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Abstract 

Lung and colon cancers are leading contributors to cancer-related fatalities globally, distinguished by unique histo-
pathological traits discernible through medical imaging. Effective classification of these cancers is critical for accurate 
diagnosis and treatment. This study addresses critical challenges in the diagnostic imaging of lung and colon cancers, 
which are among the leading causes of cancer-related deaths worldwide. Recognizing the limitations of existing diag-
nostic methods, which often suffer from overfitting and poor generalizability, our research introduces a novel deep 
learning framework that synergistically combines the Xception and MobileNet architectures. This innovative ensem-
ble model aims to enhance feature extraction, improve model robustness, and reduce overfitting.

Our methodology involves training the hybrid model on a comprehensive dataset of histopathological images, 
followed by validation against a balanced test set. The results demonstrate an impressive classification accuracy 
of 99.44%, with perfect precision and recall in identifying certain cancerous and non-cancerous tissues, marking a sig-
nificant improvement over traditional approach.

The practical implications of these findings are profound. By integrating Gradient-weighted Class Activation Map-
ping (Grad-CAM), the model offers enhanced interpretability, allowing clinicians to visualize the diagnostic reasoning 
process. This transparency is vital for clinical acceptance and enables more personalized, accurate treatment planning. 
Our study not only pushes the boundaries of medical imaging technology but also sets the stage for future research 
aimed at expanding these techniques to other types of cancer diagnostics.
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Introduction
Lung and colon cancers represent two of the most signifi-
cant challenges in the field of oncology due to their high 
incidence and mortality rates globally. Effective and early 
diagnosis of these cancers is paramount for improving 
patient outcomes and survival rates. Histopathological 
examination of tissue samples, performed via micros-
copy, remains the gold standard for diagnosing these 
malignancies. However, the interpretation of histopatho-
logical images is highly dependent on the expertise of the 
pathologist and can be subject to variability. This under-
scores the need for more robust, accurate, and repro-
ducible diagnostic methods that can augment human 
expertise.

In recent years, the field of medical imaging has been 
revolutionized by the advent of deep learning technolo-
gies, which have shown promise in enhancing the analy-
sis of medical images, including histopathological images 
of cancerous tissues. Deep learning, a subset of machine 
learning, leverages neural networks with multiple layers 
to analyze various levels of abstraction in data. In medi-
cal applications, these technologies have been employed 
to identify, classify, and predict disease patterns with 
remarkable success.

Traditionally, the diagnosis of lung and colon cancers 
involves the histological examination of tissue sections 

under a microscope [1]. Pathologists review these sec-
tions to identify morphological features indicative of 
malignant transformations. The accuracy of these diag-
noses heavily relies on the individual pathologist’s skill 
and experience, which can lead to significant inter-
observer variability. Moreover, the process can be time-
consuming and is often limited by the volume of cases 
that a pathologist can examine within a given time-
frame. Figure 1 depicts the histopathological images of 
lung and colon cancer.

While automated systems have been developed to 
assist pathologists by quantifying histopathological fea-
tures, these systems often rely on conventional machine 
learning techniques that require manual feature extrac-
tion. This process can be labor-intensive and may not 
capture the nuanced features of the cancerous tissues 
effectively. Moreover, many existing automated sys-
tems do not generalize well across different datasets 
or medical centers due to variations in staining tech-
niques, image capture conditions, and intrinsic biologi-
cal heterogeneity.

Deep learning models, particularly convolutional 
neural networks (CNNs), have emerged as a powerful 
tool for medical image analysis, capable of automat-
ing feature extraction and providing robust generali-
zations across diverse datasets [2]. These models learn 

Fig. 1 Histopathological images of lung colon cancer
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to identify disease markers directly from the images, 
reducing the reliance on manual feature labeling and 
potentially decreasing the variability introduced by 
human interpretation.

The Xception architecture, which extends the prin-
ciples of Inception by replacing standard convolutions 
with depthwise separable convolutions, offers a high 
degree of model adaptability and learning capacity. On 
the other hand, MobileNet, designed for mobile and 
resource-constrained environments, utilizes depth-
wise separable convolutions to create lightweight, effi-
cient models. By combining these two architectures, 
the approach harnesses both the depth and efficiency 
of these models, allowing for a sophisticated analysis of 
histopathological images that is both accurate and com-
putationally feasible.

The proposed system integrates these two powerful 
architectures in a novel ensemble approach where both 
networks are first pre-trained on the ImageNet data-
set to learn a wide range of image features. These pre-
trained models are then fine-tuned on a curated dataset 
of lung and colon histopathological images, ensuring 
that the model specializes in features that are most 
predictive of cancerous conditions. The outputs of 
these networks are concatenated and fed into a series 
of dense layers, culminating in a classification layer that 
distinguishes between the different cancerous and non-
cancerous tissue types.

An integral component of the methodology is the use 
of Gradient-weighted Class Activation Mapping (Grad-
CAM), which provides visual explanations for the deci-
sions made by the model. This technique generates 
heatmaps that highlight the areas within the images most 
influential to the model’s predictions, thereby offering 
insights into what the model is "seeing" when it makes a 
diagnosis. This transparency is crucial for clinical accept-
ance of AI tools, as it provides pathologists with under-
standable and interpretable evidence of the model’s 
diagnostic pathways.

Motivation
The motivation for this research stems from the criti-
cal need to enhance the accuracy and consistency of 
cancer diagnostics. Despite advances in imaging and 
computational tools, the potential of deep learning in 
medical imaging, particularly in improving the analysis 
and interpretation of histopathological images, has not 
been fully exploited. Existing automated systems often 
struggle with overfitting, limited generalizability across 
different datasets, and the inability to capture subtle 

yet crucial features in images. There is a pressing need 
for a robust model that not only improves diagnostic 
accuracy but also offers insights into its decision-mak-
ing process, thereby aiding pathologists and enhancing 
trust in automated systems.

The objective of the paper is to:

• Concatenate the outputs of Xception and MobileNet 
and feed them into dense layers, leading to a classi-
fication layer that distinguishes between cancerous 
and non-cancerous tissue types, enhancing diagnos-
tic accuracy.

• Utilize Gradient-weighted Class Activation Mapping 
(Grad-CAM) to generate heatmaps, offering visual 
explanations for the model’s decisions and provid-
ing transparent insights into its diagnostic pathways, 
crucial for clinical acceptance.

• Contribute to advancing medical diagnostics by 
providing a scalable solution applicable to various 
cancers and complex medical imaging tasks, foster-
ing more automated, precise, and reliable diagnostic 
processes to meet the demands of modern healthcare 
systems.

The paper is structured as follows: Related Work 
reviews deep learning in cancer diagnosis. Method-
ology details the model, dataset, training, and Grad-
CAM. Results and Discussion presents performance 
metrics and Grad-CAM findings. Conclusion and 
Future Work summarizes findings, applications, and 
future research.

Related work
The application of artificial intelligence in medical imag-
ing, particularly using deep learning techniques, has 
marked a significant progression in the diagnosis and 
characterization of various cancers. The utilization of 
convolutional neural networks (CNNs) has been exten-
sively studied due to their ability to automatically detect 
intricate patterns in imaging data that are often indis-
cernible to human eyes.

Before the widespread adoption of deep learning, 
several traditional machine learning methods were 
employed in medical image analysis. Techniques such as 
Support Vector Machines (SVM), Random Forests, and 
k-Nearest Neighbors (kNN) were commonly used. These 
models often required meticulous feature engineering 
and were generally limited by the handcrafted nature of 
feature extraction which impacted their efficacy in com-
plex image classification tasks.
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The shift from traditional models to CNNs introduced 
a significant breakthrough in medical diagnostics. CNNs, 
such as AlexNet, VGG, and Inception, have been applied 
to classify and predict various forms of cancers with 
promising results. These models eliminate the need for 
manual feature extraction by learning image representa-
tions directly from the data, leading to improved accu-
racy and efficiency in medical image analysis.

For lung and colon cancer, several studies have high-
lighted the use of specific architectures like MobileNet 
and Xception. MobileNet is a model designed for effi-
cient performance in mobile and embedded vision appli-
cations, which has been adapted for medical imaging 
to handle resource constraints without compromising 
diagnostic accuracy. Xception model, which employs 
depthwise separable convolutions and has demonstrated 
superior performance on tasks requiring high-level fea-
ture extraction, such as distinguishing between different 
types of lung and colon tissue samples [3].

Recent studies have explored the integration of mul-
tiple deep learning models to leverage the strengths of 
various architectures. For instance, the combination 
of MobileNet and Xception has been examined for its 
potential to enhance feature representation and reduce 
overfitting, providing a more robust analysis of complex 
medical images. This approach aligns with the ongoing 
trend of ensemble models in deep learning, where multi-
ple networks are used to improve predictive performance 
and reliability.

The importance of model interpretability in medical 
AI has also been increasingly recognized. Techniques 
such as Gradient-weighted Class Activation Mapping 
(Grad-CAM) allow clinicians to visualize which areas of 
an image influence the network’s predictions. This trans-
parency is crucial for clinical acceptance, as it aids in the 
verification of AI-driven diagnostics by highlighting the 
decision-making process of the model.

Table 1 Literature review

Authors Dataset Remarks

Bruntha, P. Malin, et al. (2021) [4] LIDCIRRI dataset Developed ConvLung, a two-layered CNN. Xcep-
tion and Inception-ResNet50v2 showed superior 
performance

Ibrahim, Dina M., Nada M. Elshennawy, 
and Amany M. Sarhan. (2021) [5]

Digital chest x-ray and CT datasets with four 
classes

Multi-classification model diagnosing COVID-19, 
pneumonia, and lung cancer, using VGG19-CNN 
and ResNet152V2 variants

Chouat, Ines, et al. (2022) [6] Chest X-ray (CXR) images Introduced two CNN models using transfer learn-
ing to detect pneumonia

Malik, Hassaan, and Tayyaba Anees (2022) [7] Eight COVID-19 datasets BDCNet integrates Vgg-19 with CNN for multi-
classification, outperforming other models

Aitazaz, Tayyab, et al. (2022) [8] Lung and colon histopathology image dataset Transfer Learning model for detection of histopa-
thology images showcases ViT Performance

Kaya, Yasin, and Ercan Gürsoy (2023)  [9] IQ-OTH/NCCD and LIDC-IDRI Improved COVID-19 classification using novel 
fine-tuning in deep transfer learning

Karaddi, Sahebgoud Hanamantray, and Lakhan 
Dev Sharma (2023) [10]

CXR-image data Utilized eight pre-trained CNNs for lung disease 
classification, highlighting Densenet-201’s 
performance

Sharma, Neelam, et al. (2023) [11] Lungs Disease Dataset Explored various models including ResNet, 
DenseNet, VGG-16, EfficientNet, Xception, 
and MobileNet for lung disease diagnosis

Sethy, Prabira Kumar, et al. (2023) [12] Lung and colon histopathology image dataset Developed a hybrid model for the detection 
of lung colon cancer

Chhagan Patil, Nandkishor, and Nitin Jagannath 
Patil (2024) [13]

Chest X-ray Dataset Hybrid model combining VGG19 and Capsule 
Network for lung cancer recognition, improving 
orientation challenges

Seth, Amit, and Vandana Dixit Kaushik (2024) [14] Lung and colon histopathology image dataset Used Swin Transformer, Cascade Classifier 
and Adaptive Tasmanian Devil Algorithm

Chutia, Upasana, et al. (2024) [15] NIH Chest X-rays Enhanced X-ray images using CLAHE; employed 
DenseNet201 with hybrid pooling and channel 
attention mechanisms

Chiet, Chai Chee, et al. (2024) [16] CT Scan Images Used pre-trained CNNs for lung cancer detection, 
indicating potential for further optimization
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The integration of deep learning technologies in medi-
cal imaging, especially for lung and colon cancer diag-
nosis, continues to evolve. This paper builds on these 
developments by proposing an innovative model that 
combines the strengths of MobileNet and Xception, 
enhanced by interpretative mechanisms such as Grad-
CAM, to set new standards in accuracy and reliability in 
histopathological image analysis.

To provide a structured comparison of these studies, 
the Table 1 summarizes their contributions, methodolo-
gies, and key findings.

This table illustrates the diversity and progression in 
methodologies from pure image classification models 
to complex architectures integrating features like atten-
tion mechanisms and hybrid model configurations. Each 
study contributes uniquely towards refining the diagnos-
tic processes for lung and colon cancers, demonstrating 
the ongoing advancements and potential of deep learn-
ing in medical imaging. This literature review forms the 
backdrop against which the current research is posi-
tioned, aiming to leverage and expand upon these recent 
innovations.

Methodology
This research investigates the application of convolu-
tional neural networks (CNNs) in the classification of 
histopathological images of lung and colon cancer. The 
primary objective is to compare the performance of 
two well-known architectures, MobileNet and Xcep-
tion, integrated into a single model framework to 
enhance classification accuracy. This section details the 
dataset, preprocessing steps, model architecture, train-
ing process, and evaluation metrics employed in the 
study. Figure 2 showcases the workflow of the proposed 
model.

Dataset description
The Lung and Colon Cancer Histopathological Image 
Dataset (LC25000), developed by a team of research-
ers, provides a robust resource for machine learning 
research in medical diagnostics. This dataset contains 
25,000 high-quality, de-identified, and HIPAA-compli-
ant histopathological images divided into five classes: 
Colon Adenocarcinoma, Benign Colonic Tissue, Lung 
Adenocarcinoma, Lung Squamous Cell Carcinoma, 
and Benign Lung Tissue with each class contribut-
ing 5,000 images. These images are integral for devel-
oping algorithms capable of distinguishing between 
malignant and benign tissue samples in both colon 
and lung tissues [17]. Validated by expert pathologists 
and structured for machine learning applications, each 
image adheres to standardized formatting and resolu-
tion specifications to ensure consistency and reliability 
in training and testing AI models, thereby advancing 
the field of medical image analysis and the early detec-
tion of cancer. The Table 2 provides an overview of the 
dataset distribution across different classes. It helps 
illustrate the balance or imbalance within the dataset 
used for training the model. Figure 3 depicts the sample 
input images from lung and colon cancer histopatho-
logical image dataset.

Fig. 2 Workflow of the proposed model

Table 2 Dataset distribution

Class Number 
of 
images

Colon Adenocarcinoma 5000

Benign Colonic Tissue 5000

Lung Adenocarcinoma 5000

Lung Squamous Cell Carcinoma 5000

Benign Lung Tissue 5000

Total 25000
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Data preprocessing
Data preprocessing is a crucial step in preparing raw 
images for effective model training. The first step 
involves resizing all images to 224 × 224 pixels to 
match the input size requirements of the pre-trained 
MobileNet and Xception models. This standardiza-
tion ensures consistency across the dataset. Next, pixel 
values are normalized to the range [-1, 1], which helps 
in facilitating faster convergence during the training 
process by stabilizing the learning rate and improving 
numerical stability. To further enhance the robustness 
of the model against overfitting and to ensure gener-
alization across different imaging conditions, several 
image augmentation techniques were implemented. 
Specifically:

• Random rotations up to 20 degrees to simulate varia-
tions in sample positioning.

• Width and height shifts up to 10% to mimic varia-
tions in the scanning field.

• Horizontal flipping to represent mirror variations 
in image orientations.

• Zoom augmentation up to 10% to simulate varia-
tions in the zoom level of imaging devices.

These augmentations help in making the model 
robust to variations that might be encountered in real-
world diagnostic settings. Table  3 summarizes the 
image augmentation techniques used to enhance the 
training dataset:

Fig. 3 Sample input images from dataset
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Equation 1 provides the mathematical representation 
of resizing an image I  to width w and heighth , ensuring 
uniform input size for the model and Eq.  2 describes 
the normalization process where pixel values (P) in the 
image are scaled to the range [-1, 1].

Finally, the dataset is divided into training (80%), vali-
dation (10%), and test (10%) sets. This split ensures that 
the model is trained on a substantial portion of the data, 
validated on a separate subset to tune hyperparameters 
and monitor performance, and tested on unseen data to 
evaluate its generalization ability. This comprehensive 
preprocessing pipeline is essential for building a robust 
and effective image classification model. Table  4 details 
about how the dataset was divided into training, valida-
tion, and testing sets. Equation  3 splits dataset (D) into 
training and testing sets based on ratio (r).

Model architecture
The model architecture described leverages the strengths 
of two powerful convolutional neural networks (CNNs), 
MobileNet and Xception, which are widely used in image 
classification tasks. By combining these models, the 
approach aims to enhance the feature extraction capabili-
ties, thus improving classification performance for histo-
pathological image analysis.

(1)Resized Image = resize(I , (w, h))

(2)P
′

=
P −min(P)

max(P)−min(P)
× 2− 1

(3)Train Set, Test Set = split(D, r)

Depthwise separable convolutions are a refined type of 
convolution that significantly reduces the computational 
cost and number of parameters compared to traditional 
convolutions. This convolution technique decomposes 
the standard convolution operation into two layers: 
depthwise and pointwise convolutions. In depthwise 
convolution, a single filter is applied per input channel, 
mapping each input channel to an output channel inde-
pendently, thereby not mixing inputs across channels. 
This is followed by pointwise convolution, which uses 
1 × 1 convolutions to combine the outputs of the depth-
wise convolution across channels. This method enhances 
the model’s efficiency by reducing the computational load 
and the model size while maintaining effective feature 
extraction. Equation 4 explains the mathematical opera-
tion behind depthwise separable convolutions used in 
MobileNet and Xception, highlighting their computa-
tional efficiency.

MobileNet leverages depthwise separable convolu-
tions to offer an architecture optimized for mobile and 
embedded applications. By simplifying the convolution 
process into depthwise and pointwise steps, MobileNet 
dramatically reduces computational requirements, mak-
ing it suitable for devices with limited processing power. 
It introduces tunable parameters such as width multi-
plier and resolution multiplier, which allow for flexible 
architecture scaling to balance between speed and accu-
racy. MobileNet’s efficiency makes it particularly useful 
for real-time applications on mobile devices, including 
face recognition and augmented reality. Xception, or 
"Extreme Inception," advances the design of the Incep-
tion models by employing depthwise separable con-
volutions across its architecture, replacing traditional 
convolutions. This adjustment not only reduces the 
model’s parameter count but also enhances its capabil-
ity to process high-resolution images effectively. Xcep-
tion’s architecture facilitates the independent learning of 
spatial features and channel-wise features by separating 
the convolution operations, which improves the model’s 
ability to discern more complex patterns in the data. Due 
to its efficient handling of model parameters and depth-
wise learning approach, Xception is well-suited for tasks 
that involve large-scale learning from extensive, high-
dimensional data sets, such as detailed image classifica-
tion tasks.

Both models are initialized with weights from train-
ing on the ImageNet dataset, a large dataset featur-
ing over a million images across 1000 categories [18]. 
Using pre-trained weights allows the model to start 
with a robust understanding of visual features that are 

(4)Yk ,l,n =
i,j,m

Ki,j,m,n · Xk+i,l+j,m

Table 3 Summary of image augmentation techniques

Augmentation Technique Description

Random Rotations Up to 20 degrees to simulate sample tilting

Width and Height Shifts Up to 10% shift to mimic scanning varia-
tions

Horizontal Flipping To reflect horizontal asymmetry in images

Zoom Augmentation Up to 10% to simulate closer or farther 
views

Table 4 Data splitting

Set Percentage of dataset Number of images

Training 80% 20,000

Validation 10% 2,500

Testing 10% 2,500

Total 100% 25,000
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applicable across a wide range of image classification 
tasks.

In the initial training phase, the convolutional bases 
of both MobileNet and Xception are frozen. This means 
that the weights in these layers do not change during the 
first few training epochs. Freezing is critical because it 
prevents the well-learned features from being distorted 
while the latter parts of the network are being trained. 
This is especially beneficial when the new dataset (his-
topathological images in this case) has relatively fewer 
examples compared to the original ImageNet dataset. 
Equation  5 is the modified convolution equation incor-
porating strides (s) to reduce the dimensionality of the 
feature maps.

After feature extraction through both the MobileNet 
and Xception networks, the outputs are concatenated. 
MobileNet captures more granular details due to its 
lightweight architecture, whereas Xception, leverag-
ing a deeper and more complex structure, might extract 
higher-level features. Concatenating these features 
ensures that the final feature set is both comprehensive 
and robust, capturing a broad spectrum of image char-
acteristics at different levels of abstraction. Equation  6 
mathematically represents the concatenation of features 
from MobileNet and Xception.

Concatenation layer involves merging the output 
tensors of both networks. If both feature extractors 
output feature maps of the same dimensions, these can 
be concatenated along the depth axis to form a single, 
unified feature map. This concatenated feature map 
then serves as the input to the subsequent layers of the 
network. Equation 7 Shows how concatenated features 
are linearly combined to form the input to the next 
layer.

The classification head is the part of the model 
that makes the final prediction. The first step in the 
classification head is to flatten the 3D output of the 
concatenated feature maps into a 1D vector. This 
transformation prepares the data for processing in 
the fully connected dense layers. Following flattening, 
the feature vector is passed through a series of dense 
layers. Each dense layer consists of a set number of 
neurons, each with ReLU (Rectified Linear Unit) acti-
vation. ReLU is chosen for its ability to introduce non-
linearity into the network, helping to learn complex 

(5)Fxy =
∑A

a=1

∑B

b=1
Isx+a,sy+b · Ka,b

(6)C = Concat(A,B)

(7)Oi =

∑
j∈S

Wi,j · Cj + bi

patterns in the data [19]. The number of neurons and 
layers can be tuned based on the complexity of the 
task and the computational resources available. Equa-
tion 8 Clarifies the non-linear activation function used 
in the neural networks, essential for learning complex 
patterns.

In the architecture of our proposed model, the flat-
ten layer plays a pivotal role by transforming the com-
plex, multi-dimensional feature maps produced by the 
convolutional layers into a flat, one-dimensional array. 
This transformation is essential as it bridges the convo-
lutional base of the network, which is adept at spatial 
feature extraction, with the dense layers that perform 
classification. The flatten layer ensures that the spatial 
relationships within the feature maps are linearized, 
allowing the dense layers to effectively learn from the 
entirety of the extracted features for accurate cancer 
classification.

Following the concatenation of outputs from 
MobileNet and Xception, our model includes sev-
eral dense layers designed to effectively harness and 
interpret the rich feature sets provided by these two 
powerful networks. The sequence begins with a Flat-
ten layer, transitioning the multidimensional feature 
maps into a one-dimensional array, which is then 
processed through three dense layers: a first dense 
layer with 1024 neurons utilizing ReLU activation to 
facilitate the learning of complex, high-level features 
from the concatenated inputs, a subsequent second 
dense layer with 512 neurons also equipped with 
ReLU activation to further refine these features, and 
a third dense layer with 256 neurons continuing the 
pattern of ReLU activation to prepare the refined fea-
tures for final classification. The culmination of this 
dense layer sequence is an output layer that employs 
softmax activation to produce a probabilistic dis-
tribution across the defined classes, enabling pre-
cise cancer classification based on histopathological 
images. This structured approach in our dense layers 
ensures robust learning and contributes significantly 
to the high accuracy and reliability of our model in 
medical diagnostics. Equation 9 describes the output 
layer’s activation function, which normalizes the out-
put to a probability distribution over predicted out-
put class.

Algorithm I expresses the steps included in the pro-
posed model.

(8)f (x) = max(0, x)

(9)σ(z)j =
ezj

∑K
k=1e

zk
for j = 1, . . . ,K
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 Algorithm I: Proposed model Algorithm

The architecture is designed for deep feature extrac-
tion followed by classification, leveraging the strengths 
of both MobileNet and Xception models for a potentially 
robust performance in image classification tasks.

Grad‑Cam implementation
Gradient-weighted Class Activation Mapping (Grad-
CAM) is a technique designed to enhance the inter-
pretability of convolutional neural networks (CNNs), 
especially those applied in vision-related tasks. Grad-
CAM aids in visualizing which regions of an input image 
are significant for the model’s predictions, making it 

particularly valuable in fields like medical image analy-
sis where understanding the model’s decision-making 
process is crucial. The process involves several steps: a 
forward pass where the image is processed through the 
CNN resulting in feature maps; the selection of a target 
convolutional layer to focus on, which provides a spatial 
map highlighting crucial image areas for the class predic-
tion; the computation of gradients of the class score with 
respect to these feature maps, followed by a global-aver-
age-pooling to derive importance weights for each chan-
nel; and finally, a weighted combination of these maps 
to produce a coarse heatmap. A ReLU function is then 
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applied to this heatmap to focus only on the features that 
positively influence the class, enhancing the interpreta-
tive utility of the CNN. Figure  4 showcases the images 
after applying Grad-CAM.

This architecture, combining two powerful pre-trained 
models and a robust classification head, is designed to 
effectively classify complex medical images, providing 
both high accuracy and efficient computation.

Training procedure
Training a deep learning model effectively requires care-
ful consideration of various components, including the 
choice of optimizer, loss function, learning rate adjust-
ments, and techniques to prevent overfitting [20, 21]. 
Our model uses the Adamax optimizer, known for han-
dling sparse gradients effectively. The initial learning rate 
is set at 0.001, with dynamic adjustments made using a 
custom Learning Rate Adjustment (LRA) callback based 
on training performance. We use a batch size of 32 for 
training to balance computational efficiency and perfor-
mance, with test batch size adjusted to fit memory con-
straints. The loss function is categorical crossentropy, 
ideal for our multi-class classification task. An early stop-
ping mechanism monitors validation loss with a patience 
of 10 epochs to prevent overfitting. These settings ensure 
robust performance across different data distributions, 
facilitating efficient model convergence and high accu-
racy, which is crucial for medical image analysis. Equa-
tion 10 details the update rule for Adamax, emphasizing 
its role in adjusting the model weights.

Categorical crossentropy is selected as the loss func-
tion, which is appropriate for multi-class classification 
tasks in Eq. 11:

(10)θt+1 = θt −
η√
v̂t + ǫ

m̂t

(11)L = −

∑C

i=1
tilog(pi)

This loss function penalizes incorrect classifications 
more heavily, ensuring that the model learns to output 
probabilities close to the actual class labels.

To enhance the training process, a custom Learning 
Rate Adjustment (LRA) callback has been developed. 
This callback utilizes a dynamic mechanism to adjust the 
learning rate based on ongoing training performance, as 
outlined by the Eq. 12:

This method ensures that the learning rate is fine-tuned 
in response to the model’s progress, promoting more 
effective learning and convergence.

The LRA callback actively monitors both training 
accuracy and validation loss during the training phase. 
If the training accuracy fails to meet a set threshold or 
if the validation loss does not show improvement over 
a defined number of epochs specified by the patience 
parameter the learning rate is adjusted downward. This 
patience mechanism is crucial as it prevents premature 
adjustments of the learning rate, allowing sufficient 
time for the model to explore the solution space thor-
oughly and avoid local minima.

When the conditions for adjustment are met, the 
learning rate is decreased by a predetermined factor, 
such as 0.5. This reduction helps in subtly fine-tuning 
the model’s weights, which is essential for achiev-
ing optimal performance without causing significant 
disruptions that could negatively impact the training 
dynamics.

Additionally, the callback includes an optional ’dwell’ 
parameter, which offers a safety net by reverting the 
model to the best weights observed before the plateau 
or decline in performance.

Early stopping is employed to prevent overfitting and 
ensure the model generalizes well to unseen data. Early 
stopping monitors the validation loss. If the validation 
loss does not improve for a set number of consecu-
tive epochs (patience), training is halted. Equation  13 

(12)ηnew = η · decay_factor

Fig. 4 Grad-CAM images
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provides the criterion for stopping the training process 
early to prevent overfitting.

The choice of the number of epochs and batch size is 
critical to ensure efficient training without overfitting. 
The model is trained for a maximum of 10 epochs. This 
is a preliminary setting to evaluate the model’s conver-
gence. A batch size of 32 is chosen for training. This 
batch size provides a balance between computational 
efficiency and model performance. It allows the opti-
mizer to update weights more frequently within each 
epoch, which can lead to faster convergence. The test 
batch size is chosen such that the entire test set can be 
divided into batches evenly, optimizing memory usage 
and processing time [22].

The decision to train our model for up to 10 epochs 
was strategically made based on the model’s perfor-
mance during preliminary trials and the incorpora-
tion of an early stopping mechanism. This mechanism 
is designed to halt training once the validation loss 
ceases to decrease over a series of epochs, effectively 
preventing overtraining and ensuring model robust-
ness. Our experimental results demonstrated that fur-
ther increases in the number of training epochs did not 
substantially enhance model performance, indicating 
that the optimal learning capacity was achieved within 
the first 10 epochs. Additionally, this approach aligns 
with our goal to maintain computational efficiency and 
reduce the environmental impact of extensive training 
sessions, without sacrificing the model’s performance 
and accuracy in diagnosing lung and colon cancers.

Statistical methods
Evaluating the performance of a classification model, 
especially in medical imaging, requires a comprehen-
sive set of metrics to ensure robustness, reliability, 
and generalizability. This study employs several evalu-
ation metrics to assess the performance of the model 
in classifying histopathological images. Each metric 
provides unique insights into the model’s strengths and 
weaknesses.

Accuracy is the proportion of correctly classified 
instances among the total instances evaluated. It is one of 
the most straightforward metrics for evaluating classifi-
cation models. Accuracy gives a general sense of how well 
the model performs across all classes and is solved using 
the formula in the Eq. 14. However, it may not be suffi-
cient alone, especially in cases of class imbalance where 
the number of instances per class varies significantly.

(13)
If�loss < threshold for n epochs, stop training Precision, also known as positive predictive value, 

measures the accuracy of the positive predictions made 
by the classifier. High precision indicates that the model 
has a low false positive rate. In medical imaging, this is 
crucial to minimize the misdiagnosis of non-cancerous 
images as cancerous. Equation 15 showcases formula to 
calculate precision.

Recall, also known as sensitivity or true positive rate, 
measures the ability of the classifier to identify all rele-
vant instances (true positives) and is calculated using the 
formula in Eq.  16. High recall indicates that the model 
successfully identifies most of the positive instances. In 
medical applications, high recall is essential to ensure 
that most cancerous images are correctly identified.

The F1-score is the harmonic mean of precision and 
recall, providing a single metric that balances both. It is 
particularly useful when the class distribution is imbal-
anced. The F1-score ranges from 0 to 1, with 1 being the 
best possible score. It offers a more comprehensive evalu-
ation than accuracy alone by considering both false posi-
tives and false negatives. F1 score can be calculated by 
using the formula in Eq. 17.

The Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC) is a performance measurement for 
classification problems at various threshold settings and 
can be calculated using formula in Eq. 18. The ROC curve 
is a plot of the true positive rate (recall) against the false 
positive rate. The AUC value ranges from 0 to 1. A higher 
AUC indicates better model performance. An AUC of 0.5 
suggests no discriminative ability, whereas an AUC close 
to 1 indicates excellent model performance. The AUC-
ROC curve provides a visual representation of the trade-
off between true positive and false positive rates, helping 
to assess the model’s discriminatory power.

A confusion matrix is a table used to describe the per-
formance of a classification model. It shows the number 

(14)Accuracy =
Number of correct predictions

Total number of predictions

(15)Precision =
TP

TP + FP

(16)Recall =
TP

TP + FN

(17)F1 = 2 ·
Precision · Recall

Precision+ Recall

(18)AUC =

∫ 1

0
TPR(t) dFPR(t)
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of true positive, true negative, false positive, and false 
negative predictions. The confusion matrix provides a 
detailed breakdown of the model’s performance across 
all classes, highlighting potential biases towards par-
ticular classes. It allows the identification of specific 
classes where the model may struggle, enabling targeted 
improvements.

The use of multiple evaluation metrics ensures a com-
prehensive assessment of the model’s performance. 
Accuracy provides a general overview, while precision 
and recall give insights into the handling of false posi-
tives and false negatives. The F1-score offers a balanced 
measure, the AUC-ROC curve evaluates discrimina-
tive ability, and the confusion matrix provides a detailed 
breakdown of performance across all classes. This multi-
faceted evaluation approach is crucial in medical imaging 
applications, where the implications of misclassification 
are significant.

This methodology section provides a detailed descrip-
tion of the processes involved in training a deep learning 
model for the classification of histopathological images. 
By employing advanced CNN architectures and a robust 
training procedure, the study aims to achieve high accu-
racy and reliability, which are crucial for medical image 
analysis.

Experiment and analysis
The experimental evaluation was structured to assess the 
effectiveness of the integrated MobileNet and Xception 
model in classifying histopathological images of lung and 
colon cancer. The LC25000 dataset was utilized, involving 

an extensive series of experiments to validate the model’s 
performance under various conditions.

Training details
The model was trained for up to 10 epochs, with train-
ing potentially stopping earlier based on the early stop-
ping criteria, which monitored validation loss. The early 
stopping mechanism ensured that the model did not con-
tinue to train once performance ceased to improve, thus 
preventing overfitting. The batch size for training was set 
to 32, which is a common choice that balances compu-
tational efficiency and model performance. For the test 
set, an appropriate batch size was calculated to ensure 
that the entire test dataset was processed without leaving 
out any samples, optimizing memory usage and process-
ing time. Figure 5 depicts the graphical representation of 
training and validation loss and accuracy.

The optimizer used was Adamax, a variant of the Adam 
optimizer known for its effectiveness in handling sparse 
gradients, which are common in high-dimensional data 
such as images. The initial learning rate was set to 0.002 
and was dynamically adjusted according to a custom 
Learning Rate Adjustment (LRA) callback. This callback 
monitored both training accuracy and validation loss, 
making necessary adjustments to the learning rate to 
optimize the training process.

The loss function employed was categorical crossen-
tropy, which is appropriate for multi-class classification 
tasks. This function computes the loss by comparing the 
predicted probabilities to the actual class labels, penal-
izing incorrect predictions more heavily. This ensures 

Fig. 5 Graphical representation of training and validation
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that the model learns to output probabilities close to the 
actual class labels, thus improving classification accuracy. 
The Fig. 6 showcases the learning curve of the model.

The model achieved an overall accuracy of 99.44% on 
the test set, demonstrating exceptional performance 
across various classes. Precision ranged from 0.9559 for 
Lung Squamous Cell Carcinoma (SCC) to 1.0000 for 
both Colon Adenocarcinoma (ACA) and benign Lung 
tissue (Lung N). Recall values were also high, with the 
lowest being 0.9508 for Lung Adenocarcinoma (ACA), 
indicating the model’s strong ability to correctly iden-
tify true positive cases. The F1-scores were consistently 
high across all classes, reflecting a balanced performance 
between precision and recall. These results underscore 
the model’s robustness and effectiveness in accurately 
classifying histopathological images of lung and colon 
cancers. Figure 7 is the heatmap of classification report of 
the proposed model.

To gain a deeper understanding of the model’s per-
formance, a detailed error analysis was conducted, 
scrutinizing misclassifications to identify patterns and 
potential causes. Key findings from this analysis include 
inter-class confusion, where most misclassifications 
occurred between visually similar classes such as Lung 
Squamous Cell Carcinoma (SCC) and Lung Adenocar-
cinoma (ACA), suggesting a need for the model to learn 
more discriminative features specific to each subtype. 
Additionally, errors were more frequent in images with 
lower resolution or poor staining quality, indicating 
the importance of consistent image quality to enhance 
model reliability. Despite the dataset being balanced, 
intrinsic variations in texture and pattern complex-
ity within classes might have contributed to biased 
error rates towards more complex patterns, commonly 

seen in benign versus malignant distinctions. Further-
more, Grad-CAM visualizations of misclassified cases 
revealed that incorrect predictions often focused on 
non-relevant regions of the images, indicating potential 
improvements needed in the model’s region of interest 
detection capabilities. Figure 8 is the image showcasing 
truly classified instances whereas Fig.  9 representing 
misclassified instances.

The AUC-ROC curves for each class demonstrated 
excellent discriminative performance, with values close 
to 1. This indicates that the model has a high true posi-
tive rate while maintaining a low false positive rate 
across all classes. Figure  10 is the graph representing 
ROC curve of the model.

The confusion matrix provided a detailed breakdown 
of performance, highlighting few confusions between 
Lung SCC and Lung ACA, underscoring areas for poten-
tial improvement in future model iterations. Figure  11 
depicts the confusion matrix of the proposed model.

To contextualize the performance of the integrated 
MobileNet and Xception model, compared it with exist-
ing methodologies in histopathological image classifica-
tion. Table 5 shows comparison of proposed model with 
existing model and their techniques.

The integrated MobileNet and Xception model demon-
strates a high degree of accuracy and robustness in classi-
fying histopathological images of lung and colon cancers. 
The architecture effectively captures and utilizes complex 
features from the images, significantly outperforming 
traditional models. Despite the advancements, the pro-
posed model, like many deep learning approaches, faces 
potential limitations that could impact its broad appli-
cability in clinical settings. A significant limitation is the 
model’s reliance on the specific dataset used for training. 

Fig. 6 Learning curve
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While the LC25000 dataset provides a robust platform 
for developing and testing the model, its unique charac-
teristics, such as image acquisition techniques, staining 
protocols, and the distribution of cancer types, may not 
be representative of broader clinical environments. This 
could potentially limit the model’s performance when 
applied to data from different hospitals or labs with vary-
ing imaging standards.

Furthermore, there is a risk of inherent biases within 
the dataset, such as overrepresentation or underrep-
resentation of certain demographic groups or cancer 
stages, which could skew the model’s predictions. Such 
biases might result in reduced accuracy when the model 

is deployed in diverse real-world scenarios, where the 
distribution of cases might differ significantly from the 
training dataset.

Conclusion
The integration of Xception and MobileNet architec-
tures, along with the application of Gradient-weighted 
Class Activation Mapping (Grad-CAM), has significantly 
advanced the classification of histopathological images 
for lung and colon cancers. This study has demonstrated 
the capability of these combined architectures to enhance 
feature extraction, improve generalizability, and reduce 
overfitting, achieving an accuracy rate of 99.44% on a 

Fig. 7 Classification report

Fig. 8 Truly classified instances
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balanced test set. The precision and recall metrics indi-
cate the model’s exceptional performance in identifying 
specific cancerous and non-cancerous tissue types, with 
several categories achieving perfect scores.

The utilization of Grad-CAM has further augmented 
the interpretability of the model, offering a transforma-
tive approach to understanding deep learning deci-
sions in medical diagnostics. By generating heatmaps 
that highlight influential regions used by the CNN for 
making predictions, Grad-CAM enables clinicians to 
visually verify these automated insights. This visuali-
zation facilitates a deeper understanding and trust in 
the model’s functionality, crucial for integrating AI 
tools into clinical workflows. Moreover, such detailed 
visual explanations help in educational settings, where 
medical professionals can observe how advanced mod-
els discern subtle nuances in histopathological images 

that may be overlooked in standard examinations. By 
enhancing the transparency of the model’s decision-
making process through Grad-CAM visualizations, it 
not only bolsters diagnostic confidence but also assists 
in advancing the discussion regarding AI’s role in aug-
menting diagnostic accuracy and reliability in clinical 
settings. This step forward is pivotal for the adoption of 
AI in routine clinical practices, ensuring that AI-sup-
ported diagnostics are both interpretable and verifiable 
by expert clinicians.

The findings from this research suggest that the sophis-
ticated blending of neural network architectures offers 
a promising pathway to refining diagnostic processes in 
pathology. The architecture of the combined MobileNet 
and Xception models, enhanced with Grad-CAM for 
interpretability, provides a robust foundation that can 
potentially be adapted for a wide range of diagnostic 

Fig. 9 Misclassified instances

Fig. 10 ROC curve



Page 16 of 18Vanitha et al. BMC Medical Informatics and Decision Making          (2024) 24:222 

tasks beyond lung and colon cancers. This adaptability 
is crucial for extending the model’s application to other 
types of cancer, such as breast, skin, or prostate cancers, 
where histopathological analysis plays a pivotal role in 
diagnosis.

Moreover, the modular nature of the proposed model 
framework allows for flexibility in tuning and retraining 

for different medical imaging tasks, such as MRI analysis, 
CT scans, or ultrasound image interpretation. By retrain-
ing the model on specific datasets corresponding to these 
tasks, or by integrating other specialized neural network 
layers tailored for different imaging modalities, the model 
can be made suitable for a broad spectrum of diagnostic 
applications.

Fig. 11 Confusion matrix

Table 5 Comparative study

Author Techniques Accuracy

Garg, Satvik, and Somya Garg (2020) [22] Pre-trained CNN models 96 to 100%

Masud, Mehedi, et al. (2021) [23] Modern Deep Learning (DL) and Digital Image Processing (DIP) 
techniques

96.33%

Singh, Onkar, and Koushlendra Kumar Singh. (2023) [24] an ensemble classifier utilizing three distinct approaches random 
forest (RF), support vector machine (SVM), and logistic regression 
(LR) model

99.00%

Al-Mamun Provath, Md, Kaushik Deb, and Kang-Hyun Jo. (2023) [25] Deep Learning Method 97%

Chilyatun Nisa, Nanik Suciati, and Anny Yuniarti [26] Hybrid convolutional neural networks 98.88%

Hage Chehade, Aya, et al. (2022) [27] Feature Engineering 99%

Mehmood, Shahid, et al. (2022) [28] Pretrained Neural Network (AlexNet) 98.4%

Alamin Talukder, Md, et al. (2022) [29] Ensemble Learning 99.3%

Wahid, Radical Rakhman, et al. (2023) [30] Convolutional Neural Network 93.02%

Proposed model Deep learning with combination of MobileNet and Xception model 99.44%
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While the current model demonstrates high accuracy 
and reliability in lung and colon cancer classification, 
its potential for generalization to other medical imaging 
tasks holds promise. With further development and vali-
dation, this approach could significantly contribute to the 
advancement of automated, precise, and reliable diagnos-
tic processes across various domains of medical imag-
ing. Future research could explore the application of this 
combined model framework to other types of cancer and 
more complex diagnostic tasks, potentially extending its 
utility to broader medical imaging applications. The pur-
suit of these advancements could pave the way for more 
automated, accurate, and reliable diagnostic processes, 
ultimately enhancing patient outcomes in oncology.
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