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Abstract 

Background  The frequency of hip and knee arthroplasty surgeries has been rising steadily in recent decades. This 
trend is attributed to an aging population, leading to increased demands on healthcare systems. Fast Track (FT) 
surgical protocols, perioperative procedures designed to expedite patient recovery and early mobilization, have 
demonstrated efficacy in reducing hospital stays, convalescence periods, and associated costs. However, the criteria 
for selecting patients for FT procedures have not fully capitalized on the available patient data, including patient-
reported outcome measures (PROMs).

Methods  Our study focused on developing machine learning (ML) models to support decision making in assign-
ing patients to FT procedures, utilizing data from patients’ self-reported health status. These models are specifically 
designed to predict the potential health status improvement in patients initially selected for FT. Our approach focused 
on techniques inspired by the concept of controllable AI. This includes eXplainable AI (XAI), which aims to make 
the model’s recommendations comprehensible to clinicians, and cautious prediction, a method used to alert clini-
cians about potential control losses, thereby enhancing the models’ trustworthiness and reliability.

Results  Our models were trained and tested using a dataset comprising 899 records from individual patients admit-
ted to the FT program at IRCCS Ospedale Galeazzi-Sant’Ambrogio. After training and selecting hyper-parameters, 
the models were assessed using a separate internal test set. The interpretable models demonstrated performance 
on par or even better than the most effective ‘black-box’ model (Random Forest). These models achieved sensitivity, 
specificity, and positive predictive value (PPV) exceeding 70%, with an area under the curve (AUC) greater than 80%. 
The cautious prediction models exhibited enhanced performance while maintaining satisfactory coverage (over 50%). 
Further, when externally validated on a separate cohort from the same hospital-comprising patients from a subse-
quent time period-the models showed no pragmatically notable decline in performance.
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Introduction
In medical practice, seeking second opinions is a com-
mon and valued approach to achieve consensus in 
diagnosing and managing patient care, thereby enhanc-
ing the overall quality of healthcare  [1]. This practice 
becomes particularly crucial in  situations involving 
complex healthcare decisions, those that are potentially 
distressing for the patient, or when significant risks are 
involved [2]. Contrary to cases where patients themselves 
seek a second opinion for confirmation of a diagnosis or 
due to unsatisfactory interactions with their doctors, sec-
ond opinions initiated by other parties, especially those 
initiated by doctors, often aim to restrict the use of low-
value treatments (which are those offering minimal or 
no benefit, posing potential harm, or yielding marginal 
benefits at disproportionately high costs  [3]). Therefore, 
within the realm of clinical decision making, a second 
opinion serves as a significant decision-support, which 
enables another physician to either confirm or alter the 
proposed treatment plan [4] and has been proven to sig-
nificantly reduce medication errors  [5], including diag-
nostic mistakes [2].

Machine Learning (ML) algorithms have increasingly 
been applied to augment clinical decision-making in 
recent years across various tasks  [6, 7]. Particularly, to 
counteract cognitive biases associated with an over-reli-
ance on decision support technologies, ML algorithms 
have recently been utilized as tools for offering second 
opinions  [8, 9]. In this context, they are viewed as cog-
nitive supports with specialized capacities, designed to 
confirm or revise (i.e., augment) decisions initially made 
by clinicians, rather than merely automating the clini-
cal decision-making process  [10]. Several studies have 
explored the impact of algorithmic assistance on clini-
cians’ diagnostic performance when supplemented by 
a second opinion from an ML algorithm. For example, 
Gurusamy et  al. [11] investigated the use of ML mod-
els for providing second-opinion recommendations in 
brain tumor classification. Kovalenko et  al. [12] devel-
oped a prototype ML-based video analytics system to 
aid in diagnosing Parkinson’s disease. Cabitza et al.  [13] 
assessed various ML-based second opinion protocols to 
enhance the diagnostic accuracy of orthopedists in radio-
logical knee lesion readings. Bennasar et al. [14] created 

an ML-based second opinion system for predicting root 
canal treatment outcomes. Similarly, Rosinski et  al.  [15] 
proposed an ML-based system for selecting assistive 
technology in post-stroke patients. While most of these 
studies primarily focused on the use of ML algorithms 
for second opinion support in diagnostic or prognostic 
tasks, our article shifts focus to another aspect of clinical 
process management  -  the assignment of rehabilitation 
protocols. Specifically, we develop second-opinion deci-
sion-support ML models for the assignment of patients 
to surgical Fast Track (FT) in hip and knee arthroplasty.

In the field of orthopedics, the FT surgical procedure 
represents a rapid rehabilitation protocol designed to 
mitigate the physiological and psychological stresses 
typically associated with surgery  [16]. Its primary aim 
is to facilitate early mobilization and recovery post-sur-
gery  [16], leading to outcomes such as reduced Length 
Of hospital Stay (LOS)  [17], decreased convalescence 
time [18], and lower overall costs [19]. However, the cri-
teria for FT patient assignment have not fully leveraged 
the extensive patient data available, including Patient 
Reported Outcome Measures (PROMs). A few stud-
ies have focused on comparing the effectiveness of Fast 
Track versus Care-as-Usual surgical procedures from a 
patient-centered perspective (e.g.,  [20]). More generally, 
some studies have considered the application of ML in 
management of orthopedics’ patients [21], with a spe-
cific focus on the prediction of the length of stay [22, 23], 
which, similarly to FT can be useful to better manage bed 
availability as well as identifying patients who are most 
in need of increased rehabilitation theory. By contrast, to 
our knowledge, no study has yet developed second opin-
ion ML models specifically for decision support in the 
assignment of patients to surgical FT: thus, the focus on 
this task represents a crucial element of novelty in our 
contribution.

To achieve our objective, we utilized ML models 
designed to predict whether a patient, preliminarily 
assigned to FT by their managing clinician, will experi-
ence an improvement in health status. In this context, 
improvement serves as a proxy for the effectiveness of 
the FT procedure. Accordingly, the model either vali-
dates the clinician’s decision to assign the patient to 
FT (if an improvement is predicted) or suggests a need 

Conclusions  Our results demonstrate the effectiveness of utilizing PROMs as basis to develop ML models for plan-
ning assignments to FT procedures. Notably, the application of controllable AI techniques, particularly those based 
on XAI and cautious prediction, emerges as a promising approach. These techniques provide reliable and interpret-
able support, essential for informed decision-making in clinical processes.

Keywords  Medical machine learning, Patient-reported outcome measures, Second opinion, Fast track, Controllable 
AI, Medical decision making
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to reconsider this assignment in favor of an alternative 
approach, such as Care-as-Usual, or prompts the manag-
ing clinicians to more thoroughly assess the patient’s spe-
cific situation. As these models provide second-opinion 
support for clinicians, we have developed them based on 
principles of controllable AI  [24], ensuring that the sup-
port offered is comprehensible and, if necessary, rejected 
by the managing clinicians. In line with the definition by 
Kieseberg et  al.  [24], we define ‘controllable AI’ as sec-
ond-opinion AI systems that are not only accurate but 
also capable of identifying and signaling control loss con-
ditions, wherein the effectiveness cannot be fully assured, 
necessitating or warranting human intervention to evalu-
ate the second opinion support. Our focus was particu-
larly on methods for detecting control loss, i.e. situations 
of high uncertainty or potential anomalies, by using 
eXplainable AI (XAI) [25] to ensure model recommenda-
tions are understandable to clinicians, and cautious pre-
diction [26] for uncertainty quantification and to enhance 
reliability.

Methods
This retrospective study was conducted using a data-
set derived from the electronic health records (EHRs) 
of IRCCS Ospedale Galeazzi - Sant’Ambrogio (OGSA), 
a leading orthopedic teaching and research hospital in 
Italy. Our focus was on developing a second-opinion 

model; therefore, we exclusively analyzed records of 
patients who were part of the perioperative Fast Track 
process. The dataset encompassed 925 individual patient 
records, collected over the period from January 2018 to 
November 2020.

The dataset for this study included a comprehensive 
range of patient data, covering demographic character-
istics (such as Sex, Age, Weight, Height, and Body Mass 
Index [BMI]), details about the assigned surgical proce-
dure and primary affected area (including ICD code, and 
distinction between Knee and Hip surgeries, as well as 
First intervention vs Revision), clinical information (ASA 
Class, Pre-surgery Hemoglobin levels), and preoperative 
PROMs scores (VAS, EQ5D, SF12 Mental score, SF12 
Physical score). Additionally, the SF12 Physical score 
recorded at the 3-month follow-up was also included. 
The distribution of these features is detailed in Table 1.

As outlined in the Introduction section, our approach 
for providing second-opinion support involved using a 
proxy for the potential effectiveness of assigning patients 
to the Fast Track program, namely the improvement in 
the patients’ health status. Specifically, we defined the 
target variable as a binary outcome (Improved vs. Not 
Improved) determined by changes in the SF12 Physical 
score at the 3-month follow-up. A patient was classified 
as ‘Improved’ if the difference between their 3-month 
follow-up score and the preoperative score exceeded the 

Table 1  Table of descriptive statistics for data features with P-Value Analysis: The table presents the descriptive statistics for each 
feature in the dataset, stratified by ‘Improved’ and ‘Not Improved’ sub-cohorts

For continuous and ordinal features, differences were assessed using the Mann-Whitney U test, while for categorical features, the Fisher’s exact test was utilized to 
determine statistical significance

Asterisk denotes a significant difference between the two cohorts, at the 95% confidence level

Feature Mean (Not Impr.) St.Dev (Not Impr.) Mean (Impr.) St.Dev. (Impr.) Missing 
(Not 
Impr.)

Missing (Impr.) P-value

Age 67.100 10.690 66.579 10.496 0% 0% 0.493

VAS (Preop) 6.856 2.333 7.226 2.031 0.4% 1.5% 0.069

SF12 Physical (Preop) 38.812 8.439 30.868 6.449 0% 0% < 0.001*

SF12 Mental (Preop) 49.365 11.362 51.495 11.996 0% 0% 0.011*

EQ5D (Preop) 0.760 0.126 0.708 0.111 0% 0.3% < 0.001*

Height 166.777 9.074 167.685 9.033 1.6% 0.7% 0.288

Weight 75.543 14.461 77.583 15.455 1.6% 0.7% 0.179

BMI 27.119 4.566 27.486 4.413 1.6% 0.7% 0.236

Hb (Preop) 13.922 1.352 14.066 1.399 0.8% 0.4% 0.248

Feature Categories (Not Impr.) Categories (Impr.) P-value

Sex Female (42.2%), Male (57.8%) Female (48.4%), Male (51.6%) 0.229

Hip/Knee Hip (42.2%), Knee (57.8%) Hip (62.5%), Knee (37.5%) < 0.001*

First Intervention First Intervention (96%), Revision (4%) First Intervention (96.3%), Revision (3.6%) 0.191

ASA 1 (11.6%), 2 (86.1%), 3 (2.3%) 1 (14.4%), 2 (81.6%), 3 (4%) 1 (0.443), 2 
(0.162), 3 
(0.159)
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distribution-based Minimum Clinically Important Dif-
ference (MCID) for this score [20]1. If this threshold was 
not met, patients were categorized as ‘Not Improved.

Due to the presence of records with missing values, we 
elected to exclude any patient records that lacked even 
one of the features under consideration. This resulted 
in the removal of incomplete data, leaving 899 records 
available for subsequent analysis. It is noteworthy that 
the distribution of the target variable was unbalanced: 
644 patients (approximately 71.6%) were classified in the 
‘Improved’ category, whereas 255 patients (about 28.4%) 
fell into the ‘Not Improved’ category. Apart from the one-
hot encoding of categorical variables, no additional pre-
processing procedures were undertaken: specifically, we 
did not implement any pre-processing method to correct 
the imbalance in label distribution.

In the development of ML models for this study, we 
considered a variety of model classes, encompassing both 
‘black-box’ approaches known for their efficacy with tab-
ular data [27], as well as models grounded in XAI prin-
ciples. In alignment with the concepts of controllable 
AI outlined in the Introduction section, the XAI models 
were specifically chosen for their interpretability [28]. 
This feature enables clinicians to ‘look into the models’, 
thereby understanding the basis of the second-opinion 
support and potentially identifying classification errors. 
Among the black-box models, we included Random For-
est (RF), Support Vector Machines (SVM), XGBoost 
(XGB) and Multi-layer Perceptron (MLP). Regarding 
XAI methods, we opted for Logistic Regression (LR) and 
Decision Tree (DT), along with two advanced, state-of-
the-art approaches: Hierarchical Shrinked Trees (HST) 
[29] and Fast Interpretable Greedy-Tree Sums (FIGS) 
[30]. HST functions as a post-hoc regularization method 
to streamline decision tree models by shrinking predic-
tions at each node towards the sample means of their 
ancestors. Conversely, FIGS represents a generalization 
of the CART algorithm, operating by constructing a for-
est of simple trees through a greedy approach based on 
boosting principles, with the trees being subsequently 
combined in summation.

All the models were trained with the objective of pre-
dicting the target variable, namely, classifying each 
patient as either ‘Improved’ or ‘Not Improved’, based on 
the aforementioned features. Prior to training, the data-
set was divided into two distinct sets: a training set and 
a test set. This division followed a stratified split of 75% 
for training and 25% for testing. The training set was used 
for both the training of the models and the optimization 

of hyper-parameters. On the other hand, the test set was 
used for a blind evaluation of the results to assess the 
models’ performance. The test set size was selected based 
on a minimum sample size determination criterion, so as 
to ensure that with high probability (greater than 95%) 
the measured estimates of performance would be close to 
the true performance values.

The models were implemented as pipelined mod-
els encompassing three different steps: feature scaling, 
feature selection and predictive model. The full list of 
hyper-parameters for the three different steps of each 
pipeline model is reported in Table  2. In particular, we 
used a class weighting hyper-parameter to control label 
imbalance: we either considered equal weighting of the 
instances (i.e., ignoring label imbalance) or weighting 
more the instances in the negative class (i.e., label imbal-
ance correction). All other hyper-parameters not speci-
fied in Table 2 were set to the default values, except for 
random seeds that were all set to the value 0 to ensure 
reproducibility. As mentioned above, training and hyper-
parameter optimization was performed only on the train-
ing set, in order to avoid data leakage and overfitting, 
using a cross-validation approach. The training set was 
split into 5 folds (each of which encompassed 15% of the 
original dataset), and at each iteration 4 folds (60% of 
the original dataset) were used for training and hyper-
parameter selection, while the remaining fold was used 
for internal evaluation. The performance of each model 
and hyper-parameter configuration was determined as 
the average of the reported performance across the five 
iterations of the cross-validation and measured in terms 
of the Balanced Accuracy, so as to account for the label 
imbalance. For each model, we selected the configuration 
of hyper-parameters that reported the best performance 
on the cross-validation and then re-trained the model on 
the entire training set.

After training and hyper-parameter optimization the 
models were evaluated on the separate internal validation 
test set in terms of different evaluation metrics, namely: 
accuracy, sensitivity, specificity, PPV, NPV, Area under 
the ROC curve (AUC), F1-score (F1), Matthew’s corre-
lation coefficient [31] (MCC) and balanced accuracy, as 
measures of error rate; Brier score as a measure of cali-
bration; and the standardized Net Benefit (sNB), as a 
measure of utility.

As we mentioned in the Introduction  section, to 
enhance the ability of the developed ML models to reli-
ably detect control loss conditions, we also developed 
cautious prediction models based on the above men-
tioned ML models. More specifically, the models devel-
oped during the training phase were also considered as 
cautious prediction models that could abstain whenever 
the prediction for a given instance to be classified was 

1  The MCID for the SF12 Physical score varied according to the primary 
affected location: 3.68 for knee and 3.80 for hip.
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not sufficiently confident [32]. To this purpose, we con-
sidered the confidence scores returned by the models, 
which were tresholded at a 0.75 cutoff: that is, whenever 
the confidence score assigned to the predicted label was 
lower than 0.75, the model was considered as abstaining 
from providing a support. We decided to adopt this cau-
tious prediction approach, rather than alternative tech-
niques such as conformal prediction [33] or three-way 

decision [34], due to its increased efficiency (the compu-
tational complexity cost of the thresholding strategy is 
O(1), while it is on the order of O(log n) , for n being the 
dataset size, for conformal prediction, and O(2|Y |) , for Y 
being the set of possible labels, for three-way decision), 
ease of interpretation and also due to its equivalence, in 
the binary classification setting and under weak assump-
tions, with the above two mentioned methods [34]. We 

Table 2  Hyper-parameters for the developed models

Hyper-parameter name Range Selected value

Scaling Method min-max, standard, Yeo-Johnson, max-abs, 
normalize, robust, None

LR: max-abs; DT: robust; SVM: min-max; RF: Yeo-Johnson; 
XGB: min-max, MLP: max-abs, FIGS: None, HST: None

Number of features Uniform(5,17) LR: 5; DT: 8; SVM: 15; RF: 16; XGB: 15, MLP: 16, FIGS: 10, HST: 9

Logistic Regression

     Penalty l2, l1, elasticnet elasticnet

     C Uniform(0.5, 2) 0.6662249852612048

     Solver SAGA​ SAGA​

     l1 Ratio Uniform(0,1) 0.31856895245132366

Decision Tree

     Criterion gini, entropy gini

     Splitter best, random best

     Max. Depth Uniform(3,5) 3

SVM

     Kernel linear, rbf, sigmoid, poly rbf

     C Uniform(0,1) 0.5096243767199001

     Degree Uniform(2,10) NA

     Gamma auto, scale scale

Random Forest

     Num. Estimators Uniform(10,1000) 787

     Criterion gini, entropy gini

     Max. Depth Uniform(1,100) 4

     Max. Features sqrt, log2 log2

XGBoost

     Eta Uniform(0.01, 0.25) 0.20057413447736855

     Gamma Uniform(0,100) 1.3948395933415347

     Subsample Uniform(0.5, 1) 0.75

     Lambda Uniform(0, 5) 2.6673284087546447

     Alpha Uniform(0,5) 1.6265515257949819

     Num. Estimators Uniform(10,1000) 918

     Max. Depth Uniform(1,100) 4

     Scale Pos. Weight Uniform(0,100) 88.29

Multi-layer Perceptron

     Activation relu, logistic, tanh logistic

     Solver adam, lbfgs, sgd lbfgs

     Alpha Uniform(0.0001, 0.1) 0.05103420653681868

     Learning rate constant, adaptive, invscaling NA

     Beta1 Uniform(0,1) NA

     Beta2 Uniform(0,1) NA

     Early stopping True, False True

     Hidden layer sizes Uniform(18,100000) 100



Page 6 of 16Campagner et al. BMC Medical Informatics and Decision Making          (2024) 24:203 

then evaluated these cautious prediction models accord-
ing to so-called High-Confidence (HC) evaluation met-
rics (i.e., metrics that only consider the non-abstained 
on instances), namely the accuracy, sensitivity, specific-
ity, PPV and NPV, as well as the coverage (i.e., the rate 
of non-abstained instances over the total number of 
instances in the test set).

After training and internal validation we also evalu-
ated the generalizability and robustness of the developed 
models by means of an external validation [35]. Spe-
cifically we performed a temporal external validation, 
through which we evaluated the trained models on a set 
of data collected at the OGSA institute, as for the inter-
nal development set, but in a different time period. The 
dataset encompassed a total of 1589 individual patient 
records, collected over the period from January 2021 
to October 2023, and the same features as for the inter-
nal development set. The distribution of features for the 
external validation dataset is detailed in Table  3. Exter-
nal validation was performed by evaluating the already 
trained ML models, including the cautious prediction 
models, on the external validation dataset in terms of the 
same metrics considered for the internal validation. We 
also evaluated the similarity between the internal devel-
opment set and the external validation set in terms of 
the degree of correspondence � [35], as a comprehensive 
measure of the differences between the two settings.

All software was implemented in Python (v. 3.10.9) 
using the libraries numpy (v. 1.23.5), scipy (v. 1.9.3), 

pandas (v. 1.5.2), scikit-learn (v. 1.1.2), imodels (v. 1.4.1), 
shap (v. 0.41.0), xgboost (v. 1.5.1), matplotlib (v. 3.6.2) 
and seaborn (v. 0.12.2). The reporting of the methods and 
results follows the IJMEDI/ChAMAI checklist.

Results
The results of the developed models are detailed in 
Table 4 and illustrated in Figs. 1, 2 and 3. The FIGS model 
emerged as the most effective among the considered 
models: indeed, for all the considered metrics, except 
sensitivity and specificity, the performance of FIGS was 
not significantly lower than that of the top-ranked model. 
In particular, FIGS was significantly better than all other 
models in terms of balanced accuracy, AUC and stand-
ardized Net Benefit (sNB). By contrast, XGB was the best 
model in terms of sensitivity, while HST and LR were the 
best models in terms of specificity: in both cases, FIGS 
ranked as the second best model. Also when considering 
the cautious prediction versions of the models, FIGS was 
among the most effective models, being among the top-
ranked models for all considered metrics except sensitiv-
ity, and having the best coverage.

The results for the best model (FIGS), in terms of both 
ROC curve (also considering the ROC curve for the cor-
responding cautious prediction models) and decision 
curve, are reported in Fig. 4a and b. The FIGS model was 
uniformly better than the treat-all and treat-none base-
lines across all probability thresholds. Furthermore, the 
cautious prediction model based on FIGS improved on 

Table 3  Table of Descriptive Statistics for Data Features with P-Value Analysis for the External Validation dataset: This table presents the 
descriptive statistics for each feature, comparing the external validation and internal development datasets

For all features we evaluated the presence of differences with respect to the internal development dataset. For continuous and ordinal features, differences were 
assessed using the Mann-Whitney U test, while for categorical features, the Fisher’s exact test was utilized to determine statistical significance

Asterisk denotes a significant difference between the two cohorts, at the 95% confidence level

Feature Mean (Ext.) St.Dev (Ext.) Mean (Int.) St.Dev (Int.) Missing (Ext.) Missing (Int.) P-value

Age 68.809 10.867 66.720 10.546 0% 0% < 0.001*

VAS (Preop) 7.229 2.187 7.125 2.123 0.1% 1.2% 0.085

SF12 Physical (Preop) 32.098 7.719 33.024 7.878 0% 0% 0.004*

SF12 Mental (Preop) 49.669 12.552 50.917 11.859 0% 0% 0.028*

EQ5D (Preop) 0.704 0.121 0.722 0.117 0.3% 0.2% 0.001*

Height 166.114 9.080 167.440 9.048 0.8% 1% 0.001*

Weight 75.795 15.432 77.033 15.212 0.8% 1% 0.085

BMI 27.387 4.719 27.387 4.455 0.8% 1% 0.916

Hemoglobin (Preop) 13.832 1.408 14.027 1.387 0.4% 0.5% 0.002*

Feature Categories (Ext.) Categories (Int.) P-value

Sex Female (39.6%), Male (60.4%) Female (46.7%), Male (53.3%) 0.001*

Hip/Knee Hip (57%), Knee (43%) Hip (57%), Knee (43%) 0.800

Intervention First intervention (91.8%), Revision (8.2%) First Intervention (96.2%), Revision (2.8%) < 0.001*

ASA 1 (11.2%), 2(82.0%), 3 (6.8%) 1 (13.6%), 2 (82.8%), 3 (3.6%) 1 (0.095), 2 
(0.547), 3 
(0.001*)
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the performance of the traditional model across all oper-
ating points, and especially so for operating points asso-
ciated with high specificity (see Fig. 4a).

So as to provide an additional form of support, accord-
ing to the tenets of XAI, the FIGS model is depicted in 
Fig. 5. The FIGS model identified the pre-operative SF12 
physical score and the surgical procedure location (knee/
hip) as the most predictive features. The same informa-
tion is confirmed also by the analysis of Shapley values 
(performed through the SHAP library), shown in Fig. 6, 
that similarly identified the SF12 physical score and the 
procedure location as the most important features, fol-
lowed by the pre-operative EQ5D and VAS which were 
also considered as highly predictive in the tree represen-
tation shown in Fig. 5.

As seen in Tables  1 and 3, the internal development 
dataset and the external validation dataset significantly 
differed for most of the continuous features: in particular, 
the two populations had significantly different distribu-
tions in terms of age, SF12 Physical and Mental scores, 
EQ5D score, height and preoperative hemoglobin. The 
two populations also differed significantly in terms of 
the frequency of first interventions and revisions in the 
knee arthroplasty sub-cohort. The overall similarity 
between the two dataset was � = 0.5 , which, according 
to the scale defined in [35], corresponds to a moderate 

level of similarity. The results of the external validation 
are reported in Table  5. The FIGS model performance 
significantly worsened w.r.t. balanced accuracy, AUC 
and sNB: however, for all of these metrics, as well as for 
accuracy, F1 score and Brier score, the performance of 
FIGS was not significantly worse than that of the best 
performing model, and were always higher than 0.70. In 
particular, FIGS was the model with the highest balanced 
accuracy, AUC and sNB: for these last two metrics, the 
performance of FIGS was significantly better than for all 
other models. In terms of cautious prediction models, no 
model significantly worsened as compared to the internal 
validation, with the exception of the XGB and MLP mod-
els for the HC PPV metric.

Discussion
In recent years, the incidence of hip and knee arthroplas-
ties has steadily increased  [39, 40], due to an increas-
ingly aging population. Such treatment procedures, 
while providing benefits in terms of life quality to the 
treated patients [41], may have a complex rehabiliation 
and follow-up as well as have a significant impact on 
national health systems. For this reason, FT protocols 
have become especially pertinent in managing such sur-
gical procedures, to reduce hospital stays and associated 
costs, as well as for improving patients’ satisfaction and 

Table 4  The results of the developed Machine Learning (ML) models are presented along with their respective 95% confidence 
intervals (C.I.)

These confidence intervals for key metrics such as accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) are calculated 
based on the variance formula applicable to binomial distributions. In particular, C.I. for the AUC and sNB were computed according to the formulas described in [36]; 
C.I. for the balanced accuracy were computed according to the formula described in [37]; C.I. for the Brier score were computed according to the formula described in 
[38]; while C.I. for the MCC were computed by applying Hoeffding’s inequality. For each metric, values in bold denote values that were not significantly worse than the 
top-ranked one, as measured by overlap of the 95% C.I

HST FIGS LR SVM RF XGB DT MLP

Accuracy 0.693 ± 0.06 0.814± 0.025 0.751± 0.056 0.742± 0.057 0.778± 0.054 0.76± 0.056 0.667 ± 0.062 0.773± 0.055
Sensitivity 0.61 ± 0.075 0.847 ± 0.028 0.744 ± 0.067 0.756 ± 0.066 0.799 ± 0.061 0.97± 0.026 0.659 ± 0.073 0.799 ± 0.061

Specificity 0.918± 0.069 0.725 ± 0.056 0.77± 0.106 0.705 ± 0.114 0.721 ± 0.113 0.197 ± 0.1 0.689 ± 0.116 0.705 ± 0.114

PPV 0.952± 0.041 0.892± 0.024 0.897± 0.051 0.873± 0.055 0.885± 0.051 0.764 ± 0.058 0.85± 0.062 0.879± 0.052
NPV 0.467± 0.089 0.639± 0.057 0.528± 0.104 0.518± 0.107 0.571± 0.111 0.706± 0.217 0.429± 0.098 0.566± 0.111
AUC​ 0.804 ± 0.002 0.852± 0.001 0.831 ± 0.002 0.805 ± 0.002 0.848 ± 0.002 0.824 ± 0.002 0.769 ± 0.002 0.82 ± 0.002

F1 0.743 ± 0.058 0.869± 0.02 0.813± 0.048 0.81± 0.048 0.84± 0.044 0.855± 0.038 0.742 ± 0.056 0.837± 0.044
Brier 0.183± 0.053 0.173± 0.024 0.183± 0.037 0.152± 0.08 0.17± 0.028 0.213± 0.283 0.193± 0.083 0.163± 0.083
Bal. Acc 0.764 ± 0.002 0.786± 0.001 0.757 ± 0.002 0.731 ± 0.002 0.76 ± 0.002 0.583 ± 0.001 0.674 ± 0.002 0.752 ± 0.002

MCC 0.47± 0.128 0.552± 0.064 0.468± 0.128 0.425± 0.128 0.487± 0.128 0.28 ± 0.128 0.311 ± 0.128 0.473± 0.128
sNB 0.579 ± 0.003 0.745± 0.001 0.659 ± 0.003 0.646 ± 0.004 0.695 ± 0.003 0.671 ± 0.005 0.543 ± 0.004 0.689 ± 0.003

HC Acc. 0.741± 0.057 0.807± 0.026 0.789± 0.053 0.763± 0.056 0.807± 0.052 0.781± 0.054 0.768± 0.055 0.781± 0.054
HC Sens. 0.67 ± 0.072 0.759 ± 0.033 0.72 ± 0.069 0.697 ± 0.07 0.727 ± 0.068 0.939± 0.037 0.729 ± 0.068 0.705 ± 0.07

HC Spec. 0.907± 0.073 0.908± 0.036 0.923± 0.067 0.895± 0.077 0.973± 0.041 0.375 ± 0.121 0.886± 0.08 0.944± 0.057
HC PPV 0.944± 0.044 0.946± 0.018 0.947± 0.038 0.93± 0.042 0.982± 0.021 0.794 ± 0.055 0.951± 0.037 0.965± 0.03
HC NPV 0.542± 0.089 0.639± 0.057 0.632± 0.1 0.596± 0.106 0.632± 0.108 0.706± 0.217 0.517± 0.099 0.596± 0.11
Coverage 0.636± 0.063 0.679± 0.031 0.507 ± 0.065 0.507 ± 0.065 0.507 ± 0.065 0.507 ± 0.065 0.631± 0.063 0.507 ± 0.065
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perceived life quality [20, 42–44]. Despite these benefits, 
however, the criteria for assigning patients to FT are still 
mostly based around qualitative assessments formu-
lated by the managing clinician that do not comprehen-
sively take into account patients’ data [45, 46], including 
PROMs.

Our study has contributed to this field by demon-
strating for the first time in the literature, up to our 
knowledge, the effective application of ML as a way 
to develop second-opinion decision support systems 
to optimize the assignment of patients to FT surgical 
protocols for these orthopedic surgeries. As healthcare 

systems grapple with the demands of an aging popula-
tion [47], our approach to enhancing decision-making 
in patient assignment to FT procedures fills a critical 
gap, by providing clinicians with a quantitative tool that 
helps them validate and optimize the protocol assign-
ment decisions they have formulated for any given 
patient. To do so, the developed ML models leverage 
the extensive patient data available, including PROMs 
(that were identified as being among the most impor-
tant predictive feature, see Figs. 5 and 6), thus address-
ing a previously underutilized resource in patient care 
optimization [48].

Fig. 1  ROC Curves comparing the performance of all developed models. This graph provides a visual comparison of the Receiver Operating 
Characteristic (ROC) curves for each classifier model established in our analysis: Hierarchical Shrinked Trees (HST), Fast Interpretable Greedy Sums 
(FIGS), Decision Trees (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Logistic Regression (LR), eXtreme Gradient Boosting (XGB), Support 
Vector Machines (SVM) and Multi-layer Perceptron (MLP). Each line traces the trade-off between sensitivity (true positive rate) and 1-specificity (false 
positive rate) across different thresholds. The Area Under the ROC Curve (AUC) is provided for each model as a measure of overall performance
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To more effectively leverage the use of ML models as 
second-opinion support systems, the core of our con-
tribution lies in the incorporation of controllable AI 
principles [24], particularly XAI and cautious predic-
tion, in the development of such models, so as to align 
with the need for accountability and transparency in AI 
applications in healthcare [49, 50]. Indeed, we showed 
that interpretable models, and particularly so the FIGS 
model, have performance on par or even better than 
the best black-box model we considered (i.e., Random 
Forest), indicating that accuracy does not have to be 

sacrificed for interpretability [51]. Achieving high sen-
sitivity, specificity, and PPV, along with an AUC greater 
than 80%, this model underscores the viability of ML 
and PROMs in predicting whether a patient, prelimi-
narily assigned to FT by the managing clinicians, will 
have favorable post-surgery outcomes: such an indi-
cation is used as proxy for the actual effectiveness of 
the protocol assignment decision formulated by the 
clinician, and can thus be used to either validate this 
preliminary decision or to notify the doctor that fur-
ther information should be collected for selecting the 

Fig. 2  PPV-Sensitivity Curves comparing the performance of all developed models. This graph provides a visual comparison of the PPV-Sensitivity 
curves for each classifier developed in our analysis: Hierarchical Shrinked Trees (HST), Fast Interpretable Greedy Sums (FIGS), Decision Trees 
(DT), Random Forest (RF), K-Nearest Neighbors (KNN), Logistic Regression (LR), eXtreme Gradient Boosting (XGB), Support Vector Machines 
(SVM) and Multi-layer Perceptron (MLP). Each line traces the trade-off between sensitivity (true positive rate) and PPV (positive predictive false) 
across different thresholds. The Area Under the Precision-Recall (or Positive Predictive Value and Sensitivity) Curve (AUPRC) is provided for each 
as a measure of overall performance
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optimal rehabilitation protocol for the given patient. 
Furthermore, the application of cautious prediction 
further enhanced the performance of the developed 
models, showing how providing ML models with 
uncertainty quantification and abstention capabilities 
can make them more accurate as well as provide the 
clinicians with an important indication about the reli-
ability of the support they provide. Such an approach 
not only fosters clinician trust in AI [52] but also 
ensures that AI supports rather than supplants clinical 

judgment [53], in perfect agreement with the second-
opinion approach.

Finally, our study’s external validation, further testi-
fies to the robustness and generalizability of our mod-
els: indeed, while unsurprisingly for some metrics the 
developed models showed a decrease in performance 
as compared with the internal validation, their error 
rates remained well within reasonable quality ranges 
[54]. Interestingly, it was on the external validation that 
controllable AI approaches best showed their potential: 

Fig. 3  Calibration curves comparing the performance of all developed models. This graph provides a visual comparison of the calibration curves 
for each classifier developed in our analysis: Hierarchical Shrinked Trees (HST), Fast Interpretable Greedy Sums (FIGS), Decision Trees (DT), Random 
Forest (RF), K-Nearest Neighbors (KNN), Logistic Regression (LR), eXtreme Gradient Boosting (XGB), Support Vector Machines (SVM) and Multi-layer 
Perceptron (MLP). Each line represents a model’s ability to estimate the probability of patient improvement after Fast Track (FT) surgery. The closer 
a curve follows the dashed line (which represents perfect calibration), the more accurately the model predicts the true outcomes. The Brier scores 
is provided for each as a measure of overall performance, with lower values corresponding to better performance
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indeed, in all cases, the performance of the cautious 
prediction models did not decrease significantly as 
compared with the internal validation, showing that pro-
viding such a form of uncertainty quantification can not 
only improve reliability and trust, but also generalizabil-
ity and robustness [52, 55].

Obviously, this study is not without limitation. Firstly, 
the study being of a retrospective nature, we did not 
evaluate the effectiveness of the developed ML models 
in clinical practice: we believe that future prospective 
studies should evaluate the performance of the devel-
oped models when deployed in real-world scenarios 
[56]. Nonetheless, to this regard, we note that we did not 
limit our evaluation to an internal validation, but rather 
also externally validated the developed models. Such an 
analysis, while not being as informative as a prospec-
tive study, provides additional indications about the 
developed models’ robustness and generalizability [57, 
58]. Secondly, and with regard to the external validation 
previously mentioned, we note that our validation pro-
cedure considered data coming from the same institute 
from which the development data were collected. Thus, 
while we considered the stability of the developed mod-
els to time-related shifts [59], we did not evaluate their 
transportability to other clinical settings [60]. This is an 
important consideration [35, 58], as different hospitals 
may have different criteria for assigning patients to FT 

or Care-as-Usual protocols, as well as different patients’ 
populations. Therefore, we believe that multi-centric vali-
dation studies would be particularly relevant for confirm-
ing (or disproving) the generalizability of the developed 
models. Finally, in our study, we adopted an approach to 
ML model development grounded in the principles of 
controllable AI, with specific reference to providing mod-
els that are both explainable as well as able to provide 
an indication of their predictive uncertainty: we moti-
vated this design choice by highlighting the importance 
of controllability for the development of second-opinion 
support systems [49], and specifically so providing such 
systems with the ability to detect control loss situations 
and notify them to the managing clinician [61]. While we 
showed how interpretable and cautious models reported 
performance on-par with, or even better than, traditional 
and black-box models, we did not perform any user vali-
dation aimed at assessing the actual effectiveness of pro-
viding such support to the clinicians [62]. While there 
have been some recent studies showing how providing 
domain experts with controllable support could prove 
more effective for both improving accuracy as well as 
limiting the risk of emergence of cognitive biases (e.g., 
automation bias) [62, 63], the research on this topic is still 
limited: thus, we believe this to be a particularly relevant 
direction for future research, both in terms of analyzing 
the impact of providing cautious prediction support to 

Fig. 4  ROC curves (a) and Standardized Net Benefit curves (b) for the Fast Interpretable Greedy Sums (FIGS). In the ROC curve diagram, the dashed 
line represents the cautious prediction model based on FIGS. In the Standardized Net Benefit curve diagram, the blue and red dashed lines 
represent, respectively, the Treat None and Treat All baselines
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clinicians, as well as performing clinical validation of the 
developed interpretable model (see Fig. 5).

Conclusions
This article has explored the development of ML mod-
els in the context of Fast Track surgical procedures, par-
ticularly focusing on hip and knee arthroplasties. Our 
research underscores the increasing relevance of such 
predictive models in the current healthcare landscape, 
which is marked by a growing aging population and the 
consequent rise in demand for efficient and cost-effective 
surgical management.

Our study demonstrated that ML algorithms can sig-
nificantly enhance the process of assigning patients to FT 

protocols. By accurately predicting the improvement in 
patients’ health status, these models can be used to offer 
a reliable second-opinion to support clinical decisions. 
This not only aids in optimizing patient outcomes but 
also plays a crucial role in reducing the length of hospital 
stays and associated costs.

Furthermore, our research highlighted the impor-
tance of XAI techniques in making these predictive 
models more transparent and understandable to cli-
nicians. This aspect of controllable AI ensures that 
the decision-making process remains in the hands of 
healthcare professionals, thereby enhancing the relia-
bility and ethical integrity of using AI systems in medi-
cal settings. We also showed how cautious prediction, 

Fig. 5  Fast Interpretable Greedy Sums model. The model is represented as a forest of trees that are combined in additive composition. Given 
an instance x, the corresponding probability value for the positive class (in our study, Improved, interpreted as a proxy indicator to confirm 
assignment to Fast Track) is obtained by following a path in each tree, corresponding to the values of the features of x, computing the sum f(x) 
of the values associated with the leaves and then applying the sigmoid function P(y = 1|x) = σ(f (x)) = 1

1+e−f (x)
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Fig. 6  Feature importance for the Fast Interpretable Greedy Sums model, represented in terms of Shapley values. For each feature, the color 
denotes the magnitude of the features’ values: red denotes high values, while blue denotes low values. Values at the right of the black vertical 
bar denote increased confidence score for the positive class, while values at the left of the bar denote a corresponding decreased confidence score

Table 5  The results of the developed Machine Learning (ML) models on the external validation dataset are presented along with their 
respective 95% confidence intervals (C.I.)

For each metric and and model, an asterisk (*) denotes that the performance of that model on the external validation dataset was significantly worse than on the 
internal validation dataset

Asterisk denotes a significant difference between the two cohorts, at the 95% confidence level

HST FIGS LR SVM RF XGB DT MLP

Accuracy 0.687 ± 0.061 0.784±0.054 0.734±0.058 0.751±0.057 0.800±0.052 0.798±0.053 0.712±0.059 0.724 ± 0.022

Sensitivity 0.623 ± 0.037 0.820 ± 0.029 0.741 ± 0.033 0.756 ± 0.033 0.811 ± 0.029 0.994±0.006 0.695 ± 0.035 0.750 ± 0.025

Specificity 0.866±0.043 0.716 ± 0.059 0.715 ± 0.057 0.736 ± 0.056 0.721 ± 0.056 0.255 ± 0.055 0.757 ± 0.054 0.658 ± 0.044

Balanced accuracy 0.744 ± 0.000* 0.768±0.001* 0.728 ± 0.001* 0.746 ± 0.001 0.766±0.001 0.625 ± 0.001 0.726 ± 0.001 0.704 ± 0.001*

PPV 0.928±0.024 0.878 ± 0.026 0.878 ± 0.027 0.888 ± 0.026 0.897 ± 0.024 0.787 ± 0.028 0.888 ± 0.027 0.847 ± 0.022

NPV 0.454 ± 0.046 0.580 ± 0.058 0.500 ± 0.053 0.522 ± 0.053 0.600 ± 0.056 0.938±0.058 0.474 ± 0.050 0.511 ± 0.041

AUC​ 0.812 ± 0.001 0.813±0.001* 0.811 ± 0.001* 0.809 ± 0.001 0.812 ± 0.000* 0.807 ± 0.000* 0.794 ± 0.001 0.759 ± 0.001*

F1 0.745 ± 0.029 0.848±0.021 0.804 ± 0.024 0.817±0.024 0.858±0.021 0.851±0.018 0.780 ± 0.026 0.796 ± 0.019

Brier 0.176±0.052 0.177±0.026 0.184±0.041 0.145±0.076 0.161±0.027 0.170±0.024 0.180±0.075 0.193±0.12
sNB 0.574 ± 0.001* 0.728±0.000* 0.638 ± 0.001* 0.661 ± 0.001 0.727 ± 0.001 0.724 ± 0.001 0.608 ± 0.001 0.615 ± 0.001*

MCC 0.352±0.049 0.391±0.049 0.372±0.049 0.365±0.049 0.426±0.049 0.350±0.049 0.328 ± 0.049 0.383±0.049
HC accuracy 0.729±0.058 0.772±0.055 0.771±0.055 0.776±0.055 0.820±0.050 0.722±0.059 0.785±0.054 0.740 ± 0.022

HC sensitivity 0.631 ± 0.037 0.716 ± 0.034 0.697 ± 0.035 0.701 ± 0.035 0.742 ± 0.033 0.985±0.009 0.759 ± 0.033 0.684 ± 0.027

HC specificity 0.944±0.029 0.901±0.048 0.936±0.031 0.937±0.031 0.964±0.020 0.335 ± 0.060 0.854 ± 0.045 0.846 ± 0.034*

HC PPV 0.961±0.018 0.963±0.018 0.960±0.016 0.960±0.016 0.982±0.011 0.686 ± 0.032* 0.934 ± 0.021 0.893 ± 0.019*

HC NPV 0.539 ± 0.046 0.580 ± 0.058 0.582 ± 0.052 0.591 ± 0.052 0.658 ± 0.054 0.938±0.058 0.565 ± 0.050 0.587 ± 0.04

Coverage 0.567±0.065 0.669±0.062 0.501 ± 0.065 0.501 ± 0.065 0.501 ± 0.065 0.501 ± 0.065 0.651±0.062 0.501 ± 0.025
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another form of controllable AI, could be used to reli-
ably increase the robustness and uncertainty quantifi-
cation capabilities of predictive models, enabling the 
clinicians to make more accurate and more informed 
decisions.

Thus, the adoption of ML models in the assignment of 
patients to FT procedures represents a significant stride 
towards improving the appropriateness of post-surgi-
cal care, which requires further research and validation 
studies. Doing so aims to contribute to the broader goal 
of making healthcare more sustainable, particularly in 
the face of challenges posed by an aging population and 
increased demand for medical services. By leveraging 
predictive analytics, healthcare systems can not only help 
physicians get better patient outcomes but also help them 
manage resources more effectively, paving the way for a 
more resilient and responsive healthcare system.
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