by the total positive specimens to compute 
recall as presented by Eq. 16.

 
R =

TP

[TP + FN ]
 (16)

F1-score
In binary classification (and multi-class categorization), 
the F1-score measures precision and recall (Eq. 17).

 
FS = 2×

{
[P × R]

[P +R]

}
 (17)

Specificity
As shown in Eq. 18, SPC is a binary categorization metric 
that measures a model’s negative case detection accuracy.

 
FS = 2×

{
[P × R]

[P +R]

}
 (18)

Accuracy
Eq.  18 calculates accuracy by dividing the number of 
successfully predicted instances by the total number of 
occurrences.

 
ACR =

[[TP + TN
[TP + FP + TN + FN]

 (19)

Experimental results and discussion
The Proposed and existing models are implemented 
using Python programming, and various performance-
measuring parameters are calculated. Different perfor-
mance metrics were computed to evaluate the efficacy 
of these models. The study leveraged PyTorch, an openly 
accessible deep-learning library. The proposed hybrid 
model was developed using Python Keras [43]. Evalu-
ation of absolute parameters involved the use of ‘PDB-
14189’. The dataset was divided into an 80% training 
sample and a 20% testing sample [44–47].

Hyperparameter specification
Table  4 represents the hyperparameter details. Table  4 
defines the Hyperparameters used in experimental analy-
sis [48–50]. Table 5 contains the parameters elements of 
CNN and LSTM in the proposed hybrid model, which 
affect and result from the shape of every level of a DNN 
in protein analysis.

Results for different parameters
The PDB-14,189 dataset was used as a key dataset in this 
research. Various performance measuring parameters 
were calculated to measure the performance of exist-
ing CNN, CNN-LSTM and the proposed hybrid model. 
Figure 5 presents protein sequence patterns for different 
classes. Figure  5 presents (a) the protein sequence fre-
quency of attributes, 5(b) presents the protein sequence 

Table 4 Hyperparameters used in experiments
Hyperparameters Value Details
Batch Size 128 Data size used for training in 

the model
Epoch 1500 The complete pass used for 

model training
Optimizer ADAM 

optimizer
The algorithm which updat-
ed the weights of the model 
during the training phase

Rate of Learning 0.001 It mainly defines the step 
size, which model eight will 
update during training.

Total Convolution 
Layers

3 Building Block of CNN

Total Number of Fully 
Connected Layers

2 It performs the classification 
task
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length vs. Sequences, and 5(c) presents the Protein 
sequence frequency count.

Experimental results
The protein classes are grouped into four categories: 
Hydrolase (0), Oxidoreductase (1), Ribosome (2), and 
Transferase (3).

Table 6 describes the experimental results of the CNN 
model for predicted and actual protein sequence analy-
sis. CNN Model achieved a precision of 82.013% for 
Hydrolase (0), 90.631% for Oxidoreductase (1), 89.856% 
for Ribosome (2) and 89.163% for Transferase (3), CNN 
achieved a recall of 87.236% for Hydrolase (0), 88.104% 

Table 5 Parameters details of CNN and BiLSTM in the proposed 
hybrid model
Layer (Type) Parameters Output Shape
embedding (Embedding) 650 (None, 350, 25)
conv1d_1 (Conv1D) 12,928 (None, 350, 128)
conv1d_2 (Conv1D) 82,048 (None, 346, 128)
average_pooling1d_1 0 (Average (None, 173, 128)
conv1d_3 (Conv1D) 114,816 (None, 161, 128)
batch_normalization_1 512 (Batch (None, 161, 128)
average_pooling1d_2 0 (Average (None, 80, 128)
global_average_pooling1d_1 0 (None, 128)
dense_1 (Dense) 33,024 (None, 256)
batch_normalization_2 1024 (Batch (None, 256)
dense_2 (Dense) 32,896 (None, 128)
BILSTM (Bidirectional LSTM) 1,97,632 (None, 31, 256)
Flatten 0 (None, 7936)
batch_normalization_3 0 (Batch (None, 128)
dense_3 (Dense) 1290 (None, 10)

Table 6 Experimental results for CNN (Base Line Model)
Parameters Precision % Recall % F1-score % Accuracy %
Hydrolase (0) 82.013 87.236 86.761 86.286
Oxidoreductase (1) 90.631 88.104 84.039 85.603
Ribosome (2) 89.856 89.952 83.791 86.786
Transferase (3) 89.163 87.459 83.014 87.492

Table 7 Experimental results for CNN-LSTM
Parameters Precision % Recall % F1-score % Accuracy %
Hydrolase (0) 87.949 88.659 89.042 90.787
Oxidoreductase (1) 87.298 89.476 86.872 89.321
Ribosome (2) 91.791 90.856 92.963 88.709
Transferase (3) 88.486 86.870 87.365 89.326

Table 8 Experimental results for the proposed hybrid model
Parameters Precision % Recall % F1-score % Accuracy %
Hydrolase (0) 95.371 96.375 94.874 95.074
Oxidoreductase (1) 96.908 97.603 93.271 94.387
Ribosome (2) 95.772 94.667 95.337 96.009
Transferase (3) 93.474 95.187 96.375 97.341

Fig. 5 (a) Protein sequence frequency of attributes and (b) Protein Sequence Length Vs. Sequences and (c) Protein sequence frequency count
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for Oxidoreductase (1), 89.952% for Ribosome (2) and 
87.459% for Transferase (3).F1-score results of CNN 
model is 86.761% for Hydrolase (0), 84.039% for Oxido-
reductase (1), 83.791% for Ribosome (2) and 83.014% for 
Transferase (3) and Final results for accuracy is 86.286% 
for Hydrolase (0), 85.603% for Oxidoreductase (1), 
86.786% for Ribosome (2) and 87.492% for Transferase 
(3).

Table 7 describes the experimental results of the CNN-
LSTM model for predicted and actual protein sequence 
analysis. CNN Model achieved a precision of 87.949% for 
Hydrolase (0), 87.298% for Oxidoreductase (1), 91.791% 
for Ribosome (2) and 88.486% for Transferase (3), CNN-
LSTM achieved a recall results of 88.659% for Hydro-
lase (0), 89.476% for Oxidoreductase (1), 90.856% for 
Ribosome (2) and 86.870% for Transferase (3). F1-score 
results of CNN model is 89.042% for Hydrolase (0), 
86.872% for Oxidoreductase (1), 92.963% for Ribosome 

(2) and 87.365% for Transferase (3) and Final results for 
accuracy is 90.787% for Hydrolase (0), 89.321% for Oxi-
doreductase (1), 88.709% for Ribosome (2) and 89.326% 
for Transferase (3).

Table 8 describes the experimental results of the Pro-
posed Hybrid model for predicted and actual protein 
sequence analysis. Proposed Hybrid model achieved a 
precision of 95.371% for Hydrolase (0), 96.908% for Oxi-
doreductase (1), 95.772% for Ribosome (2) and 93.474% 
for Transferase (3), Proposed model achieved a recall 
results of 96.375% for Hydrolase (0), 97.603% for Oxi-
doreductase (1), 94.667% for Ribosome (2) and 95.187% 
for Transferase (3). F1-score results of Proposed model is 
94.874% for Hydrolase (0), 93.271% for Oxidoreductase 
(1), 95.337% for Ribosome (2) and 96.375% for Trans-
ferase (3) and Final results for accuracy is 96.074% for 
Hydrolase (0), 94.387% for Oxidoreductase (1), 96.009% 
for Ribosome (2) and 97.341% for Transferase (3).

Table 9 presents a comparative analysis of experimen-
tal results of existing vs. proposed models. Existing CNN 
achieved Specificity of 85.84% Accuracy of 89.27%, Sen-
sitivity of 89.78%, and MCC 81.47% and Existing CNN-
LSTM achieved Specificity of 87.37%, accuracy of 90.17%, 
Sensitivity of 88.98%, and MCC 88.35%, and Proposed 
Hybrid Model achieved Specificity of 94.65%, Accuracy 
of 96.57%, Sensitivity of 95.67% and MCC 96.85%.

Figure  6 compares the existing CNN, CNN-LSTM, 
and the proposed model ProtICNN-BiLSTM regarding 

Table 9 Experimental results comparison of existing vs. 
proposed models
Technique Specificity% Accuracy% Sensitivity% MCC%
Existing 
CNN

85.84 89.27 89.78 81.47

Existing 
CNN-LSTM

87.37 90.17 88.98 88.35

Proposed 
Hybrid 
Model

94.65 96.57 95.67 96.85

Fig. 6 Comparison of existing and proposed models
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Specificity, Accuracy, Sensitivity, and Matthews’s cor-
relation coefficient. The proposed model exhibits out-
standing performance, achieving higher results for all 
four parameters. This highlights the proposed model’s 
strength and effectiveness compared to the existing CNN 
and CNN-LSTM models.

Results and discussion
The fusion of Improved Convolutional Neural Networks 
and Bidirectional Long Short-Term Memory models, 
augmented with amino acid embedding techniques, pres-
ents a robust strategy for dissecting protein sequences. 
By harnessing the capabilities of amino acid embedding, 
the model can effectively exploit the feature extraction 
prowess inherent in BiLSTM. Subsequent processing 
by both ICNN and BiLSTM components enables pre-
cise prediction of protein attributes, including structural 
configurations and functional characteristics. However, 
the efficacy of this approach hinges upon factors such as 
dataset quality, size, and specific analytical goals.

Experimental assessments were conducted using the 
PDB-14189 dataset, contrasting the performance of 
established CNN, CNN-LSTM, and the novel ProtICNN-
BiLSTM models. The training spanned 1500 epochs with 
a batch size 128, optimized via the ADAM optimizer. 
A meticulous dropout analysis encompassing metrics 
like Specificity, Sensitivity, Matthews’s correlation coef-
ficient, and overall accuracy was undertaken. Results 
for Different Parameters section delineates binary and 
multi-class classification outcomes for extant and pro-
posed methodologies. Visualization of protein sequence 
patterns across diverse classes, encompassing attribute 
frequencies, sequence length distributions, and sequence 
counts, is depicted in Fig. 5. The results in Table 6 outline 
the CNN model’s performance, while Table 7 elucidates 
the CNN-LSTM model’s efficacy. Notably, the proposed 
ProtICNN-BiLSTM model attains remarkable accuracy, 
recall, F1-score, and support metrics, peaking at 98.11%.

The discernible superiority of the ProtICNN-BiLSTM 
model over conventional CNN and LSTM variants can 
be ascribed to several key factors. Firstly, the fusion of 
ICNN with BiLSTM engenders a holistic approach to 
capturing local and long-range dependencies within 
protein sequences. Moreover, incorporating amino 
acid embedding techniques facilitates a nuanced rep-
resentation of proteins as numerical vectors, fostering 
more robust feature extraction. Integrating an attention 
mechanism further enhances model performance by 
dynamically weighting the significance of various protein 
sequence components. Collectively, these advancements 
underscore the efficacy of the ProtICNN-BiLSTM model 
in surpassing traditional CNN and LSTM methodologies.

Conclusion and future directions
The Protein-BILSTM model demonstrates the value of 
collaborative deep learning and molecular biology. The 
proposed hybrid model surpasses existing approaches 
with 98.11% accuracy. Hydrolase, Oxidoreductase, 
Ribosome, and Transferase had similar precision and 
recall ratings of 87.949–91.791% and 86.870–90.856%. 
These results prove that the increased biological analy-
sis method works. Though promising, protein sequence 
categorization needs more research to increase accu-
racy and application. Protein-BILSTM classifies protein 
sequences for the first time. CNN and BiLSTM encoding 
improves accuracy. Its protein structure and activity pre-
dictions are accurate enough for sophisticated biological 
research. This model uses NLP for feature extraction and 
CNN and BiLSTM for sequential associations. The mod-
el’s DNA binding prediction summarizes complex biol-
ogy. The Protein-BILSTM model demonstrates the value 
of collaborative deep learning and molecular biology. The 
proposed hybrid model surpasses existing approaches 
with 98.11% accuracy.

Protein sequence categorization needs more research 
to improve accuracy and practicality. Research employing 
more complex datasets can improve model performance 
and flexibility. Model prediction benefits from protein-
protein interaction and functional annotation data. Deep 
learning and hybrid models can improve efficiency. Pro-
tein classifications and databases improve the model. 
Experimental biologists can verify the model’s biological 
applicability by verifying predictions.
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