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Abstract 

Genes, expressed as sequences of nucleotides, are susceptible to mutations, some of which can lead to cancer. 
Machine learning and deep learning methods have emerged as vital tools in identifying mutations associated 
with cancer. Thyroid cancer ranks as the 5th most prevalent cancer in the USA, with thousands diagnosed annually. 
This paper presents an ensemble learning model leveraging deep learning techniques such as Long Short-Term 
Memory (LSTM), Gated Recurrent Units (GRUs), and Bi-directional LSTM (Bi-LSTM) to detect thyroid cancer mutations 
early. The model is trained on a dataset sourced from asia.ensembl.org and IntOGen.org, consisting of 633 samples 
with 969 mutations across 41 genes, collected from individuals of various demographics. Feature extraction encom-
passes techniques including Hahn moments, central moments, raw moments, and various matrix-based methods. 
Evaluation employs three testing methods: self-consistency test (SCT), independent set test (IST), and 10-fold cross-
validation test (10-FCVT). The proposed ensemble learning model demonstrates promising performance, achieving 
96% accuracy in the independent set test (IST). Statistical measures such as training accuracy, testing accuracy, recall, 
sensitivity, specificity, Mathew’s Correlation Coefficient (MCC), loss, training accuracy, F1 Score, and Cohen’s kappa are 
utilized for comprehensive evaluation.

Keywords  Thyroid Cancer, Deep learning, Long short-term memory (LSTM), Ensemble learning model (ELM), 
Bi-directional LSTM (Bi-LSTM), Gated recurrent units (GRUs), Mutation detection

Introduction
The identification of cancer in 1786 by Caleb Parry 
marked the initiation of extensive research into its vari-
ous types and etiologies. Thyroid cancer ranks as the fifth 
most prevalent cancer among both men and women in 
the USA [1]. It manifests primarily in two forms based on 
hormone production: hypothyroidism and hyperthyroid-
ism [2]. Hypothyroidism occurs when the thyroid gland 
produces an excess of thyroid hormone, while hyper-
thyroidism arises from insufficient production. Thyroid 
hormone plays a crucial role in human metabolism. The 
spectrum of thyroid cancer includes follicular thyroid 
cancer, papillary thyroid cancer, anaplastic thyroid can-
cer, hurtles cell cancer, anaplastic thyroid cancer, and 
medullary thyroid cancer (MTC). Symptoms such as 
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neck lumps, throat pain, difficulty swallowing, coughing, 
and hoarseness are indicative of thyroid cancer.

Mutation is one of the primary causes of thyroid can-
cer. Any alteration to the gene sequence is referred to as 
a mutation [3]. This research aims to provide a computa-
tional framework for identifying the mutations that lead 
to thyroid cancer.

Researchers have already presented several compu-
tational studies for the identification of thyroid can-
cer. Some of the most recent techniques are thoroughly 
addressed in this area of the research. Researchers 
employed the texture they presented to identify thy-
roid nodules in various thyroid cancer situations. This 
work uses texture analysis and mathematical models to 
describe visual inhomogeneity. The CAD and texture 
analysis are done using the PubMed/MEDLINE data-
base. The study concludes that a better way to catego-
rize thyroid nodules in cases of thyroid cancer is through 
the texture analysis of photos using machine learning 
and deep learning methodologies. Examples of numer-
ous investigations using machine learning-based texture 
analysis are given in the report. In US Texture Analysis of 
thyroid nodules, the results demonstrate an accuracy of 
90% for computerized B-mode texture analysis, 96% with 
SVM, and 90.9% for random texture features [4]. [5] This 
study explores the efficacy of a radiomics model based on 
CT imaging for distinguishing between thyroid cancer. 
By analyzing 376 cases and employing advanced feature 
selection techniques, the model achieved a high diag-
nostic accuracy 99.13%. but this study is on CT imaging. 
The three MLP models employed are MLP-1, MLP-2, and 
MLP-3. With an output layer, MLP-1 uses seven inde-
pendent factors as input, including gender, age, location 
of nodal disease, tumor size, race, and number of positive 
lymphocytes [6].

The tall cell subtype (TC-PTC) of papillary thyroid 
carcinoma (PTC) is notably aggressive, characterized 
by its difficult-to-maintain definition, leading to high 
inter-observer variability. A multicenter study validated 
a deep learning (DL) algorithm for detecting tall cells in 
160 externally collected HE-stained PTC whole-slide 
images, achieving a sensitivity of 90.6% and specificity 
of 88.5% for TC detection. The algorithm’s accuracy in 
detecting non-TC areas was also high, and its use corre-
lated significantly with relapse-free survival, demonstrat-
ing robust performance without retraining [7]. A study 
[8] demonstrated that combining a convolutional neural 
network classifier with PRS significantly improved diag-
nostic accuracy, elevating the AUROC from 0.83 to 0.89 
and achieving a sensitivity 95% and specificity 63%. This 
study obtained a thyroid prognostic accuracy of 94.5%. 
Both human and follicular thyroid cancer are recognized 
using Raman microscopic imaging [9]. The spectrum 

pre-processing is done in MATLAB. This study demon-
strates FTC-133 Distinction accuracy of 88.9%.

The most recent study employs bioinformatics tech-
niques to find thyroid cancer biomarkers. This inves-
tigation uses data from the Gene Expression Omnibus 
database (GEO). The following four datasets are com-
bined for this investigation: GSE33630, GSE3467, 
GSE3678, and GSE53157. 64 samples of normal tissue 
and 100 samples of thyroid cancer, 164 samples were re-
selected from the dataset. Using the Robust Rank Aggreg 
(RRA) approach, the differentially expressed genes (DEG) 
are discovered. On these GEOs, many procedures are 
conducted, including pathway analysis, survival analysis, 
gene ontology (GO) [10], functional annotation, and pro-
tein-protein interaction (PPI) analysis [11].

In another study, the six prognoses of papillary thyroid 
cancer are identified by multi-omics [12] and bioinfor-
matics analysis. Additionally, this work employs the GEO 
database, which has 164 unregulated and 168 down-
regulated DEGs. These DEGs underwent KEG G and 
Go analyses to produce the PPI network and hub genes, 
which are then extracted [13]. In a study employing inte-
grated bioinformatics analysis, W. Liang and F. Sun iden-
tified the important genes in papillary thyroid cancer 
[14]. The study uses four datasets—GSE3678, GSE3467, 
GSE33630, and GSE58545—and applies KEGG pathway 
analysis [15], Kyoto Encyclopaedia [16], and Gene ontol-
ogy (GO) [10] to the development of PPI networks [17]. 
This study found 114 DEGs with downregulation and 
111 with upregulation. According to the study, BCL2, 
CCND1, and COL1A1 genes may be the main cause of 
papillary thyroid cancer.

According to a recent study, AI and ML produce accu-
rate thyroid nodule estimates [18]. This study demon-
strates that AI technologies can identify thyroid nodules 
more accurately. Additionally, deep learning techniques 
effectively classify cancerous and benign thyroid cancers. 
In this study, 187 patients’ data are used for testing, and 
592 patients’ data are used for training. In this work, a 
10-FCVT is used with the VGG-16T model. The model’s 
accuracy reading is 86.43% [19]. ThyNet model is cre-
ated using deep learning and AI models to distinguish 
between benign and malignant thyroid tumors, increas-
ing the effectiveness of the radiography procedure. This 
model used an 8339 patients dataset containing 18,049 
images and gave an accuracy of 92.2% [20]. Some simi-
lar work is also implemented on other deseases [21–26]. 
Table 1 explains the summary of the Literature review of 
the past researchers.

The most recent studies provided to identify thyroid 
adenocarcinoma are discussed in a literature review. 
These studies do, however, have certain limitations as 
follows:
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•	 A generalized dataset was not employed in most 
research.

•	 Most of the effort is focused on the patient ultra-
sound images from the hospital dataset.

•	 Only four to ten genes are often found in studies for 
thyroid cancer diagnosis.

•	 The models from the earlier study are not best evalu-
ated using various statistical tools.

•	 None of the studies listed above used any ELM to 
identify thyroid adenocarcinomas.

The proposed model in this study is developed to over-
come these limitations. The mutation information of 40 
genes that cause thyroid cancer is derived from https://​
intog​en.​org/ [27] and the normal gene sequences are 
downloaded from https://​asia.​ensem​bl.​org/ [28] with 
web scraping code written in Python. The contributions 
of this study are as follows:

•	 Constructed a benchmark mutated dataset by inte-
grating mutation information into normal gene 
sequences and produced a generalized and updated 
carcinogenic mutation dataset crucial for novel stud-
ies.

•	 Developed composition-dependent and position-
variant features for single-nucleotide, bi-nucleotide, 
and tri-nucleotide configurations feature extraction 
techniques extracting 522 features per carcinogenic 
mutation.

•	 Proposed Ensemble deep learning framework consist 
of multiple deep learning algorithms (LSTM, GRU, 

and BLSTM) enables the development of an early 
detection diagnostic system for thyroid cancer based 
on genomic data.

•	 Tested trained models on a test dataset and com-
pared performances, achieving a high accuracy of 
96%.

•	 Enhances personalized thyroid cancer detection and 
treatment for individual patients.

Materials and methods
The proposed study developed an ELM consisting of 
LSTM [29], GRU [30], and BLSTM [31] for the early 
detection of mutation in genes causing thyroid cancer. 
The proposed methodology of this study is explained in 
Fig. 1.

Data collection
Data collection and pre-processing is one of the key fac-
tors for training a model. Before feeding the data to the 
model, the essentials are cleaning, pre-processing, and 
normalizing [32]. The pre-processed dataset gives effi-
cient machine learning and deep learning model results.

There is no generalized dataset available for thyroid ade-
nocarcinoma. So, the proposed study developed a complete 
process for data collection. The normal gene sequences for 
thyroid adenocarcinoma are extracted from asia.ensambl.
org [28], and the mutated gene sequences for thyroid ade-
nocarcinoma are extracted from intogen.org [27]. Web 
scrapping code [33] is written in Python to automatically 
extract the required normal gene sequences from a well-
known database, asia.ensembl.org, and the associated 

Table 1  Summary of the literature review

Paper Citation Methodology Results

 [4] Texture analysis with Machine learning 90% accuracy for computerized B-mode texture analysis
96% accuracy with SVM
90.9% with random transform features

 [6] Machine learning algorithms with Fisher’s discriminant 
ratio, Kruskal-Wallis’ analysis, and Relief-F on the SEER 
database

94.5% accuracy

 [7] Deep Learning Based Algorithms Sensitivity 90.6%
Specificity 88.5%

 [8] Deep Learning Model AUC 89%
Sensitivity 95%
Specificity 63%

 [9] Raman Spectrograph 88.9% accuracy

 [11] Bioinformatics strategy on GEO database 7 key genes in the PPI network are the therapeutic targets of thyroid 
cancer

 [13] Multi-omics and bioinformatics analysis OGN, FGF13CDH3, CTGF, CYR61, CHRDL1, are key genes for papillary 
thyroid cancer

 [14] Integrated Bioinformatics Analysis CCND1, COL1A1, and BCL2 are the genes for papillary thyroid carcinoma

 [19] VGG-16T CNN model 86.43% Accuracy

 [20] ThyNet 92.2% Accuracy

https://intogen.org/
https://intogen.org/
https://asia.ensembl.org/


Page 4 of 15Shah et al. BMC Medical Informatics and Decision Making          (2024) 24:198 

mutation information from a well-known mutation data-
base, intogen.org. Mutated sequences are obtained by 
applying mutation information on normal gene sequences. 
Driver mutation causes cancer [34, 35]; therefore, only 
driver mutations related to thyroid adenocarcinoma are 
considered while creating the mutated dataset.

There are 696 gene mutations involved in thyroid ade-
nocarcinoma caused by 40 driver genes. All the samples 
are collected from persons of different ages, genders, 
treatments, cancer, and normal physical conditions. 696 
mutations are used to train, test, and validate the model. 
Table  2 shows 40 genes related to thyroid adenocarci-
noma, having 696 mutations of 633 samples in the dataset.

The benchmark dataset for this work is represented by 
Eq. (1)

In the Eq.  (1) T  represents a balanced dataset, T+ are 
the normal gene sequences and T− are the mutated gene 
sequence for thyroid adenocarcinoma. U  shows the 
union of these sequences to create an accurate, balanced 
dataset.

(1)T = T + U T−

Fig. 1  Research methodology for thyroid adenocarcinoma detection

Table 2  Detail of the genes involved in thyroid adenocarcinoma

Symbol Mutation Sample Symbol Mutation Sample

BRAF 371 371 ATM 9 6

NRAS 53 53 EIF1AX 9 6

KMT2C 34 26 RBFOX2 7 6

HRAS 23 22 KMT2A 8 6

NEFH 16 18 PRR14 7 6

PABPC1 17 12 PAK2 5 5

FAM186A 10 10 AKT1 6 5

HERC2 15 8 KRAS 7 4

DNMT3A 6 7 PDPR 5 4

TP53 8 7 WNK2 5 4

NF1 5 2 RET 6 4

CUX1 2 2 CHEK2 4 4

EPHA7 2 2 RHPN2 4 3

PDE4DIP 12 2 ARID2 2 3

PTEN 4 2 RGPD3 4 3

LRP1B 6 2 STAG2 2 2

MAP3K1 2 2 SETBP1 2 2

ABL2 3 2 PPP2R1A 2 2

FAT3 8 2 HSP90AA1 2 2

USP6 1 2 DGCR8 2 2
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Feature extraction
Feature extraction is the dimension reduction process 
by removing the redundant and irreverent data from the 
dataset and extracting the main data features to increase 
the accuracy, learning rate, and results of the machine 
learning without losing useful data information [36, 37]. 
It is one of the machine learning algorithm’s most impor-
tant steps in data processing. For the proposed study, a 
sequential model is used to express the gene sequence in 
thyroid cell nucleotides represented by Eq. (2) [38].

In the equation X1 represent the first gene in the thy-
roid cell sequence and X60 represents the last gene of the 
sequence. 40 is the total number of genes involved in the 
Thyroid adenocarcinoma.

Statistical moment
Statistical moments is a quantitative analysis describing 
gene distribution in the gene sequences [39]. The proposed 
study uses statistical moments to convert genomic data 
into fixed sizes for utilization in ELM. Raw Moment [40], 
Hahn moment [41], and the central moment [4] are used 
in the proposed model for describing the gene data prop-
erties. Raw moment describes the position of the genes in 
the specific nucleotides. It is also used in the probability 
distribution of the genes in gene sequences. The central 
moment is location invariant and uses data centroids for 
calculations. The Hahn moment uses the Hahn polyno-
mial to extract features from the gene sequences [42]. All 
these moments are used to find information regarding the 
positioning and the composition of the genes in the nucle-
otides. As the genes are in sequential manners, they use a 
2-dimensional matrix. The 2D matrix of the gene resides 
inside the nucleotide, is described in Eq. (3).

In the equation G′ represents the 2D matrix of thyroid 
cancer genes and G11 to GNN represents the genes resides 

(2)x1x2x3x4 x5x6 . . . . . . . . . .x60

(3)G′ =

G11 G12 . . . . G1N

G 21
.
.
.
.

G 22 . . . . . . .
.
.
.
.

G 2N
.
.
.
.

GN1 GN2 . ... ... GNN

at specific locations inside this 2D matrix. The Raw 
moment R(a, b) for 2D matrix G′ is calculated by Eq. (4)

In the equation Rab represents the raw moments at the 
degree of a+ b , G′ (p, q) is 2D matrix of the genes at any 
point p and q . For the calculation of the central moment, 
the centroid of the gene is calculated, represented by Eq. (5)

In Eq.  (4) Cab is the central moment, 
−
x and

−
y repre-

sents the centroids of the gene dataset. Hahn polynomial 
is calculated by Eq. (6)

The equation uses pochammer notation and gamma 
operators [43]. The Hahn moment calculated by the 
Hahn polynomial is illustrated in Eq. (7)

In the Eq.  (7) Hpq represents the Hahn moment using 
the Hahn polynomial.

Position relative incident Matrix (PRIM) and reverse position 
relative incident Matrix (RPRIM) calculation
Any gene is formed by the combination of nucleotides 
and their sequences. Any computational model is built by 
finding the positioning of the nucleotide in a gene. In the 
proposed study, it is very important to find the position 
of each nucleotide and its binding in the gene. PRIM [44] 
calculates the positioning of each nucleotide inside the 
gene sequence. Equation (8) illustrates the PRIM for the 
10 by 10 matrix.

(4)Rab =
∑ N

p=1

∑ N

q=1
paqbG′ (p, q)

(5)Cab =
∑ N

p=1

∑ N

q=1
(p− −

x)
a

(q − −
y)

b

G′ (p, q)

(6)h
x,y
n (r,N ) = (N + V − 1)n (N − 1)n×

∑

n
k=0(−1)k

(−n)k(−r)k (2N + u+ v − n− 1)k

(N + v − 1)k (N − 1)k

1

k!

(7)Hpq =
∑ N−1

p=0

∑ N−1

q=1
G′ (p, q) h

−
x,y
n (q, N )h

−
x,y
j (p, N )

(8)PPRIM =



















P1→1 P1→2 · · · P1→j · · · P1→20

P2→1 P2→2 · · · P2→j · · · P2→20

...
...

...
...

Pn→1 Pn→2 · · · Pn→j · · · Pn→20

...
...

...
...

Pm→1 Pm→2 · · · Pm→j · · · Pm→20


















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In Eq. (8) P are the nucleotide at a specific position in 
the gene sequence, and a 10 by 10 matrix is used. RPRIM 
[45] is applied on the gene sequences the same way PRIM 
is applied but in the reverse sequence shown in Eq. (9).

Feature vector determination
Frequency vector distribution is used to find the occur-
rence of every nucleotide in the gene sequence [46]. The 
gene distribution in the proposed study is calculated by 
Eq. 10.

The Eq.  (9) α is the frequency distribution vector. 
β 1, β 2, β 3 are the overall count of specific elements of 
gene sequence.

Position incidence vector calculation
Determining the feature vector reveals the presence of 
nucleotides within a particular gene sequence. The Accu-
mulative Absolute Position Incidence Vector (AAPIV) 
[47] consolidates the positional occurrences of these 
genes. Equation (11) quantifies the positional distribution 
of genes across nucleotides.

The nth part is calculated by Eq. (12)

The reverse AAPIV is the same way as AAPIV but in 
reverse order of gene sequences. The equation for the 
calculation of Reverse AAPIV is represented by

In the equation PR represents the Reverse AAPIV, 
� 1 to � nshows the gene sequences from 1 to n.

(9)

PRPRIM =



















P1→1 P1→2 · · · P1→j · · · P1→20

P2→1 P2→2 · · · P2→j · · · P2→20

...
...

...
...

Pn→1 Pn→2 · · · Pn→j · · · Pn→20

...
...

...
...

Pm→1 Pm→2 · · · Pm→j · · · Pm→20



















(10)α =
{

β 1, β 2, β 3 . . . . β n

}

(11)P = {� 1, � 2, � 3, . . . . . . .� N }

(12)� N =
∑ n

k=1
β k

(13)PR = {� 1, � 2, � 3, . . . . . . .� N }

Algorithm for predictive modelling
The proposed study developed an ELM of LSTM, GRU, 
and BLSTM to identify thyroid adenocarcinoma. The 
details of LSTM, GRU, BLSTM, and ELM are explained 
in subsections.

Long short‑term memory network (LSTM)
LSTM is used to remove the vanishing gradient problem. 
The information in LSTM passes through different gates. 
LSTM uses cells; the cell consists of three gates: forget 
gate, input gate, and output gate [48].

Figure 2 shows that for each iteration of LSTM, there 
are 128 neurons in the embedding layer. These neurons 
are passed to the LSTM layer with 128 nodes. After the 
LSTM layer, there is a dense layer with 64 nodes. All 
these neurons pass to the dense layer, where filters are 
applied. The dropout layer is used to turn off some nodes 
to avoid overfitting. In the LSTM model, two dense lay-
ers, two dropout layers, and one sigmoid output layer are 
developed.

Gated recurrent unit (GRU)
GRU is also a gated technology in deep learning. Unlike 
LSTM, GRU uses only the update and reset gates [30].

Figure  3 explains that the proposed study used two 
dense layers, two dropout layers, and one output layer for 
GRU.

Bi‑directional LSTM (BLSTM)
BLSTM works like LSTM but in both directions, back-
ward and forward.

As Fig. 4 shows, two LSTM layers, forward and back-
ward, are used in BLSTM, along with two dense layers, 
two dropout layers, and one sigmoid output layer.

Ensemble learning model (ELM)
There are many studies that utilize the deep learning tech-
niques [49–53] but here in this study multiple deep learn-
ing models are ensemble. ELM combines multiple experts 
or classifier models in machine learning or deep learning 
to solve a specific computational problem [54]. It is one of 
the most widely used artificial intelligent approaches from 
the last two decades for improving predictive performance 
avoiding the overfitting of model, representation, and com-
putational advantages. There are three main classes of data 
stream classification stacking, bagging, and boosting [55]. 
An ELM is developed by diversity, training the member 
classifier, and combining the classifier.

In the first step, the data samples are sampled from the 
database. Then, every instance is trained using ELM, and 
these instances are combined. For a given k instance in a 
dataset, with feature f  the ELM is calculated by Eq. (14)
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In Eq.  (14), G represents the aggregate function with 
f1, f 2 inducers for predicting the single output ý . β is an 
ensemble learning model. The dataset is represented by.

Here C , used for a Classification problem, D is the data 
set with instances xi and yi.

(14)ý = β (xi) = G(f1, f2, f3 . . . . fk)

(15)D =
{(

xi, yi
)}

(|D| = n, xi ǫ Rm, yi ǫ C)

Fig. 2  LSTM model used for identification of thyroid adenocarcinoma

Fig. 3  GRU model for identification of thyroid adenocarcinoma

This study develops the proposed ELM by combining 
the identification efficiency of multiple deep learning 
models such as LSTM, GRU, and BLSTM.

The ELM is based on stacking method, which combines 
multiple base learners to improve overall performance. In 
stacking methodology in this study, several base models 
are trained, such as LSTM, GRU, BLSTM, on the training 
data. The predictions from these base models were then 
used as input features for a meta-learner, typically a logis-
tic regression model, which learned how to best combine 
these predictions. This approach allows the meta-learner 
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to identify and correct the weaknesses of the base learn-
ers, leading to improved accuracy and robustness.

In addition to explaining our chosen method, it is 
essential to compare it with other common combination 
mechanisms to provide a comprehensive understanding. 
The voting method, for instance, makes the final predic-
tion based on the majority vote (for classification) or the 
average prediction (for regression) of the base models. 
While straightforward, this method may not capture 
complex relationships between the predictions. Another 
method, weighting, assigns different weights to the base 
models’ predictions based on their individual perfor-
mance. Although more flexible than voting, it requires 
careful selection of the weights to be effective.

Stacking, on the other hand, trains a meta-learner 
on the base models’ predictions, enabling it to lever-
age the strengths of each base model more effectively. 
This method often outperforms both voting and weight-
ing by learning how to best combine the predictions 
in a data-driven manner. We chose stacking due to its 
superior ability to model complex interactions between 
the base models’ predictions, leading to better overall 
performance.

Statistical tools to evaluate the model
The model is trained on 300 epochs. For each model 
iteration, the accuracy increases, and the loss of the 
model decreases, as discussed in the result section. Mul-
tiple statistical tools are used to evaluate the proposed 
model, such as sensitivity, specificity, accuracy, F1 Score, 
precision, recall, loss, and AUC [56–59]. These are the 
most important evaluation measures used for binary 

classification. The mathematical equations of multiple 
statistical tools for model evaluation are explained in 
Eqs. (16, 17, 18, 19, 20, 21, 22, 23, 24)

(16)Precision = TP

TP + FP

(17)Recall = TP

TP + FN

(18)F measure = 2(Precision ∗ Recall)
Precision+ Recall

(19)Cohen′ s Kappa = Po − Pe

1− Pe

(20)Specificity = TN

TN + FP

(21)Sensitivity = TP

FN + TP

(22)Accuracy = TP + TN

TP + FP + TN + FN

Fig. 4  BLSTM cell structure for identification of thyroid adenocarcinoma
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The term accuracy correctly means identification of 
thyroid cancer and non-thyroid cancer. Precision refers 
to all the positively labeled as thyroid adenocarcinoma. 
Sensitivity and recall mean the number of positive class 
predictions. The F1 score is the average of recall and pre-
cision. Specificity refers to the identification of negatively 
labeled data. MCC refers to the difference between the 
actual and predicted values. Cohen’s kappa is used for 
classification accuracy.

Results
The results of the SCT, IST, and 10-FCVT of ELM are 
presented in this study section.

Self‑consistency testing (SCT)
SCT is the first testing technique of the proposed model. 
The entire thyroid adenocarcinoma dataset is used for 

(23)

MCC = (T P X T N )− (F P X F N )√
(T P + F P)(T P + F N )(T N + F P)(T N + F N )

(24)AUC = P(x|positive)
P
(

x|negative
)

training and testing purposes with this testing technique. 
Table 3 explains the results of the SCT of the proposed 
ELM.

The ROC curve of SCT in ELM is explained in Fig. 5.
The ROC curve of the ELM in the SCT is presented in 

Fig. 5. Figure 5 illustrates how the model’s accuracy rises 
with each iteration of data. Both training and testing 
make use of the entire dataset. Figure 6 shows the mod-
el’s accuracy and Fig. 7 shows the loss graph during train-
ing and testing in the SCT.

Independent set test (IST)
IST serves as the second testing method employed 
in the proposed research. The model’s accuracy is 
assessed through values extracted from the confusion 
matrix, which constitutes the primary performance 
evaluation technique. In this test, 20% of the dataset’s 
values are designated for testing, while the remaining 
80% are utilized for model training. Table  4 provides 
a detailed overview of the IST results obtained for the 
proposed ELM.

The accuracy and loss of the training and testing data-
set in IST are explained in Figs. 8 and 9.

The graphs show that the model’s accuracy increases 
rapidly with epochs, and at the same time, the value loss 
of the model goes downward. IST indicates the highest 
accuracy, 96%, from all three testing models. The ROC of 
the testing method is explained in Fig. 10.

10‑Fold cross‑validation test (10‑FCVT)
10-FCVT stands as a prevalent testing method for 
machine learning algorithms. This approach involves par-
titioning the data into ten randomly selected segments. 

Table 3  Results of SCT of proposed ELM

Matrices Values Matrices Values

Sensitivity 85% Recall 86%

Specificity 87% F1 Score 86%

Accuracy 86% Precision 86%

MCC 0.73 Cohens Kappa 0.73

Fig. 5  ROC curve of ELM using SCT
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Subsequently, nine of these segments are allocated for 
training the model, while the remaining one serves 
for testing its performance. Table  5 shows the results 
obtained with 10-FCVT.

The ROC curve of 10-FCVT is explained in Fig. 11.

Analysis and discussion
This study is proposed for the identification of thyroid 
adenocarcinoma, one of the most common cancers 
worldwide. This study is inspired by the ELM approach 
using LSTM, GRU, and BLSTM algorithms. Three test-
ing techniques, including SCT, IST, and 10-FCVT, are 
used on these algorithms. The result of the testing is 
obtained in the form of sensitivity, specificity, accuracy, 
precision, recall, Mathew’s correlation coefficient, loss, 
F1 Score, training accuracy, and Cohen’s kappa. The 
combined results of these algorithms are explained in 
Table 6.

Table  6 shows that the best accuracy is 96% for ELM 
in SCT, IST, and 10-FCVT, which offers almost the 
same results for ELM, 86%. IST also shows the highest 

Fig. 6  Training and testing accuracy of ELM in SCT

Fig. 7  Training and testing loss of ELM using SCT

Table 4  Results of ELM in IST

Matrices Values Matrices Values

Sensitivity 92% Recall 96%

Specificity 100% F1 Score 96%

Accuracy 96% Precision 96%

MCC 0.92 Cohens Kappa 0.92

Fig. 8  Training and testing accuracy of ELM in IST
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sensitivity, specificity, and MCC value among all testing 
techniques. All three testing techniques give the same 
value of precision, recall, F1 score, and Cohen’s kappa for 
ELM.

This study achieves the highest accuracy in identify-
ing thyroid adenocarcinoma compared to all previously 
introduced systems, as detailed in Table 1. Prior research 
had reported the highest accuracy of 94.6% for thyroid 
adenocarcinoma identification using machine learning 
algorithms such as Fisher’s discriminant ratio, Kruskal-
Wallis’ analysis, and Relief-F on the SEER database [6]. 
However, the proposed model surpasses this accuracy, 
reaching 96%, even when compared to the latest mod-
els with larger datasets. Notably, the proposed model 

outperforms the Thynet model [20], designed for thyroid 
cancer diagnosis, which attained an accuracy of 92.2% 
using 18,049 images from 8,339 patients. The proposed 
ELM utilizes a dataset comprising 40 genes with 696 
mutations across 633 samples, including both mutated 
and normal gene sequences.

The ELM achieved the highest accuracy of 96% with 
IST, significantly outperforming both SCT and 10-FCVT, 
each recording an accuracy of 86%. This indicates that 
the model performs exceptionally well when tested on an 
independent dataset, suggesting a high level of generaliz-
ability. In terms of sensitivity, IST again shows superior 
performance with 92%, compared to 85% for both SCT 
and 10-FCVT. This suggests that the ELM model is more 
capable of correctly identifying positive instances when 
evaluated independently than through sequential or 
10-fold cross-validation methods.

The specificity results are particularly noteworthy, with 
IST achieving a perfect score of 100%, while SCT and 
10-FCVT show closely matched performances at 87% 
and 88%, respectively. This perfect specificity under IST 
implies that the model has an excellent ability to correctly 

Fig. 9  Training and testing loss of ELM in IST

Fig. 10  ROC curve of ELM in IST

Table 5  Results of 10-FCVT of ELM

Matrices Values Matrices Values

Specificity 88% AUC​ 0.86

Sensitivity 85% MCC 0.73

Accuracy 86%
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identify negative instances without any false positives 
in this validation context. The Matthews Correlation 
Coefficient, a balanced measure that takes into account 
true and false positives and negatives, also favors IST 
with a score of 0.92, compared to 0.73 for both SCT and 
10-FCVT. This further confirms the robustness of the 
ELM model when validated against an independent test 
set.

Interestingly, the metrics for Precision, Recall, and 
F1 Score are consistent across all three validation 
techniques, each yielding a perfect 96%. This uniform-
ity suggests that regardless of the validation method, 
the ELM model maintains a high level of reliability in 
balancing precision and recall. Cohen’s Kappa, which 
measures inter-rater agreement, is consistently high at 
0.92 across all validation techniques. This consistency 
indicates that the agreement between the observed 
accuracy and the expected accuracy (by chance) is very 
strong, reinforcing the reliability of the ELM model’s 
predictions.

The comparative analysis reveals that the ELM model 
exhibits varying performance across different validation 
techniques. The standout performance of IST suggests 
that the model is highly effective when deployed on com-
pletely unseen data, demonstrating excellent generaliz-
ability and robustness. The perfect specificity score under 
IST is particularly impressive, indicating that the model 
is exceptionally good at avoiding false positives in this 
context. However, the performance dip observed in SCT 
and 10-FCVT, particularly in accuracy, sensitivity, and 
specificity, suggests that the model’s performance might 
be more variable under different sample distributions 
encountered in cross-validation methods. This variabil-
ity could be attributed to the inherent differences in how 
these validation methods partition the data, potentially 
exposing the model to a wider range of sample variations 
and interactions.

Despite these differences, the consistency in precision, 
recall, F1 score, and Cohen’s Kappa across all validation 
techniques underscores the ELM model’s overall reli-
ability and balanced performance. These metrics indicate 
that the model is consistently capable of correctly iden-
tifying positive instances and maintaining agreement 
between observed and expected accuracies, regardless of 
the validation method used.

The comparative analysis of LSTM, GRU, BLSTM, 
and ELM models reveals distinct performance strengths 
across various testing scenarios. In the SCT, BLSTM 
achieves the highest accuracy 88% and specificity 89%, 
while GRU excels in sensitivity and MCC, indicating 
robust internal consistency. In the IST, ELM deliver supe-
rior accuracy 96%, sensitivity 92%, and MCC 0.92, with 
specificity 100, highlighting their strong generalization 

Fig. 11  ROC curve of ELM in 10-FCVT

Table 6  Comparison of SCT, IST, and 10-FCVT of ELM

Evaluation Matrices IST SCT 10-FCVT

Accuracy (%) 96 86 86

Sensitivity (%) 92 85 85

Specificity (%) 100 87 88

MCC 0.92 0.73 0.73

Precision (%) 96 96 96

Recall (%) 96 96 96

F1 Score (%) 96 96 96

Cohens Kappa 0.92 0.92 0.92



Page 13 of 15Shah et al. BMC Medical Informatics and Decision Making          (2024) 24:198 	

capabilities to unseen data as shown in Table  7. During 
10-FCVT, ELM again lead in accuracy 86, but LSTM 
stands out with the highest MCC 0.76, suggesting bet-
ter overall predictive balance. GRU shows notable speci-
ficity 89% in this test. Overall, ELM exhibit consistent 
excellence across most metrics, particularly in handling 
IST, whereas BLSTM, GRU and LSTM demonstrate par-
ticular strengths in sensitivity and predictive correlation, 
respectively. These results underscore the nuanced trade-
offs between different model architectures depending on 
the evaluation criteria.

Limitations
Despite the promising results, this study has several 
limitations that need to be addressed in future research. 
Firstly, the dataset, while substantial with 633 samples, 
may not capture the full variability of thyroid adenocar-
cinoma cases; a larger and more diverse dataset could 
improve the model’s generalizability. Secondly, the high 
accuracy achieved with IST raises concerns about poten-
tial overfitting, as indicated by the perfect specificity 
score, suggesting that the model may not generalize well 
to other datasets. Moreover, a comprehensive compari-
son with a wider range of state-of-the-art models is nec-
essary to contextualize the ELM model’s performance 
fully. The complexity of integrating GRU, LSTM, and 
BLSTM algorithms into the ELM model also poses sig-
nificant computational demands, suggesting a need for 
model simplification or optimization. Lastly, the study 
does not consider longitudinal data, which could pro-
vide more comprehensive insights into the disease’s pro-
gression and treatment. Addressing these limitations in 
future research could lead to the development of more 
robust, generalizable, and clinically applicable models for 
thyroid adenocarcinoma identification.

Conclusions
This study is for the identification of one of the most com-
mon cancers, thyroid adenocarcinomas. As discussed 
in the literature review section, many studies have pro-
posed detecting thyroid adenocarcinoma, but none used 
the ELM approach. The ELM proposed integrates three 

distinct deep learning architectures: GRU, LSTM, and 
BLSTM. It employs an extensive dataset comprising both 
normal and mutated gene sequences for training and 
testing purposes. Evaluation of the model is conducted 
using three testing techniques: SCT, IST, and 10-FCVT. 
All three testing methods show the AUC value of 1.0 for 
ELM, shown in Figs. 1 and 6, and 7. The model accuracy 
increases with each epoch, while the loss decreases with 
every epoch. The highest accuracy, 96%, is obtained from 
IST, the highest accuracy from all the models for identi-
fying thyroid adenocarcinoma to date, as discussed in the 
literature review Table 1.

This study gives a maximum accuracy of 96% with a 
huge dataset. In the future, another deep learning model 
can be developed to improve the accuracy and generate a 
more generalized dataset.

Future work
The promising results of this study in identifying thy-
roid adenocarcinoma using the ELM model inspire sev-
eral avenues for future research. Building on the robust 
performance and high accuracy achieved, future work 
should focus on integrating additional data sources 
from various genomic databases and clinical records to 
improve model generalizability and robustness. Explor-
ing advanced deep learning architectures, such as Trans-
formers and convolutional neural networks (CNNs) 
tailored for genomic data, may yield better performance 
and new insights. Real-world clinical validation through 
trials in diverse healthcare settings will be crucial to 
confirm the model’s practical utility and effectiveness. 
Incorporating multi-omics data can offer a comprehen-
sive view of the disease’s molecular mechanisms, while 
developing explainable AI models will enhance clinician 
trust and facilitate adoption in clinical practice. Optimiz-
ing computational efficiency will ensure scalability and 
real-time application, and expanding the ELM model 
framework to other cancer types can test its versatility 
and adaptability. More effective ensemble strategies and 
parameter tuning techniques will be adopted to enhance 
the performance of the proposed ensemble model in 
future iterations.

Table 7  Results Comparion of LSTM, GRU, BLSTM, ELM

Self-Consistency Test Independent Set Test 10-Fold Cross-Validation Test

Acc Sen Spe MCC Acc Sen Spe MCC Acc Sen Spe MCC

LSTM 86% 83% 87% 0.72 92% 90% 98% 0.90 84% 85% 84% 0.76

GRU​ 85% 85% 86% 0.81 90% 91% 97% 0.92 84% 84% 89% 0.71

BLSTM 88% 87% 89% 0.77 92% 93% 100% 0.92 86% 85% 85% 0.72

ELM 86% 85% 87% 0.73 96% 92% 100% 0.92 86% 85% 88% 0.73
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