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Abstract
Background  Despite improvement in treatment strategies for atrial fibrillation (AF), a significant proportion of 
patients still experience recurrence after ablation. This study aims to propose a novel algorithm based on Transformer 
using surface electrocardiogram (ECG) signals and clinical features can predict AF recurrence.

Methods  Between October 2018 to December 2021, patients who underwent index radiofrequency ablation for AF 
with at least one standard 10-second surface ECG during sinus rhythm were enrolled. An end-to-end deep learning 
framework based on Transformer and a fusion module was used to predict AF recurrence using ECG and clinical 
features. Model performance was evaluated using areas under the receiver operating characteristic curve (AUROC), 
sensitivity, specificity, accuracy and F1-score.

Results  A total of 920 patients (median age 61 [IQR 14] years, 66.3% male) were included. After a median follow-up 
of 24 months, 253 patients (27.5%) experienced AF recurrence. A single deep learning enabled ECG signals identified 
AF recurrence with an AUROC of 0.769, sensitivity of 75.5%, specificity of 61.1%, F1 score of 55.6% and overall accuracy 
of 65.2%. Combining ECG signals and clinical features increased the AUROC to 0.899, sensitivity to 81.1%, specificity to 
81.7%, F1 score to 71.7%, and overall accuracy to 81.5%.

Conclusions  The Transformer algorithm demonstrated excellent performance in predicting AF recurrence. 
Integrating ECG and clinical features enhanced the models’ performance and may help identify patients at low risk for 
AF recurrence after index ablation.

Keywords  Deep learning, Transformer, Atrial fibrillation recurrence, Electrocardiogram, Clinical features, Pulmonary 
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Background
Atrial fibrillation (AF) is the most common cardiac 
arrhythmia associated with increased morbidity and 
mortality [1, 2]. The recent updated guideline emphasizes 
a multifaceted approach to AF management, focusing on 
risk assessment, therapeutic strategies, and the integra-
tion of new evidence to optimize patient outcomes [3]. 
For symptomatic AF patients, catheter ablation is high-
lighted as a beneficial treatment, particularly for those 
with symptomatic paroxysmal AF and few comorbidities 
[3, 4]. Despite improvements in technology, the single-
procedure success rate was as high as 72.5–75.9% for 
paroxysmal AF (PAF) and 50–60% for non-paroxysmal 
AF (non-PAF) [5, 6]. Our recent study demonstrated that 
female tend to exhibit more advanced structural remod-
eling at the time of ablation, which is associated with 
lower atrial voltage compared to men. This advanced 
remodeling in female often results in less favorable abla-
tion outcomes [7]. Consequently, it is necessary to choose 
a more optimal strategy to identify patients who are more 
likely to benefit from ablation. Several clinical scores have 
been developed to predict success of ablation with mod-
est performance [8, 9].

Deep learning (DL) is a subfield of machine learn-
ing (ML) that is capable of extracting complex patterns 
from data without requiring manual, expert-dependent 
feature engineering [10]. The Transformer, a state-of-
the-art DL model, has gained prevalence in natural lan-
guage processing (NLP) and Computer Vision using the 
attention mechanism [11]. Recently, the Transformer 
has demonstrated promising results in medical imaging 
applications, as it is adept at understanding contextual 
information [12, 13]. Previous studies using ML to pre-
dict AF recurrence by directly predicting shape descrip-
tors from magnetic resonance imaging (MRI) [14]. 
Additionally, ML methods have been integrated with per-
sonalized computational modeling to predict recurrence 
following PVI [15]. Furthermore, handcrafted features 
extracted from computerized tomography (CT) scans 
have been linked to the probability of AF recurrence after 
ablation [16]. The electrocardiogram (ECG) contains a 
large amount of information that directly reflects under-
lying cardiac physiology associated with cardiac electri-
cal and structural variations. A recent study showed that 
Convolutional Neural Networks (CNNs) and multimodal 
fusion framework can be used to predict AF recurrence 
using ECG, electrogram (EGM) and clinical features [17].

In this study, we propose a novel AF recurrence predic-
tion algorithm based on Transformer using surface ECG 
signals and clinical features to identify patients who are 
more likely to benefit from index ablation.

Methods
Study population
Between October 2018 and December 2021, a total of 
1,264 patients with either PAF (790, 65.2%) or non-PAF 
(474, 34.8%) who underwent first ablation were recruited. 
Non-PAF includes persistent and long-standing AF, per-
sistent AF is defined as a sustained episode lasting > 7 
days and < 1 year and long-standing AF is > 1 year and 
< 3 years. Patients with the following conditions were 
excluded: previous history of AF ablation, absence of 
data, poor ECG quality, and loss of follow-up (Fig.  1). 
This study was approved by the Ethics Committee of The 
First Affiliated Hospital of Nanjing Medical University.

ECG pre-processing
For each patient, a standard 12-lead ECG of 10  s dur-
ing sinus rhythm (SR) were obtained (filter range 0.5–
100 Hz; AC filter 50 Hz, 25 mm/s, 10 mm/mV) by ECG 
recording system (RAGE-12, Nalong Technology Co., 
Ltd., Xiamen, China). Preoperative ECG during SR was 
obtained for all PAF patients. For non-PAF patients, the 
ECG during SR was obtained within three days following 
the ablation procedure to minimize the effect of potential 
cardiac structural changes. When multiple ECG record-
ings were available, the one closest to the index proce-
dure was selected. Details of the pre-processing of the 
surface ECG can be found in the Supplemental Methods.

Preprocessing of clinical variables
The following demographic variables were collected: age 
at the time of ablation, sex, height, weight, body mass 
index (BMI). Comorbidities including hypertension, 
diabetes, heart failure, stroke/transient ischemic attack 
(TIA), coronary artery disease (CAD) were included. Left 
atrial anteroposterior diameter (LAD), left ventricular 
ejection fraction (LVEF) and left ventricular end diastolic 
diameter (LVDd) were extracted from transthoracic 
echocardiograms that were obtained within 3 months 
before index ablation procedure. Pro-B type natriuretic 
peptide (Pro-BNP) and e-GFR, ml/(min 1.73 m2) were 
obtained within 1 week before the first ablation proce-
dure. The simple deletion method was used to handle 
missing values, which is the most primitive method for 
the treatment of missing values. Details regarding the 
pre-processing of the clinical features are provided in the 
Supplemental Methods. The number of missing values 
for each clinical variable are presented in Table S3.

Transformer network
The Transformer model was developed to predict the 
likelihood of AF recurrence by analyzing ECG signals 
and clinical data. The Transformer encoder, as out-
lined in Figure S1 (see Methods in the Data Supplement 
for further details), was employed to extract pertinent 
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information from both data sources. Briefly, the Trans-
former encoder consists of various modules, including 
the multi-head attention module, residual module, fully-
connected layer and the normalization layer. Training 
details of the Transformer model, such as the loss func-
tion and accuracy, are provided in Figure S3.

Fusion module
To enhance the model’s performance, we developed a 
multimodal fusion framework (Figure S2). The pre-pro-
cessed ECG images were first sent to a Multilayer Per-
ceptron (MLP) layer for linear coding, which downscaled 
the relevant data before being sent to the Transformer 
encoder for further encoding. After six layers of encod-
ing, the features were sent to the MLP for scaling. Simi-
larly, the clinical data was first encoded using one-hot 
encoding and sent to a MLP layer, followed by the Trans-
former encoder for encoding. After six layers of encod-
ing, the features were also sent to the MLP for scaling. 
In this way, the image and clinical data features were in 
the same dimension before fusion module. Therefore, we 
can directly concatenate these two vectors in the fusion 
module. Merged features were fed to the MLP classifier 
for further prediction.

Model training and validation
All patients and ECGs in SR were randomly assigned in 
a 7:1:2 ratio to training, internal validation, and testing 
datasets. The training and evaluation were conducted 
on 4 NVIDIA RTX V100 (16G). The maximum training 
epoch was set to 40, with a batch size of 32. We used 6 
encoder layers for each modality and set the number of 
attention heads in all Transformer layers to 12. Adam 
optimizer was employed with a learning rate of 2e-6, 
while the dropout and label-smoothing rates were set to 
0.3 and 0.1, respectively. To determine the most critical 
clinical characteristics that the model primarily relies 
on to derive the final prediction, the importance of each 
variable is determined by a self-attentive mechanism cal-
culation. A probability threshold was selected based on 
the ROC curve of the internal validation set.

Ablation procedure
All antiarrhythmic drugs were discontinued for 5 half-
lives and amiodarone for 2 months before the index 
procedure. The ablation procedure was performed as 
previously described in detail [18, 19]. In brief, a 3-D 
mapping system (Biosense Webster.; Diamond Bar, CA, 
USA) was used to guide the mapping and ablation proce-
dures. Circumferential pulmonary vein isolation (CPVI) 

Fig. 1  The flowchart for inclusion and exclusion criteria
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was initially performed by point-to-point ablation with 
an ablation index (AI) of 500 to 550 (power 30 to 40 w, 
contact force 5 to 30  g). If AF persisted after CPVI, SR 
was restored by electrical cardioversion. After the CPVI 
procedure, substrate mapping was applied with LA body 
and left atrial appendage during SR. Low-voltage areas 
(LVAs) were defined as areas with amplitude less than 0.5 
mV in more than 3 adjacent low voltage points with space 
difference of 0.5  cm. The detailed techniques for sub-
strate modification have been described previously [18, 
20]. In brief, the intervention steps included homogeni-
zation ablation in the LVAs, defragmentation in the tran-
sitional zones (TZs), and dechanneling of the substrate if 
necessary.

Follow-up
All patients were treated with anticoagulation for the first 
3 months and anti-arrhythmic drugs if not contraindi-
cated. Follow-up visits were scheduled for the patients at 
1, 3, 6, and 12 months after index ablation, and at least 
once a year after that. During these visits, patients under-
went a surface ECG and 24-h Holter monitoring. AF 
recurrence was defined as any episode lasting longer than 
30  s on Holter recordings or ECG during clinical visits 
after index ablation procedure.

Statistical analysis
Continuous variables were presented as mean ± standard 
deviation (SD) or median (interquartile range [IQR]) 
and compared between groups using the Student t test 
or Mann-Whitney U test. Categorical variables were 

expressed as percentages and compared using the X2-
test. Multivariate Cox proportional hazards regression 
was performed including variables with P < 0.1 on uni-
variate analysis. Kaplan-Meier (KM) incidence free sur-
vival analysis was performed in the testing set. Statistical 
analyses were performed using R software (version 3.3.0) 
and python (version 3.6.8).

Results
Population characteristics
Between October 2018 and December 2021, a total of 
1,264 patients who underwent catheter ablation for AF 
were recruited. Of these, 208 patients with a history of 
AF ablation were excluded, 38 patients were excluded 
due to poor ECG quality and 56 patients were lost to 
follow-up. Finally, a total of 920 patients were enrolled in 
the study (Fig. 2). Demographics and clinical data of the 
study population are summarized in Table 1. The median 
age was 61 years and PAF accounted for 580 (63.0%) 
patients. CPVI alone was performed in 430 patients 
(46.7%) while 490 patients (53.3%) underwent additional 
LVA ablation. After a median follow-up of 24 months, 
253 patients (27.5%) experienced AF recurrence. Patients 
with recurrent AF were predominantly female (P = 0.009), 
had a history of stroke/TIA (P = 0.005) and had a larger 
LAD (P = 0.002). On multivariate analysis, both female 
sex (HR 1.36, 95% CI 1.02–1.83, P = 0.037) and LAD (HR 
1.03, 95% CI 1.00–1.06, P = 0.046) proved to be indepen-
dent predictors of AF recurrence (Table 2).

Fig. 2  Receiver operating characteristic curves and incidence-free KM survival curves for the 3 models. The 3 models are transformer model with clinical 
features only (Trans-Clinical red); transformer model with ECG only (Trans-ECG; blue); and transformer model with ECG and clinical (Trans-ECG-Clinical; 
black) for the testing cohort. (A) ROC curves of the testing cohort for the 3 models. (B) Incidence-free KM curves for the high- and low-risk groups of the 
3 models after a median follow-up of 24 months. Trans indicates transformer; ROC: receiver operating characteristic; AUROC: areas under the receiver 
operating characteristic curve; KM: Kaplan-Meier
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Clinical scores
To access the predictive ability of clinical risk scoring 
methods for AF recurrence, we compared the predictive 
performance of the CHA2DS2-VASc Score [9], APPLE 
score [21] and the DR-FLASH score [22]. The AUROCs 
for these models were 0.538, 0.563 and 0.548, respec-
tively, demonstrating inferiority to the Transformer 
model (Table 3).

Prediction of AF recurrence using ECG or clinical features 
alone
The receiver operating characteristic (ROC) and KM 
curves for the three different models are illustrated in 
Fig.  2. The Transformer models demonstrated HRs of 
3.9 (95% CI, 2.14–7.11) and 1.92 (95% CI, 1.11–3.31) in 

Trans-ECG and Trans-Clinical, respectively. The pre-
dictive performance of the Transformer models for all 
patients is presented in Table 3. In the model developed 
and tested based only on surface ECG, the AUROC 
was 0.769, which out-performs the performance of the 
CHA2DS2-VASc Score, APPLE score and the DR-FLASH 
score. The AUROC of the model using clinical features 
alone in the testing dataset was 0.642 with a sensitivity 
and specificity of 52.8% and 68.7%, respectively. Feature 
selection algorithm rankings are provided in Fig. 3. The 
top five most important features are LAD, AF type, BMI, 
stroke/TIA and age.

Table 1  Baseline characteristics of the study population
Characteristics All

(n = 920)
No AF Recurrence (n = 667) AF Recurrence

(n = 253)
P Value

Age, years 61.0 (54.0,68.0) 61.0 (54.0,67.0) 61.0 (54.0,68.0) 0.359
Male, n (%) 610 (66.3) 459 (68.8) 151 (59.7) 0.009
BMI, kg/m2 25.0 (23.1,27.1) 24.9 (23.2,27.0) 25.2 (22.9,27.4) 0.496
Medical history
  Hypertension, n (%) 468 (50.9) 327 (49.0) 141 (55.7) 0.069
  Diabetes, n (%) 125 (13.6) 94 (14.1) 31 (12.3) 0.467
  HF, n (%) 172 (18.7) 116 (17.4) 56 (22.1) 0.099
  Stroke/TIA, n (%) 75 (8.5) 44 (6.6) 31 (12.3) 0.005
  CAD, n (%) 66 (7.2) 43 (6.4) 23 (9.1) 0.165
CHA2DS2-VASc score 1.0 (1.0,3.0) 1.0 (1.0,3.0) 2.0 (1.0,3,0) 0.001
  0, n (%) 186 (20.2) 148 (22.2) 38 (15.0)
  1, n (%) 279 (30.3) 210 (31.5) 69 (27.3)
  2, n (%) 196 (21.3) 134 (20.1) 62 (24.5)
  3, n (%) 144 (15.7) 100 (15.0) 44 (17.4)
  > 3, n (%) 115 (12.5) 75 (11.2) 40 (15.8)
Procedure 0.318
  CPVI alone, n (%) 430 (46.7) 305 (45.7) 125 (49.4)
  CPVI + LVA, n (%) 490 (53.3) 362 (54.3) 128 (50.6)
Periprocedural complications
  Cardiac tamponade, n (%) 6 (0.7) 2 (0.3) 4 (1.6) 0.090
  Pseudoaneurysm, n (%) 4 (0.4) 3 (0.4) 1 (0.4) 1.000
Echocardiogram parameters
  LAD, mm 40.0 (36.0,43.0) 39.0 (36.0,42.0) 40.0 (37.0,44.0) 0.002
  LVDd, mm 48.0 (45.0,50.0) 48.0 (45.0,50.0) 48.0 (45.0,51.0) 0.476
  LVEF, % 63.0 (61.4,64.4) 63.0 (61.0,64.7) 62.7 (61.7,64.4) 0.483
Biomarkers
  Pro-BNP 409.0 (152.0,855.0) 347.0 (138.0,823.0) 496.2 (206.0,935.0) 0.002
  Dyslipidemia, n (%) 381 (41.4) 287 (43.0) 94 (37.2) 0.106
  e-GFR, ml/(min 1.73 m2) 90.0 (71.4,109.3) 90.5 (71.4,109.3) 89.7 (73.5,111.8) 0.995
AF type 0.018
  Paroxysmal 580 (63.0) 436 (65.4) 144 (56.9)
  Non-paroxysmal 340 (37.0) 231 (34.6) 109 (43.1)
AF, atrial fibrillation; BMI, body mass index; HF, heart failure; TIA, transient ischemic attack; CAD, coronary artery disease; CHA2DS2-VASc score, congestive heart 
failure, hypertension, age ≥ 75 years (doubled), diabetes, stroke/transient ischemic attack/thromboembolism (doubled), vascular disease (prior myocardial 
infarction, peripheral artery disease, or aortic plaque), age 65–75 years, sex category (female); CPVI, circumferential pulmonary vein isolation; LVA, low-voltage area; 
LAD, left atrial diameter; LVDd, left ventricular diastolic diameter; LVEF, left ventricular ejection fraction; Pro-BNP, Pro-Brain Natriuretic Peptide; e-GFR, estimated of 
glomerular filtration rate
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Prediction of AF recurrence combining ECG and clinical 
features
Combining ECG and clinical features in the Transformer 
model resulted in an improved AUROC of 0.899, out-
performing the performance of the model trained on 
ECG or clinical features alone (Table 3). Cox regression 
analysis indicated that high-risk patients had a signifi-
cantly higher incidence of AF recurrence during the fol-
low-up period than low-risk patients (HR: 32.2; 95% CI: 
7.83–132.5; P < 0.001). The transformer model demon-
strated superior performance compared to both the CNN 
approach trained solely on surface ECG and the CNN 
approach trained using a combination of surface ECG 
and clinical features (Table S4). Figure S3 demonstrates 

representative examples of the fusion model’s perfor-
mance in patients with and without AF recurrence.

Subgroup analysis
The performance of the fusion model in subgroup analy-
sis is presented in Fig. 4. The fusion model exhibited sim-
ilar performance among male and female patients, but 
it demonstrated exceptional performance in older (≥ 65 
years old) patients (sensitivity 90.5%; specificity 84.5%; 
HR: 24.3; 95% CI: 5.6 to 104.8). Regarding PAF patients, 
the Transformer model yielded AUROCs of 0.782 using 
ECG alone and 0.889 with the incorporation of clinical 
features. For non-PAF patients, the model resulted in 
AUROCs of 0.924 and 0.751 with and without the addi-
tion of clinical features, respectively (Table S1) The model 
performance was similar among patients with prior-abla-
tion ECG and those with post-ablation ECG (Table S3).

Discussion
The main findings of this study are as follows: 1), a 
novel Transformer-based end-to-end approach demon-
strated high predictive performance for the incidence 
of AF recurrence. 2), combining surface ECG and clini-
cal variables significantly improved the performance of 
the model. 3), the Transformer model showed promise 
in identifying patients at low risk of AF recurrence after 
index ablation.

DL is a rapidly evolving and dynamic field of computer 
science that has garnered significant attention in recent 
years [23]. Recently, the transformer architecture has 
emerged as a state-of-the-art technique in NLP tasks 
that involve sequential input data. This has led to break-
throughs in tasks such as language translation, sentiment 

Table 2  Univariate and multivariate analysis
Characteristics Univariable Multivariable

HR 95%CI P value HR 95%CI P value
Age 1.00 0.99 to 1.02 0.503
Female sex 1.37 1.06 to 1.76 0.015 1.36 1.02 to 1.83 0.037
BMI 1.01 0.97 to 1.05 0.708
Hypertension 1.22 0.95 to 1.56 0.120
Diabetes 0.85 0.58 to 1.23 0.387
HF 1.26 0.94 to 1.70 0.124
Stroke/TIA 1.78 1.22 to 2.59 0.003 1.43 0.90 to 2.27 0.131
CAD 1.40 0.91 to 2.15 0.126
CHA2DS2-VASc score 1.13 1.05 to 1.22 0.002 1.02 0.91 to 1.13 0.762
CPVI + LVA 0.92 0.72 to 1.17 0.487
LAD 1.04 1.02 to 1.07 0.002 1.03 1.00 to 1.06 0.046
LVDd 1.01 0.98 to 1.05 0.384
Pro-BNP 1.00 1.00 to 1.00 0.092
Dyslipidemia 0.79 0.61 to 1.02 0.071
e-GFR 1.00 1.00 to 1.00 0.826
Non-PAF 1.35 1.05 to 1.73 0.019 1.17 0.88 to 1.55 0.281
BMI: body mass index; HF: heart failure; TIA: transient ischemic attack; CAD: coronary artery disease; CPVI: circumferential pulmonary vein isolation; LVA: low-voltage 
area; LAD: left atrial diameter; LVDd: left ventricular diastolic diameter; Pro-BNP: Pro-Brain Natriuretic Peptide; e-GFR: estimated of glomerular filtration rate

Table 3  The performance of the clinical scores and transformer 
models to predict AF recurrence

AUROC Sensitivity Specificity Accuracy F1-
score

CHA2DS2-
VASc 
Score

0.538 0.585 0.496 0.522 0.413

DR-
FLASH 
score

0.548 0.623 0.443 0.495 0.415

APPLE 
score

0.563 0.151 0.954 0.723 0.239

ECG 0.769 0.755 0.611 0.652 0.556
Clinical 
features

0.642 0.528 0.687 0.641 0.459

ECG and 
clinical 
features

0.899 0.811 0.817 0.815 0.717
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analysis and text generation. Moreover, DL techniques 
have demonstrated remarkable success in the medi-
cal field. The inherent capability of DL to autonomously 
extract pertinent features and comprehend intricate pat-
terns from ECG or Holter data has significantly improved 
the accuracy and efficiency of arrhythmias diagnosis and 
risk stratification [24–26]. A transformer-based auto-
matic system, combining denoising and segmentation 
modules, was utilized to identify ST-segment and J point 
abnormalities in patients using long-term Holter ECG 
data [24]. Additionally, a novel CNN-based input struc-
ture was developed to enhance the feature extraction 
capability from dynamic ECG signals, enabling the detec-
tion of premature ventricular contractions (PVC) and 
supraventricular premature beats (SPB) [26].

Clinical factors and imaging-based features have been 
reported to be associated with AF recurrence after abla-
tion [27–29]. Many risk factors have been identified 
to predict AF recurrence after ablation, including left 
atrial enlargement, female, age and AF type [28, 30]. 

The CAAP-AF score predicted long-term freedom from 
AF following the final ablation and provided a practi-
cal expectation for individual patient outcomes follow-
ing AF ablation [27]. Previous studies have also assessed 
the utility of ML in predicting AF recurrence using ECG 
or EGM, imaging data and clinical data. Shade et al [15] 
demonstrated that ML and personalized computational 
modeling could be combined to predict AF recurrence 
in 32 patients with an AUROC of 0.82. In their study, 
random forests and a Quadratic Discriminant Analysis 
(QDA) classifier were trained using features derived from 
magnetic resonance imaging (MRI) images and simula-
tions. Roney et al [31] constructed 100 patient-specific 
models to predict long-term response to AF ablation. 
They found that models based on clinical history, imaging 
and simulation stress tests outperformed those trained on 
clinical history and imaging or clinical history alone. In 
recent research, the CNN model (a fusion of EGM, ECG 
signals, and clinical features) showed excellent predictive 
performance with an AUROC, sensitivity, specificity, and 

Fig. 3  Feature importance of the clinical variables before the ablation procedure
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accuracy of 0.859, 87.0%, 86.7%, and 86.6%, respectively. 
However, 28% of patients in this study had prior AF abla-
tion, which may have affected characteristics of the EGM 
or ECG signals.

In our study, we utilized the Transformer algorithm 
to predict AF recurrence by extracting temporal infor-
mation from ECG images. Image ECGs offer a more 
intuitive and accessible format for clinicians, potentially 
enhancing diagnostic accuracy and efficiency. Further-
more, image ECGs are more compatible with ML algo-
rithms, facilitating automated analysis and advancing 
cardiac health monitoring [32]. Adding clinical features 
further improved the model’s performance. Compared to 
CNNs, which only process fixed-length time-series vec-
tors and lose some feature information, the Transformer 
network focuses more on the temporal continuity of the 
data and captures the data’s hidden deep features well 
[33, 34]. The structural changes that occur with AF recur-
rence, such as myocyte hypertrophy and fibrosis, which 
may cause subtle ECG changes. Thus, DL could afford the 
ability to consider complex datasets of all contained data 
and detect subtle ECG changes associated with structural 
changes in AF.

Recently, our STABLE-SR-III trial demonstrated that 
CPVI combined with LVA modification increased the 
success rate compared to CPVI alone in older patients 
with PAF [35]. Furthermore, our recent study found 
that older women exhibited more advanced atrial sub-
strate and might benefit more from additional LVA 

modification than men [7]. In this study, female tended 
to have a significantly higher incidence of AF recurrence 
and proved to be an independent predictor of AF recur-
rence. Subgroup analyses indicated that the fusion model 
had better predictive performance in older patients 
compared to younger patients. This difference could be 
attributed to the higher prevalence of comorbidities like 
stroke/TIA, HF, and CAD in the older patients. Addition-
ally, the Transformer exhibited satisfactory performance 
in both PAF and non-PAF patients, with relatively better 
results in non-PAF patients, indicating that our approach 
is applicable to subgroups with diverse AF types. Fur-
thermore, the model performance did not differ signifi-
cantly among patients with prior-ablation ECG and those 
with post-ablation ECG.

Limitations
Firstly, this is a single center and retrospective study. Sec-
ondly, due to the unavailability of a comparable dataset, 
external validation could not be conducted, and we have 
relied on internal validation to assess the performance of 
our data. Thirdly, surface ECG in SR was not obtained 
before ablation in all patients, and the ablation procedure 
might have impacted the ECG characteristics for non-
PAF patients. However, we found that the model perfor-
mance did not differ significantly among patients with 
prior-ablation ECG and those with post-ablation ECG. 
Finally, DL models are still perceived as black boxes and 
improving interpretability is an ongoing research.

Fig. 4  The performance of the fusion model in subpopulations. CI: confidence interval
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Conclusions
Deep learning based on Transformer algorithm demon-
strated outstanding performance in predicting AF recur-
rence. Integrating ECG and clinical features enhanced 
the models’ performance compared to using clinical data 
or ECG alone.
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