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Abstract
Background  Electronic Health Records (EHR) are widely used to develop clinical prediction models (CPMs). However, 
one of the challenges is that there is often a degree of informative missing data. For example, laboratory measures 
are typically taken when a clinician is concerned that there is a need. When data are the so-called Not Missing at 
Random (NMAR), analytic strategies based on other missingness mechanisms are inappropriate. In this work, we seek 
to compare the impact of different strategies for handling missing data on CPMs performance.

Methods  We considered a predictive model for rapid inpatient deterioration as an exemplar implementation. This 
model incorporated twelve laboratory measures with varying levels of missingness. Five labs had missingness rate 
levels around 50%, and the other seven had missingness levels around 90%. We included them based on the belief 
that their missingness status can be highly informational for the prediction. In our study, we explicitly compared 
the various missing data strategies: mean imputation, normal-value imputation, conditional imputation, categorical 
encoding, and missingness embeddings. Some of these were also combined with the last observation carried forward 
(LOCF). We implemented logistic LASSO regression, multilayer perceptron (MLP), and long short-term memory (LSTM) 
models as the downstream classifiers. We compared the AUROC of testing data and used bootstrapping to construct 
95% confidence intervals.

Results  We had 105,198 inpatient encounters, with 4.7% having experienced the deterioration outcome of interest. 
LSTM models generally outperformed other cross-sectional models, where embedding approaches and categorical 
encoding yielded the best results. For the cross-sectional models, normal-value imputation with LOCF generated the 
best results.

Conclusion  Strategies that accounted for the possibility of NMAR missing data yielded better model performance 
than those did not. The embedding method had an advantage as it did not require prior clinical knowledge. Using 
LOCF could enhance the performance of cross-sectional models but have countereffects in LSTM models.
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Introduction
Electronic Health Record (EHR) data are widely used to 
develop clinical prediction models (CPMs). The greatest 
strength and weakness of using EHR data for developing 
such tools is that these data reflect the way information 
flow in a real-world environment. On the positive side, 
data used to create the models represent how patients 
interact with the healthcare systems and thus share the 
same characteristics as the data available later during 
model deployment [1–3]. On the downside, the way of 
collecting clinical information is not uniform across 
patients, providers, and clinical services. The inconsis-
tency leads to varied rates of unobserved (or missing) 
clinical measures. More importantly, the missingness is 
typically highly informative with the generating mecha-
nism not observable. Therefore, addressing missingness 
in EHR can be a challenging problem [1–5].

When developing and ultimately implementing CPMs, 
it is necessary to consider how best to handle missing-
ness among the predictor variables. A variety of strate-
gies have been suggested for addressing missing data 
issues in predictive modeling, ranging from complete-
case analysis to machine learning methods and to various 
forms of imputation strategies [6–9]. However, when we 
choose a missing data procedure, it is crucial to consider 
and account for the underlying missingness mechanism. 
In inferential statistics, a lot of work has been conducted 
in characterizing the type of missingness. The most 
widely used framework is put forward by Little and Rubin 
[10]. In this framework, mechanisms dictating the miss-
ingness patterns are recognized as Missing Completely at 
Random (MCAR), Missing at Random (MAR), and Not 
Missing at Random (NMAR), described in more details 
in the next section. Of note, within this framework, dif-
ferent approaches are appropriate based on the underly-
ing mechanism.

CPMs based on time-varying longitudinal data present 
some unique challenges and opportunities with regards 
to missing data. When risk assessments are made seri-
ally overtime, there are more opportunities for data not 
to be observed. However, one can also leverage the lon-
gitudinal nature of the data to impute in or model the 
missingness.

The goal of this paper is to explore the suitability of dif-
ferent approaches for handling missing data in the con-
text of developing a longitudinal CPM when data are 
informatively missing. We take a case study in building 
a predictive model for inpatient deterioration, for which 
we have previously developed and implemented into 
our EHR system [11]. In particular, our CPM utilized 
laboratory tests that were only collected when a clinician 
determined they were of values to measure. We first give 
a formal presentation of missing data within the Little 
and Rubin [10] framework. We next discuss different 

strategies for handling missing data. Then, we describe 
the data in our case study along with our implemented 
analytic strategies, followed by the results of our empiri-
cal evaluation. We finally conclude by discussing the 
implications of our findings.

Materials and methods
Missingness mechanisms
We consider a scenario where the dataset of interest con-
tains missing values. We use a matrix of Bernoulli ran-
dom variables to represent the missingness. Each item 
in the matrix indicates the missingness state of the cor-
responding entry in the original data matrix. The matrix, 
dictated by a missingness mechanism, is a part of the data 
generating process. This mechanism plays a pivotal role 
in the study of missing data analysis [12]. It helps to char-
acterize the relationship between the missingness matrix 
and the original data matrix. The mechanism applies to 
both outcome and input data in a supervised learning 
context. However, in this paper, we only consider sce-
narios where there is missingness amongst the predictor 
variables.

According to Little and Rubin [10], there exist three 
types of mechanisms: Missing Completely at Random 
(MCAR), Missing at Random (MAR), and Not Missing at 
Random (NMAR). Following their notation, we denote X 
as the input data matrix. For an arbitrary observation, the 
input data x  consists of two parts: xmis, the missing vari-
ables, and xobs , the observed variables. We denote M as 
the missingness matrix, where

	
Mij =

{
1, if the valueis missing
0, otherwise

We also let m ∈ {0, 1}p  indicate the observation-wise 
missingness state, where p  is the number of predictors in 
the input data. The mechanism is categorized by a condi-
tional distribution, f (m|x,Θ ), where Θ  is an unknown 
parameter vector that defines input variables. In the defi-
nitions below, we combined Little and Rubin’s probability 
density representation [10] and the explanation proposed 
by Sterne et al. [13].

Definition 2.1.1  In MCAR, the probability of being 
observed is independent of any variable. That is, 
f (m|x, Θ) = f (m|Θ). Equivalently, within each vari-
able with missingness, there is no systematic difference 
between missing and observed values. As an illustration, 
this may occur if some lab measurements are unable to be 
collected due to a backlog in the lab.

Definition 2.1.2  In MAR, the likelihood of being 
observed can only depend on the observed variables. That 
is, f (m|x, Θ) = f (m|xobs, Θ). Equivalently, within each 
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variable with missingness, the difference between missing 
and observed values can be explicitly explained by other 
observed variables. This may happen when sicker patients 
have more measurement, and the missingness is attribut-
able to completely observed health status variables.

Definition 2.1.3  In NMAR, the likelihood of being 
observed can depend on both the observed and the miss-
ing variables. That is, f (m|x, Θ) = f (m|xobs, xmis, Θ). 
Equivalently, within each variable with missingness, the 
systematic difference still remains between missing and 
observed values even if we adjust for other observed vari-
ables. This may happen in the case where sicker patients 
have more measurement, but the health status indicators 
are not recorded.

NMAR is also known as informative missingness [14]. 
This commonly occurs with EHR data, where lab mea-
surements are obtained from the patients only when 
doctors believe they are necessary. For example, as previ-
ously described, sicker patients tend to have more clini-
cal measurements and, consequently, more data within 
the EHR than healthier patients [8]. This has also been 
referred as informed presence bias, the notion that what 
we observed from EHR data is inherently informative [1]. 
For instance, let us consider a scenario where we want to 
build a classification model for predicting cardiovascular 
disease among patients. Then, many healthy patients may 
have missing cholesterol data since doctors saw no need 
for the measurement [15]. Moreover, the informative 
missingness contributes to the outcome prediction [16].

Overall, missing data is a common challenge for devel-
oping CPMs but has not been well treated in many 
studies. A recent review of handling missing data for 
CPMs [6] found that only about 60% of searched stud-
ies reported strategies for addressing missing data, and 
complete-case analysis was the most frequently used 
approach among them. Other methods, such as multiple 
imputation (MI), k-nearest neighbor imputation, mean 
imputation, and indicator variable methods, were imple-
mented in a limited number of cases. Another review 
of CPMs using EHR data, found 44% of studies failed to 
report any approach to handling missing data. Of those 
that did report an approach, imputation methods (single 
and multiple) were most commonly used [17].

Current study
EHR data
For our study, we consider the problem of developing a 
predictive model for inpatient deterioration. We have 
previously reported on how we developed and imple-
mented such an early warning score (EWS) at our institu-
tion [11]. The EWS uses real-time patient information on 
demographics, comorbidities, vital signs, and laboratory 
measurements. Of particular interest are the laboratory 

measurements, which are only measured when clini-
cians deem them necessary, so the missingness is likely 
informative. In the original model, we used a categorical 
imputation approach as described above. Here we further 
explore the performance of alternative strategies.

Data source  We use the original source data from when 
we developed the EWS. The data include all inpatient 
adult (age 18) admissions to a general medical or surgi-
cal unit at Duke University Hospital – a 957-bed, tertiary 
care, academic medical center – from 2014 to 2016. Data 
were extracted from EPIC based EHR system. The study 
was approved by Duke Health IRB at Duke University 
with the IRB number Pro00060340. Participant consent 
was waived for this retrospective analysis due to the mini-
mal risk posed to study participants and the infeasibility 
of obtaining consent in a large retrospective cohort.

Data set-up  The operationalized score operates as a tri-
age score. Nurse managers use the score at 8 am and 8 
pm daily to identify patients at risk of deteriorating in the 
next 12 h. As such, we set our data up to reflect this use 
case. Specifically, we organized patient data into 12-hour 
blocks. As in our original model development, patient 
time was censored after 7-days since events are relatively 
rare after this point. As such, each patient had at most 
fourteen time-blocks. The data for each time block are 
based on what was measured in the previous 12 h.

Outcome of interest  The outcome of interest is rapid 
deterioration. This is defined as a transfer from a general 
medical or surgical floor to an intensive care unit (ICU) 
or mortality while on a general medical or surgical floor 
within the first week since admission. Heuristically, this 
outcome can be thought of as someone who is in a rela-
tively stable condition and then has an adverse outcome. 
To define the outcome, we extracted time-stamped unit 
information to identify when patients were on a unit of 
interest and had the event of interest. The outcome was a 
modeled as a binary outcome of deterioration within the 
following 12-hour blocks.

Predictor variables  For this study, we focused on predic-
tor variables from the original CPM, which had potential 
informative missingness, such as the laboratory measures. 
In consultation with our clinical collaborator (ADB), we 
identified five laboratory tests that should be regularly 
collected from all patients (white blood cell count, plate-
let, sodium, potassium, blood urea nitrogen) and seven 
laboratory tests that would be collected more informa-
tively (arterial and venous pH, PaO2, arterial and venous 
PaCo2, lactate and troponin). Figure 1 shows the missing-
ness rate for all of the laboratory measures. Additionally, 
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for modeling purposes we incorporated demographic fac-
tors of age, sex, and race.

Missing data strategies
In this section, we discuss the different missing data 
strategies we considered. Each method relies on different 
assumptions regarding the missingness mechanism.

Mean imputation  In mean imputation, all missing attri-
butes are estimated by the average of the corresponding 
ones from the observed subjects. Mathematically, the 
process can be expressed as follows.

	






∀ j ∈ {1, . . . , p}

Nobsj =
N∑

i=1
(1 − Mij)

x̂j = 1
Nobsj

N∑
i=1

(1 − Mij) Xij

where x̂j  is the imputed value for the j -th predic-
tor. When the missingness mechanism is MCAR, this 

approach preserves the variable means but can distort 
the correlation structure among predictors [12].

Conditional imputation  Conditional imputation fills in 
the missing data with random draws from predictive dis-
tributions that depend on the observed values from other 
predictor variables. We use predictive mean matching as 
the conditional model to estimate the missing values. All 
the predictors are included in the conditional model. Pre-
dictive mean matching is less vulnerable to model mis-
specification than linear regression and thus has high 
robustness [18]. We perform the chain equation algorithm 
to achieve convergence in the estimated values and set the 
number of iterations as 10 based on the rule of thumb 
[19]. This approach assumes MAR, which may introduce 
bias to the data when the missingness is informative [19].

Normal-value imputation  In the normal-value imputa-
tion method, missing components are replaced with the 
expected normal values, which are calculated as the aver-
age of the lower and upper bounds of the normal range 
provided in Table 1. These range values are determined by 

Fig. 1  Missingness rate of the laboratory measurements
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medical professionals and healthcare practitioners. This 
imputation approach assumes that a laboratory measure-
ment is not taken because it is presumed to fall within the 
normal range. Consequently, this method operates prop-
erly only when the assumption holds true, which is a spe-
cial NMAR mechanism.

Categorical encoding imputation  Based on the prior 
knowledge about the lab predictor variables, we catego-
rize each of them into four levels, including “unknown,” 
“normal,” “high,” and “low” [11]. Table 1 provides all the 
cut points for the categorization of each lab measure-
ment. The categorization completes the original data. It 
allows us to fit a classification model to informative miss-
ingness. Moreover, it can capture the potential nonlinear 
relationships (e.g., U-like relationships) between the pre-
dictors and the target. This method does not make any 
assumption about the missingness mechanism. However, 
it requires substantial background knowledge about data. 
Furthermore, categorizing continuous data without sci-
entific reason may worsen classification models’ perfor-
mance and efficiency [20].

Last observation carried forward (LOCF)  For each of 
the above methods, we also consider the use of LOCF 
(also known as forward-filling or forward imputation). 
LOCF is a common method applied to longitudinal data 
[21]. All missing values are filled by the last observed val-
ues of the corresponding variables. Since it places a strict 
time-dependent structure on the data, it has theoretical 
soundness under limited scenarios of MAR [22].

Missingness embedding  All of the methods described 
above fill in the blanks of the input data matrix. They are 
all feasible for any kinds of predictive modelling tech-
niques. However, in the context of deep learning, we can 
directly incorporate the missingness into the modelling 

approaches instead of separately completing the input 
data.

Consider a partially observed variable, xj , from x  with 
missingness status mj  from m . Let’s assume a general-
izable k  represents the number of categories for miss-
ingness status. Next, let mj ∈ {0, 1}k  be the one-hot 
representation, also known as a standard basis vector, 
where it has 1 at position k  and 0 at all other entries. 
Additionally, let Wj ∈ Rk× d  be the embedding matrix, 
where d  is the dimension of the resultant embedding 
vector. The embedding representation, ej ∈ Rd , is 
obtained by ej = Wjmj  [23, 24]. We also use a condi-
tional scaling technique to incorporate all the observed 
values. If mj = 1, ej  will remain unchanged; otherwise, 
mj = 0, the resultant embedding will be xjej  [24]. In 
this approach, the transformation only happens to vari-
ables with missingness, while fully observed variables is 
unaffected. By mapping the binary indicator variable to 
a higher-dimensional embedding space, this method can 
uncover intrinsic properties related to the missingness 
status of the variable [23]. The dimension of the embed-
ding, d , is a hyperparameter that may vary across dif-
ferent variables. According to the rule of thumb, its size 
can be 4

√
k  [25]. For example, in our case, as we had two 

missingness states (where k = 2), we selected the dimen-
sion d  as 2 by using the formula and rounding up the 
result to the next whole number.

Embedding weight matrices Wj ’s are tuned along with 
the training of a downstream deep learning model. The 
weight matrices transform the original incomplete data-
set into a complete concatenation of embeddings. The 
transformed dataset carries all the information about 
the observed raw values and informative missingness. 
Figure 2 visualizes and exemplifies how this approach is 
implemented when there are three predictors with miss-
ingness and one fully observed predictor.

Built upon different missingness mechanisms, missing 
data strategies are case-specific. Table 2 summarizes the 
various methods and the missingness mechanism types 
they can rely on.

Classification models
We implemented three different types of classifiers 
through which to compare the missing data methods. We 
used logistic LASSO regression, multilayer perceptron 
(MLP) and recurrent neural network using long short-
term memory (LSTM). For the logistic LASSO regression 
and MLP, we modeled the data cross-sectionally, ignor-
ing the repeated measurement nature of the data. For the 
LSTM, we explicitly accounted for the longitudinal data 
structure.

Table 1  Range and normal range of each laboratory 
measurement
Lab Lower 

limit
Lower limit 
of normal 
range

Upper limit 
of normal 
range

Upper 
limit

BUN 0.00 7.00 20.00 150.00
Potassium 0.00 3.50 5.00 14.00
Platelets 0.00 150.00 450.00 3000.00
Sodium 85.00 135.00 145.00 200.00
WBC 0.00 3.20 9.80 500.00
pH (aterial) 6.75 7.35 7.45 7.65
pH (venous) 6.75 7.32 7.42 7.65
PaO2 20.00 75.00 100.00 670.00
PaCO2 (aterial) 5.00 35.00 45.00 200.00
PaCO2 (venous) 5.00 39.00 55.00 200.00
Lactate 0.00 0.50 2.20 20.00
Troponin 0.00 0.00 0.10 40.00
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Implementation details
We divided our data into training (80%) and testing (20%) 
data, splitting at the patient level. For the data-dependent 
strategies (e.g., mean imputation, conditional imputation 
and embedding), we first learned the imputation strate-
gies and predictive models from the training data. Subse-
quently, we applied both the strategies and the models to 
the testing data.

We applied each of the four general imputation meth-
ods (excepting the embedding approach) both with and 
without LOCF and fitted each of the three models. Addi-
tionally, we applied the embedding approach only under 
the MLP and LSTM models. Moreover, given that the 
embedding framework can be applied to any categorical 
data (e.g., sex, race, etc.), we investigated if embedding 

encoding the categorical variables could perform dif-
ferently from one-hot encoding them. Thus, we imple-
mented the missingness embedding methods for both 
scenarios to make a comparison. Despite the categorical 
predictors’ varied levels, we made all embedding dimen-
sions the same for simplicity.

For the logistic LASSO regression models, we used 
10-fold cross-validation with grid search to optimize the 
penalizing coefficient λ . For the neural network models, 
we used Hyperband [26], a reinforcement-learning-based 
random search algorithm, to navigate towards the opti-
mal neural architecture. This framework allows the mod-
els to automatically learn hyperparameters, but there is 
a trade-off between computing efficiency and optimality 
[26]. Two additional parameters were introduced to man-
age the trade-off: the maximum number of epochs a trial 
can run and the trial eliminating factor. Li et al. [26] pro-
vided comprehensive guide for setting their values. Neu-
ral network models’ hyperparameters, including model 
number of hidden layers, number of neurons per layer, 
dropout rate, and learning rate, were all optimized by this 
framework.

Data and model evaluation
We described the patient cohort based on those who 
experienced rapid deterioration (the case group) ver-
sus those who did not (the control group). To assess the 
potential for informative missingness we investigate 

Table 2  Missing data strategies and the mechanisms in which 
they are valid to use
method mechanism
Mean imputation MCAR
Conditional imputation MCAR/MAR
Normal-value imputation NMARa

Categorical encoding MCAR/MAR/NMAR
LOCF MCAR/MARb

Missingness embedding MCAR/MAR/NMAR
aNormal-value is valid only under our assumption on the informative 
missingness and not generalizable to all NMAR settings
bLOCF works the best when the basis value and forward-imputed value share 
the same distribution

Fig. 2  An example of missing embedding
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whether the case group had more measurements of 
each lab compared to the control group. We used dif-
ferent methods to compare cases and controls for the 
two distinct categories of laboratory measurements. For 
labs that were regularly measured and more frequently 
observed (e.g., white blood cell count), we used a count-
based quasi-Poisson regression with the length of stay as 
the offset. For the infrequently but informatively mea-
sured ones (e.g., lactate), we used an ever/never relative 
rate regression via a Poisson regression with a sandwich 
estimator, while also controlling for the length of stay 
[27]. We calculated relative risks (RR) and the corre-
sponding 95% confidence interval (CI) as the metrics for 
comparison.

We evaluated the fitted models on the test data based 
on area under the receiver operator characteristic 
(AUROC). To account for the longitudinal data’s intra-
subject correlation within model evaluation, we calcu-
lated a weighted average of AUROC stratified by the 
length of stay, where observations were independent 
within each stratum. The weights were the observation-
level proportions of length of stay values. Additionally, 
we used a basic bootstrapping algorithm to calculate 
the 95% CIs, where observations were resampled at the 
patient level.

The logistic LASSO regression models were fitted in R 
4.1.2 [28] using glmnet [29]. The MLP and LSTM models 
were fitted in Python 3.10.4 [30] using TensorFlow 2.13.0 
[31].

Results
Data summary and informative missingness
There were 105,198 patients. After bucketing the data 
into 12-hour time blocks, we obtained 870,869 observa-
tion units for this study. Within the studied time window, 
patients had on median 4 hospital days (IQR: 2 to 7) cor-
responding to about 8 observation points per person. The 
overall patient-level event rate was 4.7%, with an obser-
vation-level event rate of 0.6%. Table  3 reports demo-
graphic characteristics of the studied patients.

Table  4 presents and compares the rates of observing 
each laboratory measurement. Notably, the missingness 
rates exhibit significant differences between controls and 
cases across all labs, suggesting the presence of poten-
tially informative missingness.

Evaluation of method performance
The baseline models which did not include any labora-
tory variables achieved the following aggregated AUROC 
scores with the corresponding 95% confidence intervals: 
logistic LASSO regression 0.64 (0.623, 0.658), MLP had 
0.715 (0.696, 0.733), and LSTM had 0.732 (0.713, 0.751). 
We then used them as a reference and examined how 
the incomplete laboratory measures could improve the 
model performance and how different missing data strat-
egies could affect model performance.

Figure  3 summarizes the performance of each classi-
fier using each missing data approaches on the test data. 
The error bars on the plot represent the 95% CIs for the 
corresponding metric. The red dashed lines and shad-
ows are the scores and 95% CIs of the baseline models. 

Table 3  Comparison of baseline demographic information between case and control groups
Control (N = 100,187) Case (N = 5011) SMDa

Length of Stay (hour) 0.0502
  Median [Q1, Q3] 96.0 [48.0, 168] 96.0 [54.0, 144]
Admission type 0.504
  Elective 29,015 (29.0%) 2567 (51.2%)
  Emergency 44,193 (44.1%) 1795 (35.8%)
  Trauma Center 14 (0.0%) 1 (0.0%)
  Urgent 26,965 (26.9%) 648 (12.9%)
Sex 0.184
  Female 53,777 (53.7%) 2230 (44.5%)
  Male 46,410 (46.3%) 2781 (55.5%)
Age (year) 0.366
  Median [Q1, Q3] 58.0 [40.0,69.0] 64.0 [52.0, 73.0]
Race 0.307
  American Indian or Alaskan Native 649 (0.6%) 40 (0.8%)
  Asian 1729 (1.7%) 58 (1.2%)
  Black or African American 30,248 (30.2%) 967 (19.3%)
  Caucasian/White 61,591 (61.5%) 3752 (74.9%)
  Missing 1594 (1.6%) 86 (1.7%)
  Other 4376 (4.4%) 108 (2.2%)
aThe standardized mean difference (SMD) is utilized as the metric for comparing the groups
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We observed that all three classifiers generally performed 
better after incorporating the twelve laboratory measures 
and addressing the missingness. Additionally, the LSTM 
model, which accounts for the longitudinal structure of 
the predictors, had the best overall aggregated AUROC, 
followed by the MLP and logistic LASSO regression.

For cross-sectional models using logistic regression or 
MLP, LOCF generally improved the imputation methods, 
with some improvements statistically significant. The 
conditional imputation had the worst performance across 

all classifiers. Normal-value imputation with LOCF was 
the best strategy for both cross-sectional models.

Results were different for the LSTM, which changed 
the missing data strategies’ performance pattern. Miss-
ingness embedding and categorical encoding both per-
formed the best. Furthermore, LOCF led to significantly 
reduced performance for categorical encoding and a 
slight but insignificant drop in normal-value and mean 
imputations.

Table 4  Comparison of the degree of missingness in laboratory measurements between case and control groups
Control (N = 100,187) Case (N = 5011) RR (95%CI)

Regular:
Median [Q1, Q3]a

BUN 3.00 [1.00,6.00] 4.00 [2.00,7.00] 1.25 (1.24,1.27)
Potassium 3.00 [1.00,6.00] 5.00 [2.00,7.00] 1.27 (1.26,1.29)
Platelets 3.00 [1.00,5.00] 4.00 [2.00,6.00] 1.25 (1.23,1.27)
Sodium 3.00 [1.00,6.00] 5.00 [2.00,7.00] 1.27 (1.26,1.29)
WBC 3.00 [1.00,5.00] 4.00 [2.00,6.00] 1.25 (1.23,1.26)

Informative:
Observing rateb

pH (arterial) 11.75% 52.88% 5.00 (4.84,5.16)
pH (venous) 9.74% 16.86% 1.80 (1.69,1.93)
PaO2 15.83% 70.78% 4.97 (4.84,5.10)
PaCO2 (aterial ) 15.82% 70.74% 4.97 (4.84,5.10)
PaCO2 (venous) 9.76% 17.06% 1.82 (1.71,1.94)
Lactate 14.47% 39.99% 2.96 (2.85,3.08)
Troponin 10.41% 19.06% 1.90 (1.79,2.02)

aThe median count, with 1st and 3rd quartiles, of observed values for a lab among all patients
bThe probability of the lab ever being observed from a patient

Fig. 3  Discriminative capability of the full model using various missing data strategies. Red dashed lines and shaded areas represent benchmark scores 
obtained in the absence of lab measures and their corresponding 95% CIs
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Figure 4 summarized how different methods performed 
when only considering two subsets of the lab variables: 
one for the regularly observed variables and the other for 
the informatively collected variables. The reduced mod-
els retained some observations from the full model, and 
we found that LSTM models generally outperformed 
cross-sectional models. LOCF was generally beneficial 
for imputation strategies in cross-sectional models, but 
it tended to reduce performance in LSTM models. How-
ever, there were some additional insights to be gained.

Parts (a) and (b) showed that for cross-sectional mod-
els, categorical encoding with LOCF tended to perform 
best for regularly collected labs, while normal-value 
imputation with LOCF tended to be the best for infor-
matively collected labs. Part (c) demonstrated that miss-
ingness embedding and categorical encoding were more 
effective than other strategies when applied to regularly 
collected labs.

Discussion
Insights from the results
Our study explored five methods for addressing infor-
mative missing when predicting inpatient deterioration 
using EHR data. We compared their performance using 
three classification models: logistic LASSO regression, 
MLP, and LSTM. One advantageous aspect of predictive 
modeling is that, when handled appropriately, missing 
data strategies can be treated as tunable parameters that 
can be learned during the model development process.

The learning task was based on EHR data with infor-
mative missingness. Applying mean imputation and con-
ditional imputation, as well as their LOCF augmented 
versions, was theoretically unsuitable. We compared 
them to methods that followed the informative missing-
ness assumption. Overall results showed it was critical to 
employ a valid missing data strategy with a longitudinal 
downstream model to predict inpatient deterioration.

Missingness embedding is an advanced indicator vari-
able method that uses scaled embedding vectors from Rd  
to express observed values and missingness, rather than 

Fig. 4  Discriminative capability of the reduced model using various missing data strategies. Red dashed lines and shaded areas represent benchmark 
scores obtained in the absence of lab measures and their corresponding 95% CIs

 



Page 10 of 12Sun et al. BMC Medical Informatics and Decision Making          (2024) 24:206 

binary values [24]. During the training process, embed-
ding vectors are continuously learned, tuned, and opti-
mized by the data. Unlike an ordinary indicator variable 
method that still would require an additional imputation 
method to complete the dataset, missingness embed-
ding was self-sufficient. This means that models could be 
directly fitted using the available data without requiring 
imputation. Moreover, missingness embedding is inte-
grated to prediction models by its design, which makes 
the model ready for immediate deployment. In contrast, 
models trained using data processed by most imputation 
methods typically required complete data during deploy-
ment, as the imputation models are usually not inte-
grated with the prediction models [3].

Compared to one-hot encoding, using embeddings 
to encode categorical demographic variables did not 
improve the performance in our study. Presumably, 
the embeddings would reveal the categorical variables’ 
intrinsic properties and thus help the classifier solve the 
prediction task [23]. It has been verified in various cases 
where the embedding representation of categorical vari-
ables with hundreds or even higher numbers of levels 
was powerful and advantageous [32–34]. However, in 
our specific case, we did not observe any improvement 
using embedding representations. This can be attributed 
to the fact that we had an enormous number of observa-
tions where all the categorical variables only have a few 
types. One-hot encoding them would not introduce any 
sparsity.

As expected, predictive performance improved with 
increasing algorithm complexity. Laboratory values 
typically have complex, non-linear effects, for which a 
standard LASSO regression cannot adequately model. 
Moreover, an LSTM can capture more longitudinal pat-
terns. Therefore, it is not surprising that the optimal 
missing data strategy varied based on model type. The 
categorical imputation had the greatest impact when 
using the LASSO, likely because it allows for a non-linear 
representation of the data. That effect is less pronounced 
when using the deep learning methods.

When using a cross-sectional model (i.e., LASSO or 
MLP), LOCF was typically optimal, particularly when 
combined with normal-value imputation. Conversely, 
with the longitudinal model, (i.e., LSTM), LOCF was not 
preferred. A reasonable rationale could be LOCF set the 
data into a temporal structure. After combining with the 
normal-value imputation, it generated a complete dataset 
that followed the assumption of informative missingness 
that values were taken only when needed. Moreover, in 
Fig. 4 (b), we saw it significantly boost the invalid strat-
egies when the model only incorporated the regularly 
collected labs. However, LOCF has been critiqued for 
casting a strict ideal structure on data [22]. This could 
explain why LOCF generally reduced the performance 

in LSTM models, which were designed to automatically 
learn the time correlation in the data. Putting restricted 
but incorrect format on the time-varying information 
would therefore harm the classifiers’ discriminative 
capability. Especially, when LOCF was combined with 
categorical encoding, the performance was significantly 
reduced.

If we only incorporated a subset of all the laboratory 
variables, the model performance decreased through-
out all missing data methods and classification models. 
This was reasonable as we used less information. Gener-
ally, the results from the reduced models preserved all 
the observations we got from the full model, and only 
including the informatively collected labs did not yield 
significantly better results than only including regularly 
collected ones. However, the reduced models’ results 
gave some clearer interpretation when we only consid-
ered a subset of the variables. First, if we only incorpo-
rated the regularly collected measures, we saw that using 
missingness embedding and categorical encoding was 
more advantageous over other strategies in LSTM. Sec-
ond, LOCF could greatly save us if we chose a poor strat-
egy for a cross-sectional model like an MLP.

Limitations
It is important to note that this study only investigated 
one prediction task using data from a single EHR sys-
tem. The results may not fully generalizable. Performance 
outcomes may vary in different settings. However, it is 
valuable to repeat the study for various tasks using data 
from multiple EHR systems. This will allow us to further 
explore the external validity of our findings.

Model interpretability is a top priority in machine 
learning research. When the embedding technique 
is applied to numerous categories (e.g. word embed-
dings), the real-value embedding vectors can be visual-
ized through their principal component projection in 
two dimensions on a scatter plot [34]. This visualization 
implies how various categories may relate to each other. 
However, in our scenario, the missingness embedding 
has two classes for each variable, making it difficult to 
envision their clinical significance using the above-men-
tioned method.

There is also room for improvement in obtaining 
embeddings. Our current approach generates constant 
embedding vectors for all missing values in each pre-
dictor or column. Namely, the vectors are only variable-
specific. However, we can enhance this approach by 
incorporating time information in the embeddings and 
allowing them to be time-dependent. This will likely 
introduce more variability to the data but still adhere to 
the NMAR missingness mechanism.

Lastly, the metric used for performance evaluation 
needs adjustment. We used a weighted aggregated 
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AUROC due to the longitudinal structure in the data, but 
for simplicity, we chose the proportions of the number 
of observations at each time block as the weights. This 
approach requires more justification. For future work, 
we need a metric that incorporates the repeated measure 
design.

Conclusion
In this paper, we examined the different methods for han-
dling informative missing data in EHR data. We found 
that our laboratory measurements follow an informa-
tive missingness pattern, where lab measurements were 
taken only when needed. To address it, we compared five 
missing data strategies combined with three downstream 
classifiers and found that the LSTM models generally 
outperformed other cross-sectional models. Our analysis 
revealed that LOCF combined with normal-value impu-
tation or categorical encoding performed well under 
cross-sectional models, whereas missingness embedding 
and categorical encoding achieved similar performance 
and outperformed other approaches under LSTM mod-
els. One of the biggest advantages of missingness embed-
ding was that it did not require prior knowledge of the 
data and can be used under any scenario to address miss-
ingness. In conclusion, we strongly recommend using 
an appropriate missing data method to avoid imposing 
incorrect assumptions. This is critical to prevent intro-
ducing bias and worsening the performance of predictive 
models.
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