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Abstract 

Problem Sepsis, a life-threatening condition, accounts for the deaths of millions of people worldwide. Accurate pre-
diction of sepsis outcomes is crucial for effective treatment and management. Previous studies have utilized machine 
learning for prognosis, but have limitations in feature sets and model interpretability.

Aim This study aims to develop a machine learning model that enhances prediction accuracy for sepsis out-
comes using a reduced set of features, thereby addressing the limitations of previous studies and enhancing model 
interpretability.

Methods This study analyzes intensive care patient outcomes using the MIMIC-IV database, focusing on adult sepsis 
cases. Employing the latest data extraction tools, such as Google BigQuery, and following stringent selection criteria, 
we selected 38 features in this study. This selection is also informed by a comprehensive literature review and clinical 
expertise. Data preprocessing included handling missing values, regrouping categorical variables, and using the Syn-
thetic Minority Over-sampling Technique (SMOTE) to balance the data. We evaluated several machine learning mod-
els: Decision Trees, Gradient Boosting, XGBoost, LightGBM, Multilayer Perceptrons (MLP), Support Vector Machines 
(SVM), and Random Forest. The Sequential Halving and Classification (SHAC) algorithm was used for hyperparameter 
tuning, and both train-test split and cross-validation methodologies were employed for performance and computa-
tional efficiency.

Results The Random Forest model was the most effective, achieving an area under the receiver operating character-
istic curve (AUROC) of 0.94 with a confidence interval of ±0.01. This significantly outperformed other models and set 
a new benchmark in the literature. The model also provided detailed insights into the importance of various clinical 
features, with the Sequential Organ Failure Assessment (SOFA) score and average urine output being highly predic-
tive. SHAP (Shapley Additive Explanations) analysis further enhanced the model’s interpretability, offering a clearer 
understanding of feature impacts.

Conclusion This study demonstrates significant improvements in predicting sepsis outcomes using a Random For-
est model, supported by advanced machine learning techniques and thorough data preprocessing. Our approach 
provided detailed insights into the key clinical features impacting sepsis mortality, making the model both highly 
accurate and interpretable. By enhancing the model’s practical utility in clinical settings, we offer a valuable tool 
for healthcare professionals to make data-driven decisions, ultimately aiming to minimize sepsis-induced fatalities.
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Background
Sepsis can cause the failure of one or more organ sys-
tems, which is a life-threatening condition that occurs 
unpredictably and can progress rapidly [1–5]. By 2017, 
Sepsis accounted for nearly 20% of all global deaths; 
more specifically, there were 11 million sepsis-related 
deaths in total 48.9 million sepsis cases [6]. Among 
those, 1.7 million adults develop sepsis each year in the 
United States, which causes around 270,000 deaths [7]. 
In a 2020 study, Suveges and other examine [8] analyzed 
110,204 hospital admissions, revealing a direct correla-
tion between the length of hospital stay and survival, 
with an average stay of 10 days indicating a decreased 
likelihood of survival. Given the severity of the illness, it 
is crucial to find the possible factors that contribute to 
the mortality of sepsis [9–11].

Traditionally, various scoring systems (i.e. SOFA score) 
were used to predict in-hospital mortality for critically ill 
patients with sepsis [12–15]. Such systems, while effec-
tive, are often limited in the range of features they exam-
ine [16–18]. For example, these scoring systems typically 
focus on a narrow set of clinical parameters, which might 
not capture the full complexity of sepsis. This limitation 
can lead to incomplete assessments of a patient’s condi-
tion and subsequently, less accurate predictions. Other 
studies, such as retrospective analysis, are also popular 
methods for evaluating relationships between a specific 
feature and mortality. For instance, Bi’s study [19] dem-
onstrates a correlation between PaO2/FiO2 levels and 
28-day mortality, more specifically, on a 200mg thresh-
old. However, even though accurate, these studies are less 
effective and can only examine one pair of relationship 
at a time. This approach does not account for the mul-
tifactorial nature of sepsis, where multiple physiological 
and biochemical parameters interact in complex ways. 
As a result, these studies often miss critical interactions 
between features that could improve the predictive accu-
racy of sepsis outcomes. The inability to integrate and 
analyze multiple features simultaneously poses a sig-
nificant barrier to developing more comprehensive and 
precise predictive models for sepsis. Furthermore, the 
reliance on retrospective data means these models are 
often not adaptive to the dynamic and rapidly changing 
clinical status of sepsis patients, further limiting their 
real-time applicability and effectiveness.

To overcome the limitations of traditional methods, 
recent studies have pivoted towards Machine Learning 
(ML) and Deep Learning (DL) approaches [20–30]. In 
Bao’s study [6], they presented the efficacy of the Light 
GBM algorithm in predicting sepsis patient mortality, 
suggesting its integration into clinical tools. Similarly, 
Shifang et  al. [31] highlighted the potential of Artifi-
cial Neural Networks (ANN) in the early detection of 

high-risk patients. Moreover, machine learning methods 
are increasingly being employed across a broad spectrum 
of medical-related topics, demonstrating their versatility 
and efficacy. [32–40], However, even though these previ-
ous works introduced advanced analytical methods, we 
found that they utilized a significant number of features 
and did not achieve satisfying results.These models often 
lacked comprehensive feature selection strategies and 
advanced data preprocessing techniques, which limited 
their accuracy and practicality in clinical settings. Addi-
tionally, the use of numerous features complicated the 
models, leading to overfitting and inefficiency, making 
them less suitable for real-time application. In the follow-
ing, we will list the main contributions of our work:

• Advanced data preprocessing techniques were 
employed to address missing or duplicate values and 
to regroup categorical variables, significantly enhanc-
ing data quality and model performance.

• A thorough review of academic literature and recom-
mendations from clinical experts guided our feature 
selection process, leading to more accurate predic-
tions using a smaller, more relevant feature set.

• The use of SHAP (SHapley Additive exPlanations) 
analysis improved the interpretability of our model’s 
predictive outcomes, providing granular insights into 
the factors affecting sepsis mortality.

• The Synthetic Minority Over-sampling Technique 
(SMOTE) was used to address data imbalance, sig-
nificantly improving the robustness of our model.

• Our proposed model, particularly the Random Forest 
model, achieved an AUROC of 0.94 with a narrower 
confidence interval, representing a 6.3% improve-
ment compared to the best existing study.

This paper sets a new benchmark in the field, significantly 
improving model accuracy and efficiency, and making 
our model a practical tool for healthcare professionals. 
The use of machine learning methods in medicine pro-
vides an immediate and accurate second opinion, serving 
as an alternate source of confirmation for medical profes-
sionals. Mortality predictions derived from these models 
are valuable assets for resource management in hospi-
tals, allowing for the refactoring of resources to prioritize 
patients in more desperate conditions. Additionally, 
predictive models facilitate more efficient use of health-
care services by enabling urgent treatment for patients 
at greater risk of death, ultimately helping to save more 
lives. These advancements enhance clinical decision-
making and improve patient outcomes.

The rest of the paper is organized as follows: Meth-
ods  section describes the data source and inclusion 
criteria, feature selection and data preprocessing, 
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modeling, statistical analysis between cohorts, and 
variables impacts. Results  section presents the cohort 
characteristics, evaluation metrics, and Shapley value 
analysis. Discussion section interprets the findings and 
their significance. Limitation  section addresses the 
study’s constraints and potential weaknesses. Future 
work  section suggests directions for enhancing predic-
tive capabilities and research extensions. Finally, Con-
clusion  section summarizes the key contributions and 
clinical impact of the study.

Methods
Data source and inclusion criteria
The data for this study were sourced from the Medical 
Information Mart for Intensive Care IV (MIMIC-IV), 
an authoritative and comprehensive database [41]. The 
database contains health records of the Beth Israel Dea-
coness Medical Center from 2008 to 2019 and includes 
over 40,000 unique patients from critical care units. The 
admission information was recorded into various tables, 
such as demographics, lab results, and ICU informa-
tion. Compared to its predecessor, MIMIC-III, this data-
set contains updated patient information and extends 
the scope of data captured, thus offering a more current 
view of patient care. The utilization of MIMIC-IV for our 
study ensures that our analysis is grounded in the latest 
available data, facilitating a more accurate and relevant 
exploration into the factors affecting patient outcomes in 
intensive care settings.

To narrow down the target patients, we applied the fol-
lowing criteria. These criteria stipulated that only adult 
patients (aged 18 and above) with a minimum intensive 
care unit (ICU) stay of over 24 hours were considered to 
guarantee ample data for a thorough analysis. Further-
more, the study targeted patients diagnosed with sepsis 
based on the Third International Consensus Definitions 
for Sepsis and Septic Shock (Sepsis-3), with a Sequential 
Organ Failure Assessment (SOFA) score of 2 or higher 
and a suspected infection as recorded in the MIMIC-IV 
database. This study implements BigQuery as the data 
extraction tool to select the target patients from the 
dataset.

Feature selection and data preprocessing
The feature selection process was informed by a thor-
ough review of academic literature and guided by rec-
ommendations from a clinical expertise. The selection 
methodology took two key considerations into account: 
(1) the recurrence of specific features across multiple 
studies, signaling their widespread recognition in critical 
care, and (2) the acknowledgment of certain features in 
prior individual studies as vital for mortality prediction. 
This selection was based on their prevalence in existing 

literature, clinical importance, and statistical validation 
to ensure their relevance and predictive power.

The final dataset contains 38 distinct features, includ-
ing demographic information, antibiotic usage, patient 
medical history, and various laboratory results. Vari-
ables such as the Sequential Organ Failure Assessment 
(SOFA) score, average urine output, minimum and maxi-
mum glucose levels, sodium levels, heart rate, systolic 
and diastolic blood pressures (SBP and DBP), respiratory 
rate, oxygen saturation (SPO2), and albumin levels. These 
features were selected due to their frequent appearances 
in related studies, emphasizing their predictive value 
for patient outcomes. By integrating these variables, the 
dataset provides a robust foundation for developing pre-
dictive models, aiming to enhance the accuracy of mor-
tality and prognosis estimations in critical care settings.

Further improving the dataset, we set a threshold for 
the PaO2/FiO2 ratio of 200 [17]. Additionally, based on 
the recommendation of a clinical expertise, the coma 
score was incorporated, categorizing patients with scores 
above 8 as in a coma. Following the feature selection pro-
cess, the dataset was narrowed down to 6,401 admission 
records. A detailed list of features, along with the catego-
ries they fall into, can be found in the Table 1 provided 
below.

The dataset’s cleaning was approached with the fol-
lowing steps: (1) addressing null values and duplicates 
in both numerical and categorical data; (2) grouping the 
existing categorical variables (race and antibiotics) into 
new features to facilitate future encoding processes. Spe-
cifically, races were separated and summarized into four 
groups: Black or African American, Hispanic or Latinx, 
White, and Other Races. For the antibiotics, the exist-
ing 25 categories were regrouped into seven different 
groups based on their chemical structure, mechanism 
of action, spectrum of activity, side effects, and toxicity. 
These groups are Aminoglycosides, Carbapenems, Gly-
copeptides, Oxazolidinones, Penicillins, Sulfonamides, 
and Tetracyclines.

Upon review, the training data is imbalanced, which 
is a common issue in healthcare datasets. Unlike the 
cluster centroids method used in existing literature, the 
Synthetic Minority Over-sampling Technique (SMOTE) 
method was introduced to address this data imbalance 
issue by oversampling [42]. SMOTE method helps raise 
our data points for the minority class, which increases 
the likelihood that models will generalize well to new, 
unseen data and reduces the risk of overfitting. After 
applying the SMOTE method, the data points expanded 
from 6,401 to 7,304. By doing so, SMOTE helps balance 
the dataset, which is crucial for training models that 
generalize well to new, unseen data and reduces the risk 
of overfitting. This method ensures that our predictive 
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models are more robust and reliable. Below is Fig.  1, 
which illustrates the workflow for data preprocessing.

Modeling
The final dataset comprises 53 columns and 7,304 data 
points and has achieved balance after the application of 
SMOTE. To thoroughly evaluate the performance of var-
ious machine learning classification models, we utilized 
two methodologies: (1) train-test split; (2) 5-fold cross-
validation and hyper-parameter tuning. More specifi-
cally, the Sequential Halving and Classification (SHAC) 
algorithm, proposed by Kumar et  al. [43], was adopted 
as a more efficient alternative to exhaustive grid search 
for hyperparameter tuning and preventing overfitting. 
We then fed the resulted dataset to the following models: 
tree-based models such as Decision Trees [44], ensem-
ble methods like Gradient Boosting [45], Extra Gradi-
ent Boosting (XGBoost) [46], Light Gradient Boosting 
Machine (LightGBM) [47], neural networks with a focus 
on Multilayer Perceptrons (MLP) [48], margin-based 
models including Support Vector Machines (SVM) [49], 
and bagging models, notably Random Forest [50].

To determine the proposed model, we meticulously 
evaluated three key factors: firstly, the Area Under the 
Receiver Operating Characteristic (AUROC) scores to 
assess accuracy; secondly, sensitivity to variance, serv-
ing as a gauge for the model’s robustness; and thirdly, 
the overall consistency to ensure reliability across differ-
ent datasets. Consequently, this evaluation framework 
showed that the Random Forest model outperformed 
other models using both the train-test split and cross-
validation methodologies. This choice was driven by the 

Table 1 Detailed overview of feature information

Feature Type Feature Name Feature Type Feature Name

Admission Information los_icu Demographics Age

Lab Results SOFA_score Comorbidities diabetes_without_cc

avg_urineoutput diabetes_with_cc

temperature_min severe_liver_disease

temperature_max aids

temperature_avg renal_disease

heart_rate_min Medications antibiotic_Carbapenem

heart_rate_max antibiotic_Aminoglycoside

heart_rate_mean antibiotic_Glycopeptide

resp_rate_min antibiotic_Oxazolidinone

resp_rate_max antibiotic_Penicillin

resp_rate_mean antibiotic_Sulfonamide

spo2_min antibiotic_Tetracycline

spo2_max

spo2_mean

hospital_expire_flag

Fig. 1 Work flow of data preprocessing. The process begins 
with selected records (red), followed by initial preprocessing 
steps like SMOTE and dropping null values (orange). Data is then 
divided into categorical and numerical types for further processing 
(purple). Categorical data is categorized and encoded (blue). Finally, 
the processed data is ready for model fitting (green)
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model’s superior AUROC scores, affirming its effective-
ness in prediction and its potential for handling new data. 
Our selection process highlights the significance of utiliz-
ing a structured evaluation to identify a model that not 
only shows high performance but also maintains robust-
ness and consistency under various conditions. Figure 2 
below shows the workflow of our methodology.

Statistic analysis between cohorts
Statistical analyses, such as the chi-square test and two-
sided t-test, were performed to compare the measurements 
of variables in the train and test cohorts. More specifically, 
the comparison for categorical features was conducted 
using the chi-square test, while for numerical features, the 
two-sided t-test was employed. These model developments 
and statistical tests were conducted in Python version 3.6.

Variables impacts
Shapley value analysis [51] was performed on the test 
set to determine the influence of each variable on the 
predictions of our proposed model and to identify the 
variable most closely linked to mortality. The Shapley 

values illustrated the average impact of each variable 
on the results within various groups [52]. In compari-
son to traditional feature importance measures, such as 
those derived from Random Forest, Shapley values offer 
a more comprehensive understanding of the impact of 
each feature on model predictions. While Random For-
est feature importance typically relies on metrics like 
Gini impurity or information gain, SHAP values con-
sider the entire space of possible feature combinations 
and allocate contributions fairly among features [53]. 
The key distinction lies in the interpretability of Shapley 
values on an instance level, allowing us to understand 
the specific influence of each feature for a given predic-
tion. This level of granularity is especially valuable when 
dealing with complex models and real-world datasets.

Results
Cohort characteristics model completion
Following the discussion of feature selection and data 
preprocessing, the 7304 data points were used to train 
the model. The number of data points was determined 
by setting thresholds for LnPaO2/FiO2 at 200 mg, 
based on a literature review of Bi’s study, which high-
lighted LnPaO2/FiO2 as an important factor influenc-
ing sepsis mortality. Additionally, the SMOTE method 
was employed to balance the dataset [19]. These data 
points were split into train and test cohorts randomly 
with a ratio of 0.8 to 0.2. The model with the best 
AUROC was chosen to further evaluate the test set.

In terms of ICU stay, the average length in the train-
ing cohort was 6.974 days, compared to 6.977 days in 
the testing cohort. Given that the p-value from the two-
sided t-test is 0.989, surpassing our predetermined alpha 
threshold of 0.05, this indicates no significant difference 
in ICU stay length between the two cohorts. Regarding 
age, the training set had an average age of 65.160 years, 
slightly lower than the testing set’s average of 66.039 
years. However, the p-value from the two-sided t-test 
here is 0.086, suggesting no statistically significant age 
difference between the cohorts. All other features, except 
for urine output, show no statistical significance, which 
indicates a notable difference in average urine output 
between the training and testing cohorts. Table 2 below 
presents the statistical results of train and test cohorts for 
both numerical and categorical variables, where numeri-
cal feature values represent the average measurements, 
and categorical feature values represent the percentage of 
individuals in each category.

Evaluation metrics proposed and baseline models 
performance
Figure 3 below illustrates the ROC curves for each model 
along with their corresponding AUC values. Notably, 

Fig. 2 Overview of the Methodology. The process starts 
with extracting target patients from MIMIC-IV, followed by feature 
selection and data preprocessing (green). The input data (blue) is split 
for model fitting (purple). The optimal model (yellow) is then used 
for predictions (red)
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except for the Decision Tree’s curve, other curves exhibit 
remarkably smooth shapes. Additionally, it was noted 
that more complex models, particularly those based on 
ensemble learning techniques like XGB and LGBM, out-
performed simpler base models. For instance, both XGB 
and LGBM achieved impressive AUC values of 0.92, sig-
nificantly higher than the 0.75 attained by simpler models 
such as Decision Trees and SVM.

The table (Table 3) below presents the detailed results, 
including other evaluations such as sensitivity, speci-
ficity, and F1 score. For both train test split and cross-
validation, random forest demonstrated the best result. 
Hence, Random Forest (RF) is the proposed model in 
this paper, which achieved a 0.94 AUC score with a 0.01 
confidence interval representing a 6.3% improvement 
compared to the best existing study [54]. It is important 
to note that, although we typically expect cross-valida-
tion to provide a more robust estimate of model perfor-
mance, in this particular study, the train-test split yielded 
slightly better results by chance. By using a random seed 
of 42 to split our dataset into training and test sets, we 
achieved an AUROC of 0.93, which was 1% higher than 
the cross-validation results. Both methods demonstrated 
high AUROC scores and narrow confidence intervals, 
indicating the stability and robustness of the dataset 
and features selected. This consistency across different 
data partitioning methods validates the reliability of our 
chosen approach and ensures that the model’s perfor-
mance is not significantly affected by the method of data 
partitioning.

Shapley value analysis
SHAP values analysis was applied to evaluate the impor-
tance of the feature within the context of Random For-
est. According to the results of the SHAP analysis, the 
coma score has the highest impact on mortality predic-
tion, which indicates that higher coma scores tend to 
have a strong positive impact on the model’s prediction 
of mortality. In other words, as the coma score increases, 
the likelihood of mortality, as predicted by the model, 
also increases. Additionally, average urine output shows 
a notable impact. Lower average urine outputs are more 
influential in increasing the prediction of mortality com-
pared to high urine outputs, suggesting that lower average 
urine outputs are associated with an increased prediction 
of mortality. Regarding the feature ‘gender Male’, since a 
high SHAP value correlates with a decrease in the model’s 
prediction of mortality and males are represented by one, 
it indicates that being male is associated with a lower risk 
of mortality compared to females. Figure 4 demonstrates 
the detailed result of the SHAP values analysis. The ‘Sum 
of 39 features’ in the SHAP plot represents the combined 
SHAP values of the remaining less influential features. 

Table 2 Statistical analysis results of train and test cohorts for 
numerical and categorical variables

Feature Train Test P-value

Admission Information
   los_icu 6.974 6.977 0.989

Demographics
   Age 65.160 66.039 0.086

   gender_F 42.188 41.842 0.848

Lab Results
   SOFA_score 4.317 4.393 0.305

   avg_urineoutput 160.971 153.108 0.007

   temperature_min 36.663 36.632 0.478

   temperature_max 37.149 37.145 0.920

   temperature_avg 36.906 36.888 0.652

   glucose_min 110.363 111.451 0.414

   glucose_max 211.147 214.524 0.453

   glucose_average 154.669 156.739 0.332

   sodium_min 135.376 135.385 0.961

   sodium_max 141.558 141.768 0.222

   sodium_average 138.499 138.595 0.521

   heart_rate_min 70.250 69.694 0.271

   heart_rate_max 114.752 114.909 0.819

   heart_rate_mean 89.384 89.530 0.763

   sbp_min 81.941 81.595 0.489

   sbp_max 154.473 153.932 0.475

   sbp_mean 114.334 114.630 0.495

   dbp_min 41.534 41.300 0.490

   dbp_max 93.673 93.545 0.849

   dbp_mean 61.570 61.466 0.725

   resp_rate_min 11.932 11.804 0.307

   resp_rate_max 31.218 31.304 0.706

   resp_rate_mean 20.510 20.529 0.881

   spo2_min 89.180 89.023 0.586

   spo2_max 99.732 99.755 0.362

   spo2_mean 96.887 96.868 0.801

   hospital_expire_flag 28.242 30.445 0.127

Comorbidities
   diabetes_without_cc 31.641 33.880 0.133

   diabetes_with_cc 10.117 9.446 0.506

   severe_liver_disease 10.449 9.758 0.499

   aids 1.035 0.937 0.874

   renal_disease 26.738 27.244 0.741

Medications
   antibiotic_Carbapenem 15.664 14.910 0.533

   antibiotic_Aminoglycoside 7.168 7.962 0.360

   antibiotic_Glycopeptide 65.039 66.042 0.521

   antibiotic_Oxazolidinone 0.195 0.156 1.000

   antibiotic_Penicillin 0.000 0.078 0.453

   antibiotic_Sulfonamide 0.723 1.093 0.247

   antibiotic_Tetracycline 0.000 0.078 0.453
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This aggregation provides a holistic view of their cumula-
tive impact on the model’s predictions, highlighting that 
while individually these features may not have a signifi-
cant impact, together they can still influence the model’s 
outcomes.

After reviewing other articles about sepsis mortality 
rates, we found that there is some overlap between the 
top features. For example, the top five features in Bao’s 
study are glucose max, urine output, platelets max, age, 
and MBP max. This overlaps with our result on urine 

output, indicating that urine output is an important fea-
ture to be considered in real-life situations. These insights 
highlight key factors affecting mortality. Understanding 
that higher coma scores and lower average urine outputs 
significantly increase the risk of mortality, while being 
male is associated with a lower risk, can help in develop-
ing targeted interventions to mitigate mortality risks.

Discussion
In this study, supervised machine learning models were 
used to forecast mortality from sepsis over 24 hours of 
ICU admission. Our approach involved selecting a group 
of high-impact features, ensuring a concise and relevant 
model. To address the issue of dataset imbalance, we 
implemented the SMOTE, significantly bolstering the 
robustness and dependability of our predictive model. 
Furthermore, we employed SHAP analysis to identify and 
quantify the contribution of each feature to our model’s 
outcomes, thereby enhancing the interpretability of our 
predictions in a clinical context.

The best AUROC curve achieved was 0.94 +/- 0.01. 
This is approximately 6.3% higher than the best result in 
our literature review, which is 0.884. The narrower con-
fidence interval indicates that our model is more sta-
ble. The higher AUROC means that the model is good 
at accurately predicting the mortality of patients by 

Fig. 3 The figure illustrates the ROC AUC scores and the confidence intervals of mortality prediction machine learning models. It shows 
that the model with the highest AUROC score and the most stable confidence interval is RandomForest

Table 3 Metrics for baseline models on test set and random 
forest on different sets

Model AUROC Precision Sensitivity Accuracy F-score

Decision Tree 0.7329 0.7219 0.7475 0.7327 0.7345

SVM 0.7277 0.6772 0.6179 0.6654 0.6462

GradientBoost-
ing

0.906 0.8469 0.7597 0.8133 0.8009

XGB 0.9192 0.8491 0.8228 0.8401 0.8358

MLP 0.8763 0.7495 0.835 0.7804 0.7899

LGBM 0.9185 0.8521 0.7973 0.8313 0.8238

RF (Test Set) 0.9388 0.876 0.8372 0.8631 0.857

RF (Trainig Set) 1.0000 1.0000 1.0000 1.0000 1.0000

RF (Cross Valida-
tion)

0.9293 0.8599 0.8312 0.8475 0.8453
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successfully discriminating between positive cases (hos-
pital exp flag = 1, the patient died) and negative cases 
(hospital exp flag = 0, the patient does not die). The sta-
bility of the model is important for providing consistent 
prediction results and ensures more robustness against 
changes in input data, making the model’s outcomes 
more reliable. Furthermore, the study’s approach con-
tributed to reducing sepsis-induced fatalities by provid-
ing personalized suggestions for each patient through 
model fitting. The model aids clinicians in making early 
identifications of sepsis, ensuring more attention is given 
to patients at higher risk of sepsis mortality. This early 
detection and targeted intervention enhance health-
care efficiency and effectiveness, ultimately helping to 
reduce sepsis-induced fatalities. Moreover, even though 
advanced analytical methods were applied in exist-
ing literature, they have obvious drawbacks. One such 
limitation is the wide confidence interval, which indi-
cates the model’s performance might not be consist-
ently high across different test sets. Another limitation 
is the employment of an excessive number of features. 
This overabundance could negatively impact the model’s 
predictive efficiency and interpretability, thus making it 
more difficult to use in clinical settings because of the 
increased complexity and risk of overfitting.

Our study has several advantages compared to previous 
studies. First, the SMOTE method helped deal with the 
data imbalance issue, which is one of the major reasons 
the model results improved. Another significant advan-
tage of our methodology is the meticulous selection of 
features; with just 38 features-approximately half the 
average reported in the literature-we not only attained 

higher AUC scores but also achieved increased stability 
in our models. This deliberate minimization of features 
resulted in a 6.3% uplift in performance outcomes, along-
side a narrower confidence interval, highlighting the effi-
cacy and dependability of our approach. Furthermore, 
the use of advanced analytics provided valuable insights 
into key mortality factors, enhancing clinical decision-
making and patient outcomes.

Limitation
Although significant improvements have been made 
in both features and results, leading to a more stable 
model, this study still has some limitations. Currently, the 
MIMIC-IV dataset is the only data source for mortality 
prediction, with no other dataset available for validation. 
Moreover, the complexity of machine learning algorithms 
can lead to difficulties in deciphering their decision-mak-
ing pathways, posing a substantial obstacle for clinicians 
who require transparent and interpretable models. Last, 
as the fast development in the field of medicine, using 
historical datasets might not fully capture the latest clini-
cal practices or treatments. Therefore, it is crucial to reg-
ularly update these datasets and incorporate new medical 
knowledge and technologies to ensure the models trained 
on them remain relevant and effective.

Future work
For future studies, it would be advantageous to include 
additional datasets, such as the eICU Collaborative 
Research Database, to serve as validation sets. This 
approach would ensure the model’s robust performance 
across diverse patient data. Moreover, in addressing the 

Fig. 4 This figure illustrates the feature importance, impact direction on mortality prediction, and distribution of Shapley values for each feature. 
The figure indicates that coma, avg_urineoutput, and gender_M have the highest impact on the prediction. The dots on the right are mostly red, 
meaning that when the feature has a higher value, it will increase the probability of mortality
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model interpretability problem, our aim is to develop 
algorithms that not only predict with high accuracy but 
also provide explanations for their predictions. Further-
more, establishing a real-time data flow for immediate 
predictions of sepsis mortality is another objective. To 
enhance the efficiency of the study, future implementa-
tions might leverage data streamlining tools, such as 
Google Cloud Dataflow.

Conclusion
Our study has achieved significant advancements in pre-
dicting sepsis outcomes by utilizing advanced machine 
learning techniques and sophisticated data preprocess-
ing methods. These methods include data grouping and 
effective solutions to data imbalance issues found in the 
MIMIC-IV database. Remarkably, our approach is char-
acterized by its efficiency, relying on a limited number of 
features to generate highly accurate predictions, as indi-
cated by a robust AUROC score and enhanced stability, 
which is reflected in a narrower confidence interval. As 
the number of variables decreased, the model became 
more stable compared to the results in the literature, 
which used many more features. Second, the AUROC for 
this study is higher compared to other sepsis mortality 
prediction papers. From a real-life perspective, fewer fea-
tures are more interpretable, which can help doctors and 
clinicians focus on the features that are more related to 
sepsis mortality. For the critical task of interpreting fea-
ture importance, we have incorporated the SHAP analy-
sis, known for its consistency and the ability to provide a 
detailed explanation that is comprehensible to audiences 
from varied backgrounds. The following new standards 
have been established: the incorporation of diverse data 
types, including laboratory, demographic, and electronic 
health record data, and the use of advanced feature engi-
neering methods that combine literature review and 
clinical insights. From this study, it can be concluded that 
patients with higher coma scores, lower average urine 
outputs, and female gender are more likely to be threat-
ened by sepsis mortality according to the model’s pre-
dictions. In the future, clinicians can use the advanced 
machine learning model as a tool to identify patients with 
features that make them more susceptible to sepsis mor-
tality. This allows clinicians to take proactive measures to 
decrease the mortality rate.

Our study has set new standards for predicting sep-
sis mortality by incorporating comprehensive data per-
spectives, including laboratory data, demographic data, 
and electronic health records. We also implemented 
advanced feature engineering methods, such as feature 
comparison with existing literature and real-world case 

suggestions from clinicians, to ensure accuracy and reli-
ability in our predictions.

Additionally, the findings of this study substantiate the 
effectiveness of machine learning models in prognosti-
cating sepsis. First, machine learning models can provide 
personalized suggestions for each patient through model 
fitting. Second, the model can help clinicians with the 
early identification of sepsis and ensure more attention 
is given to patients who are more likely to be affected by 
sepsis mortality, thereby increasing healthcare efficiency. 
As clinicians use the predictive model, it can enhance the 
efficiency of early diagnosis, provide personalized treat-
ment plans for different patients, and improve and sup-
port the decision-making process. The notable precision 
of these models, coupled with the reduced breadth of 
confidence intervals, corroborates their reliability in gen-
erating consistent predictions, an attribute that is highly 
valued in clinical settings. Although it is imprudent for 
medical professionals to depend solely on machine learn-
ing models for the diagnosis and prognosis of medical 
conditions, these computational tools can serve as an 
adjunct, facilitating the confirmation of diagnostic out-
comes or prompting a reevaluation of a patient’s status.

Our research underscores the potential of machine 
learning in clinical decision-making and prognostication 
within critical care settings. By employing these innova-
tive approaches, we are moving towards a future where 
data-driven insights have the power to not only predict 
but also prevent sepsis-induced fatalities. The integration 
of such predictive models into clinical workflows could 
revolutionize patient care, offering clinicians a valu-
able tool in their efforts to combat this life-threatening 
condition.
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