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Abstract 

Aim  Exercise stress ECG is a common diagnostic test for stable coronary artery disease, but its sensitivity and speci-
ficity need to be further improved. In this paper, we construct a machine learning model for the prediction of angio-
graphic coronary artery disease by HFQRS analysis of cycling exercise ECG.

Methods and results  This study prospectively included 140 inpatients and 59 healthy volunteers undergoing 
cycling exercise ECG. The CHD group (N=104) and non-CHD group (N=95) were determined by coronary angi-
ography gold standard. Automated HF QRS analysis was performed by the blinded method. The coronary group 
was predominantly male, with a higher prevalence of age, BMI, hypertension, and diabetes than the non-coronary 
group ( P < 0.001 ), higher lipid levels in the coronary group ( P < 0.005 ), significantly longer QRS duration during exer-
cise testing ( P < 0.005 ), more positive leads ( P < 0.001 ), and a greater proportion of significant changes in HFQRS 
( P < 0.001 ). Age, Gender, Hypertension, Diabetes, and HF QRS Conclusions were screened by correlation analysis 
and multifactorial retrospective analysis to construct the machine learning models of the XGBoost Classifier, Logis-
tic Regression, LightGBM Classifier, RandomForest Classifier, Artificial Neural Network and Support Vector Machine, 
respectively.

Conclusion  Male, elderly, with hypertension, diabetes mellitus, and positive exercise stress test HFQRS conclusions 
suggested a high risk of CHD. The best performance of the Logistic Regression model was compared, and a column 
line graph for assessing the risk of CHD was further developed and validated.
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Introduction
With economic development, the improvement of peo-
ple’s living standards, and the aging of society, the prev-
alence and mortality rate of coronary heart disease are 

on the rise, and currently cardiovascular disease is the 
number one cause of death among residents, seriously 
threatening their health  [1]. The atherosclerotic process 
can be delayed or even reversed by improving lifestyle in 
the early stages of coronary artery disease (CHD). When 
acute myocardial infarction occurs, the occurrence of 
serious complications can be significantly reduced by 
early detection and diagnosis and early treatment to 
shorten the ischemia-re-perfusion time. The current 
auxiliary examinations for the diagnosis of CHD consist 
of electrocardiograms (ECG), coronary CT angiography 
(CTA), non-invasive examinations such as myocardial 
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perfusion single photon emission computed tomography 
(MPI), and coronary angiography (CAG) [2].

ECG is a commonly used noninvasive diagnostic tool 
for cardiovascular diseases3, which is inexpensive, easy 
to perform, and free of radiographic burden, but the sen-
sitivity and specificity of conventional 12-lead ECG are 
low [3]. The use of exercise electrocardiograms (Ex ECG), 
the continuous enrichment of new diagnostic variables, 
and the increase in the number of leads have improved 
the diagnostic efficacy of ECG for myocardial ischemia. 
Findings from the randomized controlled trials found 
that adding either exercise ECG or resting ECG to tra-
ditional cardiovascular disease risk factors (such as age, 
gender, current smoking, diabetes, total cholesterol lev-
els, and HDL cholesterol levels) increased screening rates 
for asymptomatic cardiovascular disease in adults [4]. For 
Ex ECG, positive result is associated with an increased 
risk of adverse cardiac events, even if the stress echocar-
diogram is negative  [5]. ECG-based machine learn-
ing models can potentially identify people with a high 
risk of undiagnosed and clinically significant structural 
heart disease while outperforming single disease mod-
els and improving practical utility through higher posi-
tive predictive values. This approach could facilitate 
targeted screening with echocardiography to improve 
the underdiagnosis of structural heart disease [6]. Heart 
rate variability (HRV), the change in the interval between 
consecutive heartbeats, is largely dependent on the exter-
nal regulation of heart rate. HRV analysis is the ability to 
assess the overall health of the heart and the status of the 
autonomic nervous system (ANS), which is responsible 
for regulating cardiac activity. One study found that HRV 
analysis can monitor the risk of sudden cardiac death in 
post-infarction and diabetic patients [7], and the further 
improved HRnV analysis has good clinical application in 
predicting the risk of 30-day adverse major adverse car-
diovascular events (MACEs) in patients with emergency 
chest pain [8].

There has been a great deal of enthusiasm for the study 
of ECG re-polarization parameters, and much deeper 
digging has been done on the basis of the ST criteria. 
One Ex ECG study performed on firefighters found that 
an ST/HR index ≤ 1.6 lV/bpm and an ST/HR slope ≤ 
2.4 lV/bpm were related to an increased risk of ischemic 
heart disease (IHD) in three individual leads. Besides, the 
ST/HR loop area below the 5th percentile in non-IHD 
recipients suggests a risk of IHD in leads V4, V5, aVF, II, 
and aVR. In contrast, ST depression ≤ 0.1 mV was only 
associated with a risk of IHD in lead V4. Use of more 
complex variables in ST/HR analysis improves diagnosis 
and prognosis in some asymptomatic populations  [9]. 
The diagnostic accuracy of ST segment/heart rate hyster-
esis in patients with CHD combined with hypertensive 

left ventricular hypertrophy is much better than that of 
ST segment depression criteria and heart rate recovery 
index [10]. The V index has been used as an ECG marker 
to quantify the spatial heterogeneity of ventricular repo-
larization. In addition to conventional ECG criteria, 
the use of V index increased the diagnostic accuracy of 
non-ST-segment elevation myocardial infarction (non-
STEMI) diagnosis from 66% to 73% and the sensitivity of 
the ECG for acute myocardial infarction (AMI) from 41% 
to 86%, while the V index was also an independent pre-
dictor of MACEs during the 24-months follow-up of non-
STEMI patients  [11]. Sixty-seven leads high-resolution 
body surface potential mapping (HR-BSPM) has high 
spatial, temporal and amplitude resolution by recording 
and analyzing the complete distribution of action poten-
tials on the thoracic surface, allowing the detection of 
ischemic changes in the ECG signal that are not observed 
at standard electrode positions. The sensitivity/specificity 
of the amplitude parameter δST60 and the δ T parameter, 
which show changes in wave form during exercise, in pre-
dicting ischemic cardiomyopathy were 70/69 and 59/62%, 
respectively. In contrast, the sensitivity/specificity of the 
standard 12-lead ECG system were 63/62 and 59/56%, 
respectively. It was also found that depolarization phase 
parameters describing only QRS morphological changes 
had diagnostic value and were much less accurate than 
the numerous repolarization amplitude-time parame-
ters [12]. In the 1990s, people began to quantify exercise-
induced changes in the depolarized phase QRS complex 
of the ECG, and Campen et al. [13] proposed the concept 
of the Athens QRS score, where the Q, R, and S wave 
amplitudes after exercise minus the pre-exercise level 
are noted as δ Q, δ R, and δS.The formula for the Athens 
QRS fraction (mm) is: ( δ R - δ Q - δS)AVF + ( δ R - δ Q - δ
S)V5. The Athens QRS score decreases as the number of 
obstructed coronary arteries increases, with negative 
(less than 0) scores consistently associated with CHD. 
The sensitivity and specificity of the Athens QRS score 
of 5 mm (the threshold value) for predicting CHD were 
(75%-86%, 73%-79%) higher than those of the Q wave 
(75%, 50%), R wave (65%, 55%), S wave (70%, 10%), and 
ST segment depression (62%, 70%). The high-frequency 
band of 150-250 Hz in the ventricular depolarizing QRS 
complex, known as the high-frequency QRS (HFQRS), is 
able to quantify the subtle changes in the propagation of 
depolarizing wave fronts as they pass through regions of 
the ischemic myocardium. Ringborn  et  al.  [14] showed 
that the decrease in HFQRS amplitude assessed by root 
mean square RMS during coronary balloon dilation was 
more responsive to acute myocardial ischemia than ven-
tricular repolarization ST elevation. Schaerli  et  al.  [15] 
found that the sensitivity of myocardial ischemia assessed 
by MPI and CAG was increased from 43% to 63% and the 
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specificity was increased from 87% to 97% in the cycling 
exercise stress test using a combination of ST-segment 
deviation and HFQRS than in the analysis of myocardial 
ischemia by ST deviation alone. HFQRS was also an inde-
pendent predictor of the occurrence of major adverse 
cardiac events (MACEs) during the 2-year follow-up. 
Balfour et al. compared the difference in diagnostic and 
prognostic accuracy and net reclassification between 
HFQRS analysis and standard ST-segment depression in 
identifying any and severe ( ≥10% left ventricular) myo-
cardial ischemia and found that HFQRS detected 84.6% 
of patients with MPI ≥ 10% left ventricular ischemia, 
whereas ST-segment depression was only detected in 
61.5%. The combined strategy of ST depression and 
HFQRS analysis identified almost all patients with severe 
ischemia (92.3%) and greatly improved the sensitivity of 
exercise stress tests for myocardial ischemia [16].

Over the past two decades, researchers have developed 
numerous prediction models that mathematically com-
bine multiple predictors to estimate the risk of develop-
ing cardiovascular disease (CVD). Health policymakers 
increasingly advocate for some prediction models and 
include them in clinical guidelines for therapeutic man-
agement. In the United Kingdom, electronic health 
records have been enhanced to incorporate the QRISK2 
algorithm, which is used to calculate the risk of develop-
ing cardiovascular disease over a 10-year period [17–19]. 
Artificial intelligence (AI) has transformed key aspects 
of human life. Machine learning (ML), which is a subset 
of AI wherein machines autonomously acquire informa-
tion by extracting patterns from large databases  [20], 
has been increasingly used within the medical commu-
nity  [21, 22], specifically within the domain of cardio-
vascular diseases [23, 24]. It remains unclear whether AI 
can provide meaningful, generalizable improvements in 
predictive accuracy beyond the clinical risk factors for 
particular diseases. Whether contemporary machine 
learning methods can facilitate risk prediction by includ-
ing a larger number of variables and identifying complex 
relationships between predictors and outcomes [25–27]. 
Cikes et al. [28] performed phenotypic grouping of heart 
failure (HF) cohorts using complex machine learn-
ing algorithms for echocardiographic data and clinical 
parameters, where two phenotypes included a higher 
proportion of known clinical features predicting CRT 
response and were associated with significantly better 
treatment outcomes with CRT-D. Furthermore, unsuper-
vised machine learning may help optimize response rates 
to specific treatments.

The application of artificial intelligence had the 
potential to enhance the diagnostic capabilities of 
ECGs in the identification of arrhythmias. Recently, 
Karwath  et  al.  [29] applied machine learning-based 

clustering analysis to pooled data from nine double-blind 
randomized controlled trials of beta-blockers to identify 
efficacy subgroups of patients with sinus rhythm and 
atrial fibrillation. In a study constructing a random forest 
model and comparing the predictive ability of machine 
learning models with standard cardiovascular risk scores 
for cardiovascular outcomes during 12-year follow-up in 
a multi-ethnic asymptomatic population, it was found 
that the random forest model outperformed established 
risk scores with higher predictive accuracy, potentially 
leading to greater insight into subclinical disease markers 
without the need for a priori causality assumptions  [30, 
31]. There was a study that enrolled 180,922 patients and 
649,931 normal sinus rhythm ECGs to develop an artifi-
cial intelligence (AI)-enabled electrocardiograph (ECG) 
that could identify patients with atrial fibrillation dur-
ing sinus rhythm [32]. D’Ascenzo’s machine learning risk 
stratification model for predicting all-cause death, recur-
rent acute myocardial infarction, and major bleeding 
after acute coronary syndrome (ACS) by combining data-
sets showed accurate discriminatory ability, which was 
feasible and valid for identifying predictors of events after 
ACS and may help guide clinical decisions [33]. Explain-
able techniques can be trained using off-the-shelf 12-lead 
ECG data and applied to convolutional neural networks, 
which can perform on par with clinical cardiologists [34].

Lately, there have been continuous improvements and 
advancements in the algorithms used for machine learn-
ing diagnostic models. Jiang et al. [35] devised a diagnos-
tic model using machine learning techniques to identify 
patients with gout who are at risk of developing coronary 
heart disease. The algorithm relies on straightforward 
clinical criteria for screening purposes. This strategy 
was developed to mitigate the possibility of both under-
diagnosis and excessive testing. The learning classifier 
utilizes a combinatorial sampling strategy to tackle the 
issue of imbalance in the training dataset. A total of eight 
machine learning models were employed, namely logis-
tic regression, decision trees, integrated learning models 
such as Random Forest, XGBoost, LightGBM, GBDT, 
Support Vector Machines (SVMs), and neural networks. 
The conclusive findings indicate that stepwise logistic 
regression and SVM outperformed other models in terms 
of AUC values, whereas Random Forest and XGBoost 
models exhibited superior performance in terms of recall 
and accuracy.

Nabrdalik  et  al.  [36] created a machine learning 
model to forecast cardiovascular (CV) incidents in 
individuals with diabetes. The incidence of new car-
diovascular events after discharge was recorded over 
the follow-up period, which extended for a dura-
tion of 5 years and 9 months. A novel machine learn-
ing approach was suggested, utilizing neighbourhood 
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component analysis to develop discriminative pre-
dictors. This was followed by a hybrid sampling/
boosting classification algorithm, multiple logistic 
regression (MLR), or unsupervised hierarchical clus-
tering. Among a cohort of 1735 individuals diagnosed 
with diabetes, 53% of whom were female, a total of 150 
patients (8.65% of the cohort) experienced a new car-
diovascular event during the follow-up period. The 
twelve patient parameters with the highest discrimina-
tory power are coronary artery disease, heart failure, 
peripheral artery disease, stroke, diabetic foot disease, 
chronic kidney disease, eosinophil count, serum potas-
sium level, and treatment with clopidogrel, heparin, 
proton pump inhibitor, and loop diuretic. The use of 
these variables led to an area under the receiver oper-
ating characteristic curve (AUC) ranging from 0.62 
(95% confidence interval [CI] 0.56-0.68, P < 0.01 ) to 
0.72 (95% CI 0.66-0.77, P < 0.01 ) across five nono-
verlapping test folds. The MLR accurately identified 
74.00% of high-risk patients and 62.40% of low-risk 
patients, resulting in an overall correct classification 
rate of 63.40% for all patients. The MLR algorithm has 
an AUC of 0.72 (95% CI 0.66-0.77), indicating its abil-
ity to identify patients at high risk of developing new 
cardiovascular events. This algorithm uses a small 
number of easily interpretable and obtainable param-
eters to identify these patients with diabetes.

A well-validated disease risk prediction model is 
important to carry out practical clinical applications. 
There is a lack of machine learning models for HFQRS 
analysis in exercise tests to predict angiographic cor-
onary artery disease. 140 inpatients admitted with 
chest pain for non-emergency coronary angiography 
between October 2021 and April 2022 in the First 
Affiliated Hospital of Bengbu Medical University and 
59 healthy volunteers recruited were included in this 
study. Six machine learning models for predicting 
CHD by HFQRS analysis in age, gender, hyperten-
sion, diabetes, and exercise tests were constructed, 
using coronary angiography as the gold standard. We 
constructed and validated column line tables for the 
risk of CHD and further interpreted the model using 
the SHAP force plot, while DCA curves suggested 
increased clinical decision benefit from HFQRS anal-
ysis. This study aims to improve the sensitivity and 
specificity of ECG detection of myocardial ischemia by 
HFQRS, reduce medical costs, and reduce the imple-
mentation of radioactive, invasive operations. More 
importantly, it can detect myocardial ischemia early, 
shorten the ischemia-reperfusion time in patients 
with acute myocardial infarction, and save the dying 
myocardium.

Materials and methods
Data collection
This was a prospective single-center experimental study 
that included 156 inpatients with chest pain admitted to 
the First Affiliated Hospital of Bengbu Medical University 
for non-emergency coronary angiography from Octo-
ber 2021 to April 2022, and HF QRS exercise testing was 
performed 1.5±1 day before coronary angiography, of 
which 16 patients were excluded without coronary angi-
ography. The CHD group (N = 104) was confirmed by 
the gold standard of coronary angiography, and 36 inpa-
tients with diameter stenosis (DS) %<50% and 59 healthy 
volunteers recruited formed the non-CHD group (N = 
95). We collected basic information about the study par-
ticipants, such as height, weight, hypertension, diabetes, 
history of cerebrovascular disease, and HF QRS exercise 
test parameters, including max heart rate percentage 
(MHRpercentage), QRS duration, max power, post-peak 
recovery heart rate (PPRHR), number of ischemic leads, 
and HFQRS conclusions. We also collected the clini-
cal laboratory results of inpatients, which were white 
blood cell count (WBC), neutrophil percentage (N), red 
blood cell count (RBC), hemoglobin content (Hb), plate-
let count (P), aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), uric acid (UA), creatinine (Cr), 
potassium ion, C-reactive protein (CRP), creatine kinase 
(CK), creatine kinase myocardial band (CKMB), recom-
binant cardiac troponin I (cTnI), N-terminal brain natriu-
retic peptide pro (NT proBNP), DD dimers (DD), and 
cardiac ultrasound parameters including end-diastolic 
volume (EDV), end-systolic volume (ESV), left ventricu-
lar ejection fraction (LVEF), cardiac output (CO), and 
systolic volume (SV).

Exclusion criteria for researchers: acute myocardial 
infarction within 48 hours, myocardial infarction com-
bined with ventricular wall tumor, severe heart valve 
disease, cardiomyopathy, congenital heart disease, 
uncontrolled unstable angina pectoris, symptomatic 
heart failure, uncontrolled arrhythmia, hemodynamic 
disorders, acute myocarditis, pericarditis, infective endo-
carditis, iodine or iodine contrast allergy, pulmonary 
embolism, non-carcinogenic disease that may be caused 
or aggravated by exercise, mental or physical impairment 
that prevents exercise testing, pregnancy or suspected 
pregnancy, concurrent or short-term presence of severe 
hepatic or renal insufficiency, tumors, hematologic dis-
orders, immunologic disorders, acute infectious diseases, 
and individuals who refuse exercise testing.

Coronary angiography
Coronary angiography (CAG) was performed by a quali-
fied cardiologist using the Judkins method, and the 
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results were independently reviewed by two skilled cardi-
ologists without knowledge of the patient’s clinical infor-
mation or HF exercise test results.The CHD is defined 
as a percentage of diameter stenosis (DS%)≥50% in the 
LAD, the circumflex, or the right coronary artery with a 
right-dominant, left-dominant, or co-dominant circula-
tion. Left main disease, however, has also been defined as 
DS%≥50%.

Cycling exercise ECG
All subjects underwent treadmill exercise stress ECG 
according to the Bruce or modified Bruce protocol, with 
resting heart rate, blood pressure, and 12-lead resting 
ECG recorded prior to exercise. A standardized, step-
wise, and symptom-limited upright cycling exercise 
trial was performed. Beta-blockers and anti-anginal 
drugs were suspended for at least 48 hours and nitrates 
for at least 24 hours prior to the trial. Cycling exercise 
ECGs were reviewed by one of two experienced readers 
who were unaware of all other data, and some ambigu-
ous studies were resolved by consensus. Immediate ter-
mination of the test if (a) other evidence of myocardial 
ischemia is present despite an increased exercise load; 
(b) a decrease in systolic blood pressure>10 mmHg from 
baseline despite an increased exercise load; (c) moder-
ate to severe angina; (d) increased dyskinesia; (e) vertigo 
or near syncope; (f ) poor perfusion, such as cyanosis or 
pallor (g) testing ECG or systolic blood pressure encoun-
ters technical difficulties; (h) the subject requests to stop 
the test; (i) persistent ventricular tachycardia; (j) or ST-
segment elevation >1 mm in leads without diagnostic Q 
waves (except V1 or aVR). Exercise load was defined as 
the total metabolic equivalent achieved (METS).

HF‑QRS analysis
HFQRS analysis, performed using a designated software 
(HyperQ, BSP Ltd., Tel Aviv, Israel), has been previ-
ously described in detail  [16]. In brief, a high-resolution 
12-lead ECG was continuously recorded throughout the 
study. Beat averaging was applied to each of the leads 
until the level of noise was ≥ 1 µ V to obtain a high signal-
to-noise ratio. Noisy and ectopic beats were excluded, 
and a signal-averaged QRS was calculated.

HFQRS is a signal in the 150 to 250 Hz band obtained 
by digitally filtering the average QRS complex with a 
finite impulse response filter pair. The signal intensity 
of HFQRS is expressed as the root mean square (RMS). 
The RMS of the resultant HFQRS signal was derived in 
real-time, graphed over time in all 12 leads, and analyzed 
throughout the study. Ischemic HFQRS means a 50% 
relative reduction between the maximum and minimum 
values or ≥ 1 µ V absolute reduction in individual leads 

with adequate signal quality. Positive HFQRS is HFQRS 
ischemia in ≥ 3 leads; otherwise, it is negative HFQRS.

Statistical analysis
Categorical variables are reported as percentage counts, 
and continuous variables are reported as the mean 
(SD). Categorical variables were compared using the 
Chi-square test for differences in baseline characteris-
tics and HFQRS conclusions between the coronary and 
non-coronary groups, and t-tests were used for continu-
ous variables if they passed the Chi-square; otherwise, 
MannWhitney-U tests were used. In univariate analy-
sis, variables with a p-value < 0.05 were introduced as 
independent predictor variables in multivariate logistic 
regression. Age, Gender, Hypertension, Diabetes, and 
HF QRS Conclusions were screened to construct the 
machine learning (ML) models of XGBoost Classifier, 
Logistic Regression, LightGBM Classifier, RandomFor-
est Classifier, Artificial Neural Network (ANN), and Sup-
port Vector Machine (SVM), respectively. 70% of the 
data is used to train the ML model, while the remain-
ing 30% is used to test the ML model. We analyzed and 
compared the AUC (95% CI), accuracy, sensitivity, speci-
ficity, positive predictive value, and F1 score of the train-
ing and validation sets by 10-fold cross-validation and 
found that Logistics Regression performed the best. On 
this basis, we estimated the strength of the association 
between CHD risk and predictors by OR and 95% CI. 
Use the “Buckwald: Wald" method to select the signifi-
cant variables and use them to construct a line chart. The 
total scores of the column line graphs were categorized 
by quartiles to verify the association of total scores with 
CHD risk. All statistical analyses were done using SPSS 
version 25.0, R version 3.6.3, and Python version 3.7.

Results
Clinical and HFQRS characteristics
The study enrolled 156 inpatients for non-emergency 
coronary angiography admitted to the First Affiliated 
Hospital of Bengbu Medical University from October 
2021 to April 2022, of whom 16 were ruled out without 
coronary angiography. The CHD group (N = 104) was 
defined by coronary angiography criteria, and the non-
CHD group (N = 95) consisted of 36 inpatients with DS 
<50% and 59 recruited healthy volunteers. The CHD 
group was predominantly male and older, with a higher 
BMI and a higher prevalence of hypertension and dia-
betes than the non-CHD group (P<0.001). Clinical labo-
ratory examinations of the two populations, including 
white blood cell count, neutrophil percentage, platelet 
count, alanine aminotransferase, potassium ion, C-reac-
tive protein, creatine kinase myocardial band, N-terminal 
brain natriuretic peptide pro, and DD dimers, showed 
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significant differences (P<0.005). And higher total choles-
terol and LDL in the CHD group (P<0.005). Compared 
with non-CHD groups, patients with CHD had reduced 
end-systolic volume (ESV) and a lower ejection frac-
tion (EF), while cardiac output (CO) increased instead, 
which may be related to the compensation of heart rate 
(P<0.005). Interestingly, the lower percentage of maxi-
mum heart rate (MHR) and lower post-peak recovery 
heart rate (PPRHR) in CHD groups suggested a possible 
relationship with the reduced heart rate reserve in CHD 
patients due to heart rate compensation, while the longer 
QRS duration in CHD patients showed prolonged ven-
tricular depolarization time in CHD patients, which may 
be associated with myocardial ischemia, bundle branch 
conduction block, and electrolyte disturbances (P<0.005). 
In short, HF QRS sensitively detected more ischemic 
leads in patients with CHD, and HFQRS conclusions 
indicated significant differences between the two groups, 
which were highly consistent with coronary angiographic 
results (P<0.005) (Table 1).

Univariate and multivariate regression analysis
We included factors that were significantly different 
between the CHD and non-CHD groups (P<0.005) in 
a univariate logistic regression analysis, after which 
(P<0.005) was further included in a multivariate regres-
sion analysis by stepwise backward method, as shown in 
Table  2. Gender, age, BMI, hypertension, diabetes, and 
conclusion (P<0.005) were independent predictors of 
coronary heart disease risk factors.

Comparison of various machine learning models
We enrolled the mutually independent factors age, gen-
der, diabetes, hypertension, and conclusions into the six 
machine learning models of XGBoost Classifier, Logistics 
Regression, LightGBM Classifier, RandomForest Clas-
sifier, Multilayer Perceptron Classifier/Artificial Neural 
Network (ANN), and Support Vector Machine (SVM) 
with non-CHD or CHD as binary results. 70% of the total 
data is used to train ML models, while the remaining 
30% is used to test ML models. The model uses 10-fold 
cross-validation.

Based on the AUC ranking, among all the models, the 
RandomForest Classifier model is the best performer 
in the training set, and the Logistic Regression model is 
the best performer in the validation set (Fig. 1). The for-
est plot shows the ROC of each model into the predic-
tion; the error line in the plot is the mean and SD of the 
ROC, which are cross-validated by 10 fold. Forest plots of 
AUC scores for each model demonstrate that the Logistic 
Regression model has the best performance (Fig. 2). The 
AUC, accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, F1 score, and Kappa of 

the training and validation sets of each model were ana-
lyzed comprehensively in Table 3, and the RandomForest 
classifier model is likely to have overfitting phenomena, 
while the Logistic Regression model is likely to have bet-
ter stability (Fig.  3). The decision curve analysis (DCA) 
for the six model validation sets shows that the logistic 
regression model yields the maximal benefits (Fig. 4a).

We further investigated the DCA curve for the predic-
tive value of HFQRS analysis for coronary heart disease. 
Logistic Regression model 1 included only the variables 
of sex, age, hypertension, and diabetes, while Logistic 
Regression model 2 added the HFQRS conclusion vari-
ables again on top of this, and the area under the curve 
(AUC) showed that model 2 was better than model 1 for 
prediction, indicating that HFQRS analysis is feasible for 
making useful clinical decisions (Fig. 4b).

Development and validation of CHD predictive nomogram
The dichotomous logistic regression was constructed 
for Age, Gender, Hypertension, Diabetes, and Conclu-
sions for the prediction of coronary heart disease risk. 
The AUC of the model was 0.88, and the model predicted 
well. Among the variables included in the model, the 
coefficient of the variable Age was 0.052 with a p-value of 
0.002, which was significant. The coefficient of the vari-
able Gender was 1.377 with a p-value of 0.001, which was 
significant. The coefficient of Hypertension was 1.879 
with a p-value of 0, which was significant. The coeffi-
cient of the variable Diabetes was 2.099 with a p-value of 
0.01, which was significant. The coefficient of the variable 
Conclusions was 1.763, P<0.01, which was significant. 
The results of the logistic regression analysis were used to 
construct a column line plot to more intuitively predict 
the risk of CHD (Fig. 5). By drawing a vertical line toward 
the vertex scale, the vertical line through the observed 
values of the variables can find the corresponding scores, 
and the sum of the scores of all observed variables is the 
predicted risk of developing coronary heart disease in 
that individual.

To further validate the columnar table, we divided the 
total score into four subgroups by quartiles. Figure  6 
shows that the risk of CHD increased with increas-
ing total score, with participants in quartile four (OR: 
126.133, 95% CI: 28.376, 560.662) having a higher risk of 
CHD than those in the lower quartile (odds OR: 4.716, 
95% CI: 1.572, 14.152) (P<0.01).

SHAP
ML has emerged as a promising tool. However, one of 
the key factors in determining whether physicians will 
use ML model predictions for clinical decision-making 
is their ability to understand how ML models arrive at 
a given conclusion. Interpretability, or explainability, 
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can be defined as the degree to which humans under-
stand the reasons for ML model predictions. The more 
interpretable the model, the easier it is for physicians to 
understand why a given prediction was made and thus 
make the appropriate clinical decision in the best interest 
of the patient [37].

Shapley additive explanations (SHAP) analysis was 
based on the concept of coalitional game theory, where 

each feature variable in a dataset is considered a player, 
and the model is trained with that dataset to obtain pre-
dictions that can be seen as the benefits of many play-
ers cooperating on a project. SHAP analysis enabled 
the contribution of different features in risk prediction 
models to be investigated, and high-risk thresholds were 
identified by SHAP analysis, thus providing thresholds 
for the top predictive continuous clinical variables  [38]. 

Table 1  Clinical and HFQRS characteristics

Variables Total (n=199) Non-CHD (n=94) CHD (n=105) P-value

Male, n (%) 122 (61.6) 46 (48.9) 76 (73.1) 12.166 <0.001

Age, median 53.0 49.0 56.0 -4.475 <0.001

BMI, median 25.766 24.655 26.438 -3.306 <0.001

Clinical Disease
    Hypertension, n (%) 76 (38.4) 15 (15.9) 61 (58.7) 38.057 <0.001

    Diabetes, n (%) 31 (15.7) 2 (2.1) 29 (27.9) 24.805 <0.001

    CerebrovascularDisease, n (%) 15 (7.6) 4 (4.3) 11 (10.6) 2.818 0.093

Laboratory Results
    WBC, median 5.110 5.110 5.870 -2.359 0.017

    N, median 2.925 2.820 3.540 -2.381 0.016

    RBC, median 4.460 4.460 4.460 0.693 0.482

    Hb, median 135.000 135.000 134.500 0.951 0.334

    P, median 196.000 194.000 223.000 -3.36 <0.001

    ALT, median 17.000 16.000 21.000 -3.809 <0.001

    AST, median 23.000 23.000 20.500 1.27 0.197

    UA, mean 332.977 330.143 334.127 -0.142 0.887

    Cr, median 74.000 74.000 72.000 -0.458 0.642

    K, median 3.960 3.960 3.880 2.265 0.021

    CRP, median 1.147 1.100 4.240 -4.191 <0.001

    CK, median 70.000 70.000 67.000 -0.597 0.545

    CKMB, median 15.000 19.000 12.000 4.294 <0.001

    cTnI, median 0.340 0.340 0.250 1.537 0.119

    NTproBNP, median 34.125 0.000 88.200 -9.367 <0.001

    TC, median 4.010 4.010 3.600 2.953 0.003

    LDL, median 2.850 2.930 2.180 3.913 <0.001

    DD, median 0.200 0.190 0.230 -3.58 <0.001

Echocardiography
    EDV, median 98.000 98.000 102.000 -1.977 0.045

    ESV, median 36.667 35.000 41.500 -5.116 <0.001

    EF, median 0.614 0.643 0.584 6.554 <0.001

    SV, median 63.000 63.000 60.600 1.912 0.052

    CO, median 4.200 4.200 4.300 -3.134 0.001

Ex ECG
    MHR percentage, mean 0.779 0.801 0.759 2.595 0.01

    Max Power, mean 10.612 10.468 10.745 -0.572 0.568

    QRS Duration, mean 97.586 95.382 99.510 -2.426 0.016

    PPHR, mean 131.938 140.111 124.725 4.43 <0.001

    No. Ischemic leads, mean 1.633 1.096 2.127 -2.915 0.004

    Positive HFQRS Conclusions, n (%) 67 (35.3) 15 (16.0) 52 (54.2) 30.374 <0.001
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Table 2  Univariate and multivariate regression analysis

Univariate analysis Multivariate analysis

P-value OR(95%CI) P-value OR(95%CI)

Gender 0.001 0.353(0.195,0.639) 0.002 0.258(0.105,0.599)

Age 0 1.068(1.041,1.096) 0.005 1.052(1.017,1.093)

BMI 0.006 1.115(1.032,1.204)

Hypertension 0 7.471(3.800,14.689) 0 4.862(2.081,11.955)

Diabetes 0 17.787(4.110,76.971) 0.014 7.344(1.802,50.479)

WBC 0.403 1.053(0.933,1.189)

N 0.131 1.110(0.969,1.271)

P 0.742 1.001(0.996,1.005)

ALT 0.07 1.018(0.999,1.038)

K 0.118 0.539(0.248,1.170)

CRP 0.131 1.011(0.997,1.026)

CKMB 0.52 1.001(0.997,1.006)

NTproBNP 0.083 1.000(1.000,1.001)

TC 0.153 0.801(0.591,1.086)

LDL 0.005 0.563(0.377,0.840)

DD 0.579 0.903(0.630,1.295)

EDV 0.064 1.017(0.999,1.035)

ESV 0 1.074(1.033,1.117) 0.114 1.027(0.996,1.067)

EF 0 0.000(0.000,0.005)

CO 0.015 2.119(1.156,3.886) 0.054 2.393(1.060,6.103)

MHRpercentage 0.012 0.035(0.003,0.473)

PPRHR 0 0.973(0.960,0.986)

QRS Duration 0.024 1.032

Number of positives 0.007 1.188

Conclusions 0 6.224 0 5.728(2.497,14.019)

Fig. 1  The ROC curves of multiple machine learning models: A On the training set, and B On the validation set
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SHAP value was the contribution made by each player to 
fairly distributing the benefits of cooperation. The sum-
mary plot presented all the sample points in the graph, 
as shown in Fig. 7. The color represented the size of the 
feature value, while the vertical coordinate was the size of 
the SHAP value. From the graph, we can see the feature 

of the HFQRS conclusion: the larger the value, the larger 
the SHAP value; in other words, the larger the HFQRS 
conclusion, the higher the risk.

We checked the SHAP of two samples; one was cor-
rectly predicted, and the other model prediction did not 
match the actual case. The positive case is a 71-year-old 

Fig. 2  A forest plot of the AUC values of multiple machine learning models

Fig. 3  The learning curve of the Logistic Regression model
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female patient with hypertension and diabetes and a 
positive HFQRS conclusion from the cycling exercise 
test. The output value is higher than the base value, and 
the model predicts a high risk of coronary heart disease, 
which is actually diagnosed as coronary heart disease 
by coronary angiography (Fig.  7b). The negative exam-
ple case is a 64-year-old female patient with hyperten-
sion and a positive HFQRS finding from cycling exercise 
testing, which the model predicts to be at high risk of 
coronary heart disease; however, the actual patient was 
excluded from coronary heart disease by coronary angi-
ography (Fig. 7c).

Discussion
In this study, our findings illustrate the significant contri-
bution of age, gender, hypertension, diabetes, and exer-
cise load test HF QRS conclusions to CHD prediction. 

Using these variables, six machine learning models were 
developed and compared to yield the best performance 
of the Logistic Regression model, further establishing and 
validating a column line graph for assessing CHD risk, 
which we believe has potentially significant implications 
for CHD at the first level.

Previous studies have used deep learning algorithms 
to analyze routine 12-lead ECG in outpatients to predict 
the ability of CHD [39]. A recent study has developed a 
columnar table of the association of biological and psy-
chological factors with the risk of coronary heart dis-
ease  [40]. In contrast to earlier studies, our analysis of 
HFQRS in the exercise load ECG, combined with the 
admission routine findings, showed that five variables 
were significantly related to high CHD risk. Among 
them, there are two immutable factors (gender and age), 
which are very consistent with the previous studies [41]. 

Fig. 4  The DCA curves of A multiple machine learning models and B two Logistic Regression models

Table 3  Performance of ML models

Dataset Model Acc. Sen. Spe. PPV NPV F1 Kappa AUC​

Train XGBoost 0.767 0.832 0.769 0.803 0.749 0.816 0.685 0.870

Logistic 0.825 0.823 0.839 0.838 0.814 0.830 0.645 0.886

LightGBM 0.719 0.846 0.719 0.797 0.676 0.820 0.386 0.841

RandomForest 0.955 0.939 0.983 0.983 0.930 0.960 0.947 0.996

MLP 0.591 0.599 0.596 * 0.650 * 0.645 0.516

SVM 0.678 0.902 0.462 0.628 0.803 0.740 0.353 0.692

Validation XGBoost 0.695 0.801 0.766 0.752 0.674 0.763 0.685 0.796

Logistic 0.789 0.858 0.874 0.811 0.800 0.830 0.645 0.886

LightGBM 0.653 0.759 0.763 0.730 0.637 0.728 0.386 0.770

RandomForest 0.737 0.856 0.779 0.783 0.746 0.812 0.947 0.824

MLP 0.579 0.670 0.670 * 0.598 * 0.645 0.555

SVM 0.668 0.874 0.594 0.623 0.790 0.724 0.366 0.677



Page 11 of 14Zhang et al. BMC Medical Informatics and Decision Making          (2024) 24:217 	

In general, hypertension and diabetes are also widely 
recognized risk factors for coronary heart disease  [42]. 
We report an OR of 5.728 (95% CI: 2.497, 14.019) for 
the correlation between HF QRS findings and coronary 
heart disease prediction. False-positive rates for exercise 
ECG tests used to diagnose CHD are higher in women 
compared to men. Women are inherently a risk factor 
for false-positive exercise stress tests  [43, 44] HFQRS 
response to myocardial ischemia was gender-independ-
ent, and Rosenmann et al. [45] found that the number of 

leads of ischemic HFQRS response correlated with the 
severity of CHD in 113 patients with non-urgent refer-
ral coronary angiography and that HFQRS analysis had 
a sensitivity of 70% and specificity of 80% for the detec-
tion of significant coronary artery obstruction (single 
vessel stenosis ≥70% or left main stem stenosis ≥50%) on 
the angiogram. In this paper, we innovatively constructed 
multiple machine learning models for HFQRS and clini-
cal characteristics; the SHAP force plot increased the 
interpretability of the models; and we also developed 

Fig. 5  CHD predictive nomogram

Fig. 6  Association between the total points of the nomogram and CHD. OR: odds ratio; CI: confidence interval
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user-friendly column line tables with promising clinical 
applications. Although individual modifiable CHD risk 
factors contribute only modestly to prognostic perfor-
mance, our models indicate that eliminating or control-
ling these individual factors would lead to substantial 
reductions in total population CHD events [46].

Limitations and application prospects
Nevertheless, there are three important considerations 
that must be acknowledged. The exercise stress test is 
specifically restricted to pregnant women, those with 
motor limitations, and patients who have experienced 
acute myocardial infarction or other disorders within 
the past 48 hours. It is noteworthy that the analysis of 
high-frequency QRS (HFQRS) in resting electrocardio-
grams (ECGs) is currently being utilized. However, the 
analysis of HFQRS in patients with pacemakers is still in 
the clinical testing phase. Furthermore, there are multi-
ple factors related to clinical characteristics. Despite our 
consideration of thirty-five variables, our analysis does 
not encompass all possible factors. Therefore, our find-
ings and conclusions can only be applied to predicting 
the risk of CHD in the general population. To further 

validate our findings, future studies should incorporate 
a broader range of variables. Ultimately, this study was 
conducted in a single medical facility and focused exclu-
sively on Chinese patients from a specific geographic 
area, perhaps restricting its applicability to a broader 
population. Although we have performed a 10-fold cross-
validation of our machine learning model, it is still neces-
sary to conduct future prospective multi-center research 
to independently confirm our findings.

Omer  et  al.  [47] conducted a study on the reaction of 
HFQRS signals from standard intracardiac electrodes 
(iHFQRS) to acute myocardial ischemia caused by coro-
nary balloon dilation. They discovered that iHFQRS is 
a prompt indicator of myocardial ischemia, showing a 
significant decrease within seconds and responding to 
ischemic signals from various coronary arteries, including 
the LAD, LCX, RCA, and even distal vessels that supply 
less myocardium. These findings demonstrate that iHFQRS 
outperforms the conventional ST-segment deviation as a 
diagnostic tool for myocardial ischemia.The iHFQRS dem-
onstrated excellent performance in animal tests, indicat-
ing good potential for future research of HFQRS in human 
implants. Research has demonstrated that monitoring 

Fig. 7  SHAP analysis. A SHAP summary plot of the top 5 features of the Logistic regression model; B A positive case; C A negative case
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energy levels in iHFQRS utilizing implantable devices, such 
as conventional intracardiac electrodes, situated in typical 
positions, can offer an early and dependable diagnosis of 
acute ischemia episodes.

Conclusion
Our study demonstrated that men and older adults with 
hypertension, diabetes, and positive HFQRS conclusions 
on exercise stress tests suggested a higher risk of CHD. 
We developed a user-friendly column line graph that may 
be beneficial to the public and policymakers to establish 
effective CHD risk assessment and primary prevention 
strategies.
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