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Abstract 

Background Diabetic peripheral neuropathy (DPN) and lower extremity arterial disease (LEAD) are significant 
contributors to diabetic foot ulcers (DFUs), which severely affect patients’ quality of life. This study aimed to develop 
machine learning (ML) predictive models for DPN and LEAD and to identify both shared and distinct risk factors.

Methods This retrospective study included 479 diabetic inpatients, of whom 215 were diagnosed with DPN and 69 
with LEAD. Clinical data and laboratory results were collected for each patient. Feature selection was performed using 
three methods: mutual information (MI), random forest recursive feature elimination (RF-RFE), and the Boruta algo-
rithm to identify the most important features. Predictive models were developed using logistic regression (LR), ran-
dom forest (RF), and eXtreme Gradient Boosting (XGBoost), with particle swarm optimization (PSO) used to optimize 
their hyperparameters. The SHapley Additive exPlanation (SHAP) method was applied to determine the importance 
of risk factors in the top-performing models.

Results For diagnosing DPN, the XGBoost model was most effective, achieving a recall of 83.7%, specificity of 86.8%, 
accuracy of 85.4%, and an F1 score of 83.7%. On the other hand, the RF model excelled in diagnosing LEAD, 
with a recall of 85.7%, specificity of 92.9%, accuracy of 91.9%, and an F1 score of 82.8%. SHAP analysis revealed top five 
critical risk factors shared by DPN and LEAD, including increased urinary albumin-to-creatinine ratio (UACR), glyco-
sylated hemoglobin (HbA1c), serum creatinine (Scr), older age, and carotid stenosis. Additionally, distinct risk factors 
were pinpointed: decreased serum albumin and lower lymphocyte count were linked to DPN, while elevated neutro-
phil-to-lymphocyte ratio (NLR) and higher D-dimer levels were associated with LEAD.

Conclusions This study demonstrated the effectiveness of ML models in predicting DPN and LEAD in diabetic 
patients and identified significant risk factors. Focusing on shared risk factors may greatly reduce the prevalence 
of both conditions, thereby mitigating the risk of developing DFUs.
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Introduction
Diabetes has become a growing global health concern, 
affecting around 451 million people in 2017, with pro-
jections to rise to 693 million by 2045 [1]. In China, the 
prevalence of diabetes has surged from less than 1% in 
the 1980s to approximately 10.9% in 2013 and 12.4% 
in 2018, making it the country with the world’s largest 
diabetic population [2]. Diabetic peripheral neuropathy 
(DPN) and lower extremity arterial disease (LEAD) are 
prevalent complications of diabetes, with occurrence 
rates of about 50% and 3-20%, respectively [3–6]. Both 
complications serve as extrinsic risk factors for diabetic 
foot ulcers (DFUs) [7], leading to higher rates of ampu-
tation, increased mortality, and substantial economic 
burdens for patients with diabetes [8]. Unfortunately, 
patients with DPN or LEAD may be asymptomatic in 
their early stages, and many patients already have these 
complications at the time of initial diagnosis [8, 9]. 
Therefore, early identification and management of DPN 
and LEAD are crucial in preventing DFUs among dia-
betic patients.

At present, the diagnosis of DPN and LEAD mainly 
relies on physical examination of the peripheral nervous 
system, electromyography (EMG), ankle–brachial index, 
lower limb vascular ultrasound, etc. [5, 10]. However, 
these methods require well-trained endocrinologists 
and specialized diagnostic equipment, which are often 
scarce in underdeveloped regions. To address this chal-
lenge, researchers are actively exploring the development 
of practical, accessible, and cost-effective clinical diagno-
sis models for DPN and LEAD based on clinical features 
and routinely measured lab parameters. Recent studies 
have demonstrated that machine learning (ML) models, 
by utilizing medical history, physical examinations, and 
basic lab tests, could effectively predict DPN and LEAD 
[4, 11]. Moreover, ML algorithms achieved high accu-
racy in identifying DPN through the analysis of immune 
biomarkers or microcirculatory parameters [12, 13]. 
Additionally, a model based on support vector machine 
(SVM) has been shown to accurately predict DPN sever-
ity in about 76% of cases, utilizing general patient infor-
mation and responses from a neuropathy disability score 
questionnaire [14]. Despite these advances, most studies 
have concentrated on developing one model for either 
DPN or LEAD, without considering common risk factors 
for both conditions in a single study. Given the high prev-
alence of DPN and LEAD in developing countries and 
their potential to lead to DFUs, which can significantly 
increase mortality rates [15, 16], it is crucial to identify 
and target shared risk factors for both conditions. This 
strategy could facilitate early and concurrent interven-
tions, potentially diminishing the prevalence and severity 
of these diseases.

In this study, we employed logistic regression (LR), 
random forest (RF), and eXtreme Gradient Boost-
ing (XGBoost) to develop diagnostic models for both 
DPN and LEAD among diabetic individuals, utilizing 
demographic, clinical, and laboratory information. This 
research spanned the interdisciplinary fields of medicine, 
biostatistics, and ML. To identify shared and unique risk 
factors for DPN and LEAD, we used the SHapley Addi-
tive exPlanation (SHAP) method to prioritize risk factors 
within the most effective models for each condition.

Contributions of this work
The major contributions of this study are outlined as 
follows:

(1) We constructed ML models for DPN and LEAD 
detection based on accessible demographic, clinical, 
and laboratory data, minimizing the need for spe-
cialized tests and advanced medical facilities. This 
approach is especially beneficial for areas with lim-
ited healthcare resources.

(2) We utilized three feature selection methods—
mutual information (MI), random forest recursive 
feature elimination (RF-RFE), and the Boruta algo-
rithm—to identify the most significant features. 
This strategy effectively reduces overfitting and 
enhances the robustness of our models.

(3) To optimize the performance of each ML model, we 
applied particle swarm optimization (PSO) to fine-
tune hyperparameters.

(4) The SHAP method was applied to elucidate the 
contribution of each feature to the risk of develop-
ing DPN and LEAD in the best-performing models. 
This analysis identified both shared and distinct risk 
factors for DPN and LEAD, deepening our insight 
into their pathophysiological foundations. Con-
centrating on shared risk factors may significantly 
reduce the prevalence of these conditions and sub-
sequently the risk of DFUs.

Methods
Study design and participants
This is a cross-sectional study conducted at Tongji Hos-
pital from January 2022 to March 2023. We collected 
clinical characteristics and laboratory data of 712 diabetic 
inpatients who underwent EMG and lower limb vas-
cular ultrasound examinations. Patients were excluded 
from the study if they had diabetic ketoacidosis (DKA), 
hyperosmotic hyperglycemia syndrome (HHS), autoim-
mune diseases, infectious diseases, malignant tumors, or 
if more than 30% of their data was missing. Ultimately, 
479 diabetic patients were enrolled in this study. This 
research was performed in compliance with the Code of 
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Ethics of the World Medical Association (Declaration of 
Helsinki) and received approval from the Institutional 
Ethics Committee (K-2023-022).

Diagnostic criteria
All diabetic patients enrolled in our study underwent 
screening for DPN and LEAD during hospitalization. 
The diagnosis of diabetic complications was made by two 
qualified endocrinologists based on the locally recog-
nized criteria [17]. A Dantec® Keypoint® G4 EMG/NCS/
EP Workstation with 8-Channel Amplifier (Dantec Medi-
cal A/S, Denmark) was used to test the motor conduction 
velocity of bilateral ulnar, median, and common peroneal 
nerves, as well as the sensory conduction velocity of bilat-
eral radial, median, and superficial fibular nerves. The 
diagnosis of DPN relied on typical symptoms, neurologi-
cal examination, EMG, and exclusion of other causes of 
peripheral neuropathy. In addition, Philips IU22 Doppler 
ultrasonic color imaging system (Philips, USA) equipped 
with a 3-D array probe (5-12 MHz) was applied to exam-
ine the bilateral common femoral arteries, superficial 
femoral artery, popliteal artery, and dorsal artery. The 
diagnosis of LEAD was based on arterial lumen stenosis, 
severe blood flow filling deficiency, or arterial occlusion.

Data collection
Demographic information was collected on admission, 
including age, gender, body mass index (BMI), diabetes 
duration, diabetes type, smoking history, systolic blood 
pressure (SBP) and diastolic blood pressure (DBP). BMI 
was calculated by dividing an individual’s weight in kilo-
grams by the square of their height in meters. SBP and 
DBP were measured three times while the person was at 
rest, and then the average of the readings was recorded. 
Clinical routine examinations were performed, and lab-
oratory parameters were obtained from fasting blood 
and spot urine samples collected the next morning after 
admission. The routine laboratory tests included hema-
tology (neutrophil, lymphocyte, and platelet counts, 
neutrophil-to-lymphocyte ratio (NLR)), liver and kidney 
function tests (alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), serum albumin, total biliru-
bin (TBiL), direct bilirubin (DBiL), serum urea nitrogen 
(SUN), serum uric acid (SUA), serum creatinine (Scr)), 
glucose metabolism (fasting blood glucose (FBG), gly-
cosylated hemoglobin (HbA1c)), lipid profiles (total 
cholesterol (TC), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), 
and triglycerides (TG)), islet function (fasting insulin and 
fasting C-peptide), C-reactive protein (CRP), D-dimer, 
25-hydroxy vitamin D3 (25-OH VitD), ferritin, neu-
ron specific enolase (NSE), urinary microalbumin and 
creatinine, and the urinary albumin-to-creatinine ratio 

(UACR). We calculated the estimated glomerular filtra-
tion rate (eGFR) using a formula provided in a previous 
study [18]. In addition, we collected the results of carotid 
artery ultrasound. Bilateral common carotid artery, 
internal carotid artery, and external carotid artery were 
examined using a Philips IU22 Doppler ultrasonic color 
imaging system (Philips, USA) equipped with a 3-D array 
probe (7-12 MHz). The dataset, encompassing all fea-
tures and their respective values, was detailed in Supple-
mentary Table S1.

Missing data
Comprehensive demographic information was avail-
able for all participants, as each patient underwent the 
hospitalization process. Missing data for laboratory 
parameters were below 30%. We addressed these miss-
ing values using the most recent available measurements. 
Any remaining missing values were imputed using the 
median.

Data balancing
In constructing models for LEAD, we encountered 
a class imbalance issue due to the low proportion of 
patients with LEAD in the overall population. To address 
this problem, we used the imbalanced-learn package 
in Python to employ a random undersampling tech-
nique, achieving a 1:3 ratio between the LEAD and non-
LEAD groups [19]. This approach helped us to maintain 
a more balanced ratio and decrease the number of non-
LEAD cases to three times the number of LEAD cases, 
thus mitigating the imbalance and enhancing the reliabil-
ity of our models.

Feature selection strategy
The feature selection process was conducted using three 
distinct methods: MI, RF-RFE, and the Boruta algorithm. 
MI quantifies the dependency between variables by cap-
turing all types of relationships, both linear and nonlin-
ear. For feature selection, MI assesses the dependency 
of each feature on the target label to identify the most 
informative features for prediction [20]. RF-RFE utilizes 
a RF to iteratively build models, systematically removing 
the least important features in each round. This method 
emphasizes features that significantly affect model per-
formance [21]. The Boruta algorithm employs a RF 
classifier to evaluate features against their randomized 
“shadow” versions, ensuring only essential features are 
retained for accurate model predictions [22].

For both MI and RF-RFE, the top 15 features were 
identified independently. The Boruta algorithm catego-
rized features as confirmed, tentative, or rejected, select-
ing features that were either confirmed or tentative. Only 
features chosen by at least two of these three methods 
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were used to develop ML models. This approach reduces 
redundancy and enhances the predictive accuracy of the 
ML models.

ML model construction and interpretation
The model was constructed and interpreted using Python 
(version 3.9.6, Python Software Foundation, USA). The 
workflow for constructing and interpreting ML models 
is illustrated in Fig.  1. First, the dataset was randomly 
divided into two subsets: 80% designated for training the 
model and the remaining 20% reserved for testing. Then, 
three distinct ML models—LR, RF, and XGBoost—were 
developed to predict DPN and LEAD based on selected 
features. To optimize these models and select the most 
suitable hyperparameters, we employed PSO. PSO is a 
computational method that mimics a swarm of particles 
navigating through the parameter space to find optimal 
solutions. In ML, PSO enhances model parameterization 

by representing each particle as a potential solution that 
is continuously refined through both individual and 
collective experiences within the swarm. This strategy 
efficiently identifies the best parameter combinations, 
significantly improving model performance [23]. The set 
and optimal value of hyperparameters were displayed in 
Supplementary Table S2.

The effectiveness of each model was evaluated using 
various metrics, including recall, specificity, precision, 
accuracy, and the F1 score. We also calculated the area 
under the receiver operating curve (AUC) for the test 
sets to assess the performance of each model. Further-
more, the SHAP method was employed to interpret the 
contribution of each predictor within the optimal mod-
els. Through SHAP analysis, we gained a detailed under-
standing of how each feature influences the model’s 
output, providing a comprehensive insight into the mod-
el’s decision-making process [24].

Statistical analysis
The statistical analyses were performed using SPSS (ver-
sion 27.0, IBM, USA). For data adhering to a normal 
distribution, values were depicted as mean ± standard 
deviation. Differences among these values were exam-
ined using the independent Student’s t-test. Conversely, 
for data not following a normal distribution, variables 
were presented as medians (interquartile range, IQR), 
and the Mann-Whitney U test was employed to evaluate 
disparities in their distributions. Categorical data were 
represented as n (%) and analyzed for distribution differ-
ences via the Chi-square (χ2) test or Fisher’s exact test, as 
appropriate. A p-value < 0.05 was considered statistically 
significant.

Results
Clinical features of patients
In this study, we initially enrolled 712 diabetic inpatients. 
After applying exclusion criteria, 479 patients qualified 
for inclusion. Among them, 215 were diagnosed with 
DPN, and 69 with LEAD. The median age of participants 
was 50 years (IQR: 48-56), and the male-to-female ratio 
was 0.58. All these cases were utilized to develop mod-
els for diagnosing DPN. To correct for the imbalance 
in sample sizes, a one-to-three random undersampling 
strategy was employed for LEAD cases versus non-LEAD 
controls, resulting in 69 LEAD cases and 207 non-LEAD 
cases being selected to construct LEAD prediction mod-
els (Fig. 2). According to univariate analysis, out of the 38 
features, 24 exhibited significant discrepancies between 
patients with and without DPN, whereas 17 features 
displayed differences between those with and without 
LEAD (Tables  1 and 2). Patients with DPN or LEAD 
were found to be older compared to those without these Fig. 1 ML model development and evaluation process
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complications. Men were more likely to develop DPN 
or LEAD than women. Moreover, patients with DPN 
and LEAD exhibited increased levels of HbA1c, SUN, 
Scr, FBG, D-dimer, NLR, urinary microalbumin, and 
UACR compared to those without these complications. 
In contrast, the levels of serum albumin, eGFR, TC, and 
LDL were found to be lower in patients with DPN and 
LEAD. Additionally, a positive association was observed 
between the presence of carotid stenosis and the occur-
rence of DPN and LEAD.

Selected features
For DPN, a consensus was reached on eight features 
selected by all three feature selection methods. An 
additional four features were agreed upon by two of 
the methods, resulting in a total of 12 distinct features 
that were incorporated into the models, as outlined in 
Supplementary Table  S3. Similarly, for LEAD, unani-
mous selection was achieved for five features across all 
methods, with another four features chosen by two of 
the methods. Thus, a total of nine features were inte-
grated into the ML models, as detailed in Supplementary 
Table S4.

Diagnostic performance of LR, RF, and XGBoost 
in detecting DPN
The diagnostic performances of three models for detect-
ing DPN were shown in Figs.  3A and 4A. Among these 
models, XGBoost demonstrated the highest diagnostic 

efficacy, achieving an AUC of 0.903, a recall of 83.7%, a 
specificity of 86.8%, an accuracy of 85.4%, a precision of 
83.7%, and an F1 score of 83.7%. Additionally, RF showed 
the highest specificity, at 90.6%.

Diagnostic performance of LR, RF, and XGBoost 
in detecting LEAD
The performances of the LEAD models were presented in 
Figs. 3B and 4B. The RF model outperformed the others 
with the highest AUC of 0.923, recall of 85.7%, specificity 
of 92.9%, accuracy of 91.9%, precision of 80.0%, and an F1 
score of 82.8%, followed by XGBoost and LR.

Critical shared and unique risk factors for DPN and LEAD 
through SHAP analysis
SHAP was applied to evaluate the importance of fea-
tures within the optimal ML models for DPN and 
LEAD, with a prioritized list vividly illustrating their 
respective impacts. Figure  5A and B  presented the 
rankings of critical features in the XGBoost model for 
DPN and the RF model for LEAD, respectively. This 
analysis highlighted the importance of both shared 
and unique risk factors. Common risk factors iden-
tified for both conditions include increased UACR, 
elevated HbA1c, elevated Scr, advanced age, carotid 
stenosis, high FBG, and reduced eGFR. Unique to DPN 
were decreased serum albumin and lower lymphocyte 
count, whereas LEAD was specifically associated with 
increased NLR and higher D-dimer levels.

Fig. 2 Flowchart of patient enrollment. DPN, diabetic peripheral neuropathy. LEAD, lower extremity arterial disease. DKA, diabetic ketoacidosis. 
HHS, hyperosmotic hyperglycemia syndrome. ML, machine learning
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Table 1 Clinical features in diabetic patients with or without DPN

Clinical features Non-DPN (n = 264) DPN (n = 215) P value

Demographic profiles

 Age (years) 64.00 (56.25, 68.00) 66.00 (61.00, 72.00)  < 0.001

 Sex, n (%)  < 0.001

  Male 120 (45.5) 146 (67.9)

  Female 144 (54.5) 69 (32.1)

 BMI (kg/m2) 24.48 (22.64, 27.17) 23.88 (21.83, 26.06) 0.006

 Diabetes duration (year) 10.00 (4.63, 16.00) 15.00 (8.00, 20.00)  < 0.001

 Type 0.338

  T1DM 4 (1.5) 7 (3.3)

  T2DM 260 (98.5) 208 (96.7)

 Smoking history, n (%) 0.001

  Yes 39 (14.8) 58 (27.0)

  No 225 (85.2) 157 (73.0)

 SBP (mmHg) 137.80 ± 16.76 140.00 ± 18.97 0.178

 DBP (mmHg) 79.58 ± 11.10 77.67 ± 11.62 0.068

Laboratory parameters

 HbA1c (%) 8.35 (7.03, 9.39) 9.21 (7.94, 10.75)  < 0.001

 Serum albumin (g/L) 39.10 (37.40, 41.08) 38.00 (36.10, 39.20)  < 0.001

 DBiL (μmol/L) 4.20 (3.33, 5.38) 4.10 (3.20, 5.30) 0.338

 TBiL (μmol/L) 11.50 (8.83, 15.38) 10.90 (7.60, 13.60) 0.007

 ALT (U/L) 19.50 (14.70, 30.70) 18.50 (13.20, 26.10) 0.015

 AST (U/L) 16.60 (13.50, 22.58) 16.30 (13.40, 20.40) 0.177

 SUN (mmol/L) 5.50 (4.50, 6.60) 5.90 (5.00, 8.00)  < 0.001

 Scr (μmol/L) 66.00 (57.00, 74.00) 74.00 (65.00, 92.00)  < 0.001

 eGFR (ml/min/1.73m2) 93.92 (84.29, 101.72) 87.87 (70.16, 96.16)  < 0.001

 SUA (μmol/L) 318.00 (271.25, 375.75) 318.00 (271.00, 375.00) 0.794

 FBG (mmol/L) 6.28 (5.17, 8.14) 7.17 (5.41, 9.81) 0.001

 TC (mmol/L) 4.56 (3.77, 5.26) 4.19 (3.42, 5.08) 0.004

 TG (mmol/L) 1.33 (0.91, 2.02) 1.32 (0.78, 1.83) 0.095

 HDL-C (mmol/L) 1.02 (0.90, 1.21) 1.01 (0.90, 1.15) 0.445

 LDL-C (mmol/L) 2.88 (2.08, 3.44) 2.39 (1.80, 3.11) 0.001

 D-dimer (mg/L) 0.22 (0.20, 0.31) 0.25 (0.22, 0.43)  < 0.001

 CRP (mg/L) 0.50 (0.10, 0.62) 0.50 (0.12, 0.64) 0.351

 Neutrophils count  (109/L) 3.35 (2.60, 4.02) 3.36 (2.55, 4.19) 0.665

 Lymphocyte count  (109/L) 2.05 (1.67, 2.49) 1.80 (1.45, 2.18)  < 0.001

 NLR 1.56 (1.23, 2.04) 1.81 (1.37, 2.34)  < 0.001

 Platelet count  (109/L) 210.00 (183.25, 249.00) 204.00 (176.00, 239.00) 0.077

 25-OH VitD (ng/mL) 18.30 (14.63, 24.26) 18.30 (13.45, 23.75) 0.197

 NSE (ng/mL) 14.90 (13.33, 16.50) 14.90 (13.10, 17.40) 0.765

 Fasting insulin (mU/L) 6.10 (3.87, 11.96) 4.96 (2.19, 8.55)  < 0.001

 Fasting C-peptide (ng/mL) 1.74 (1.32, 2.56) 1.68 (1.09, 2.38) 0.023

 Ferritin (ng/mL) 210.00 (138.00, 294.50) 210.00 (163.00, 260.00) 0.367

 Urinary microalbumin (mg/L) 11.90 (5.93, 16.00) 14.30 (8.00, 66.00)  < 0.001

 Urinary creatinine (mmol/L) 7.24 (5.75, 11.07) 6.55 (4.33, 8.73)  < 0.001

 UACR (mg/g) 12.26 (6.55, 16.05) 21.99 (9.78, 92.12)  < 0.001

 Carotid stenosis  < 0.001

  No stenosis 252 (95.5) 166 (87.3)

  < 50% 12 (4.5) 44 (11.7)

  ≥ 50% 0 (0.0) 5 (1.0)

DPN diabetic peripheral neuropathy, BMI body mass index, T1DM type 1 diabetes, T2DM type 2 diabetes, SBP systolic blood pressure, DBP diastolic blood pressure, 
HbA1c glycosylated hemoglobin, DBiL direct bilirubin, TBiL total bilirubin, ALT alanine aminotransferase, AST aspartate aminotransferase, SUN serum urea nitrogen, Scr 
serum creatinine, eGFR estimated glomerular filtration rate, SUA serum uric acid, FBG fasting blood glucose, TC total cholesterol, TG triglyceride, HDL-C high-density 
lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, CRP C-reactive protein, NLR neutrophil-to-lymphocyte ratio, NSE neuron-specific enolase, UACR  uri-
nary albumin-to-creatinine ratio
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Table 2 Clinical features in diabetic patients with or without LEAD

Clinical features Non-LEAD (n = 207) LEAD (n = 69) P value

Demographic profiles

 Age (years) 63.00 (56.00, 69.00) 69.00 (65.00, 76.00)  < 0.001

 Sex, n (%)  < 0.001

  Male 107 (51.7) 55 (79.7)

  Female 100 (48.3) 14 (20.3)

 BMI (kg/m2) 24.33 (22.31, 27.00) 23.90 (21.75, 26.06) 0.123

 Diabetes duration (year) 11.00 (6.00, 19.00) 15.00 (5.75, 20.00) 0.481

 Type 0.207

  T1DM 8 (3.9) 0 (0.0)

  T2DM 199 (96.1) 69 (100.00)

 Smoking history, n (%) 0.094

  Yes 35 (16.9) 18 (26.1)

  No 172 (83.1) 51 (73.9)

 SBP (mmHg) 139.58 ± 17.10 141.48 ± 19.49 0.443

 DBP (mmHg) 79.19 ± 10.97 76.55 ± 11.92 0.092

Laboratory parameters

 HbA1c (%) 8.86 (7.24, 9.61) 8.97 (8.01, 10.64) 0.018

 Serum albumin (g/L) 38.50 (36.80, 40.20) 37.4 (34.90, 39.25) 0.002

 DBiL (μmol/L) 4.10 (3.20, 5.10) 4.10 (3.35, 5.40) 0.697

 TBiL (μmol/L) 10.90 (8.00, 14.40) 10.6 (7.9, 12.85) 0.297

 ALT (U/L) 19.20 (13.70, 29.10) 19.40 (13.00, 30.1) 0.867

 AST (U/L) 15.90 (13.50, 19.90) 16.70 (13.55, 24.90) 0.324

 SUN (mmol/L) 5.60 (4.70, 6.70) 6.10 (5.00, 8.15) 0.009

 Scr (μmol/L) 67.00 (59.00, 78.00) 76.00 (67.00, 94.00)  < 0.001

 eGFR (ml/min/1.73m2) 93.58 (84.75, 101.74) 87.47 (64.76, 95.10)  < 0.001

 SUA (μmol/L) 318.00 (280.00, 367.00) 319.00 (271.50, 371.5) 0.834

 FBG (mmol/L) 6.50 (5.20, 8.45) 7.31 (5.47, 10.80) 0.022

 TC (mmol/L) 4.43 (3.65, 5.16) 3.77 (3.23, 4.46) 0.001

 TG (mmol/L) 1.33 (0.86, 1.98) 1.25 (0.79, 1.66) 0.335

 HDL-C (mmol/L) 1.01 (0.91, 1.21) 0.98 (0.86, 1.06) 0.009

 LDL-C (mmol/L) 2.68 (1.95, 3.37) 2.18 (1.68, 2.72) 0.007

 D-dimer (mg/L) 0.23 (0.22, 0.30) 0.32 (0.23, 0.54)  < 0.001

 CRP (mg/L) 0.50 (0.33, 0.62) 0.50 (0.35, 0.64) 0.405

 Neutrophils count  (109/L) 3.35 (2.60, 4.15) 3.54 (2.87, 4.31) 0.183

 Lymphocyte count  (109/L) 1.96 (1.58, 2.45) 1.79 (1.43, 2.09) 0.002

 NLR 1.63 (1.30, 2.08) 2.11 (1.46, 2.66) 0.001

 Platelet count  (109/L) 211.00 (187.00, 253.00) 197.00 (171.50, 244.00) 0.097

 25-OH VitD (ng/mL) 18.30 (14.19, 24.66) 18.30 (12.51, 23.51) 0.505

 NSE (ng/mL) 14.90 (13.30, 17.40) 14.80 (12.85, 17.70) 0.466

 Fasting insulin (mU/L) 5.63 (2.87, 10.23) 5.31 (2.98, 7.94) 0.322

 Fasting C-peptide (ng/mL) 1.72 (1.16, 2.49) 1.72 (1.20, 2.47) 0.782

 Ferritin (ng/mL) 210.00 (153.00, 272.00) 210.00 (152.00, 277.5) 0.915

 Urinary microalbumin (mg/L) 6.00 (13.00, 20.00) 21.00 (10.00, 104.50) 0.001

 Urinary creatinine (mmol/L) 5.47 (3.94, 7.42) 5.28 (3.74, 6.45) 0.245

 UACR (mg/g) 15.27 (7.67, 26.29) 23.04 (12.04, 166.76)  < 0.001

 Carotid stenosis  < 0.001

  No stenosis 194 (93.7) 44 (63.8)

  < 50% 9 (4.3) 24 (34.8)

  ≥ 50% 4 (1.9) 1 (1.4)

LEAD lower extremity arterial disease, BMI body mass index, T1DM type 1 diabetes, T2DM type 2 diabetes, SBP systolic blood pressure, DBP diastolic blood pressure, 
HbA1c glycosylated hemoglobin, DBiL direct bilirubin, TBiL total bilirubin, ALT alanine aminotransferase, AST aspartate aminotransferase, SUN serum urea nitrogen, Scr 
serum creatinine, eGFR estimated glomerular filtration rate, SUA serum uric acid, FBG fasting blood glucose, TC total cholesterol, TG triglyceride, HDL-C high-density 
lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, CRP C-reactive protein, NLR neutrophil-to-lymphocyte ratio, NSE neuron-specific enolase, UACR  uri-
nary albumin-to-creatinine ratio
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Discussion
This study constructed three different ML models for 
predicting DPN and LEAD among diabetic patients, uti-
lizing basic clinical and laboratory data. We discovered 
that the XGBoost model demonstrated superior diagnos-
tic performance in detecting DPN, whereas the RF model 
excelled in identifying LEAD. Furthermore, SHAP anal-
ysis identified the top five important risk factors com-
mon to both conditions: elevated UACR, HbA1c, Scr, 
advanced age, and carotid stenosis. Additionally, it pin-
pointed unique risk factors for each condition: a decrease 
in serum albumin and lymphocyte count were significant 
for DPN, while increased NLR and D-dimer were key 
indicators for LEAD.

ML models are significantly advancing the field of med-
ical diagnostics. Recent advancements in predicting DPN 
and LEAD were summarized Table  3. For DPN detec-
tion, Metsker et al. [25] developed ML models using age, 
gender, and 27 laboratory tests. Among these models, 
the artificial neural network (ANN) achieved the high-
est recall at 0.809, the LR had the highest precision at 
0.683, while Linear Regression displayed both the high-
est F1 score at 0.730 and the highest accuracy at 0.747. 
Another study demonstrated that, using demographic, 
clinical, and laboratory data, both RF and SVM mod-
els significantly distinguished DPN in individuals with 
T2DM. The accuracy, sensitivity, and specificity were 
67.8%, 68.09%, and 67.44% for RF, and 67.8%, 68.89%, and 

Fig. 3 ROC curves of LR, RF, and XGBoost models for detecting DPN and LEAD. A ROC curves for DPN; B ROC curves for LEAD. ROC, receiver 
operating characteristic. LR, logistic regression. RF, random forest. DPN, diabetic peripheral neuropathy. LEAD, lower extremity arterial disease

Fig. 4 Performance of LR, RF, and XGBoost for detecting DPN and LEAD. A Performance for DPN models; B Performance for LEAD models. LR, 
logistic regression. RF, random forest. DPN, diabetic peripheral neuropathy. LEAD, lower extremity arterial disease
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66.67% for SVM, respectively [26]. By contrast, our study 
showed that the XGBoost model had the highest diag-
nostic performance, with an accuracy of 85.4%, a sen-
sitivity of 83.7%, and a specificity of 86.8%, which were 
much higher than those reported in previous research. 
For LEAD, our RF model showed superior performance, 
aligning with previous findings that highlighted the RF 
model’s enhanced predictive capabilities over the LR 
model [4]. Of note, the improved performance in previ-
ous studies was attributed to the inclusion of the ankle-
brachial pressure index (ABI), a common indicator for 
diagnosing LEAD. Our study, however, relied solely on 
clinical data and routine laboratory tests to construct 
ML models. The remarkable performance of our models 
can be attributed to our methods of feature selection and 
hyperparameter optimization. We combined three differ-
ent methods—MI, RF-RFE, and the Boruta algorithm—
to identify the most significant features. This approach 

significantly reduces overfitting and enhances the robust-
ness of our models. Besides, PSO was applied to optimize 
hyperparameters. Unlike traditional methods such as 
grid search, PSO does not rely on fixed parameter value 
range and step size, making it particularly effective for 
complex optimization challenges with large parameter 
spaces.

SHAP, a game theory-based method, was used in this 
study to identify key risk factors for DPN and LEAD. 
The analysis revealed that the primary risk factors com-
mon to both conditions were increased UACR, HbA1c, 
Scr, advanced age, and carotid stenosis. Notably, UACR 
was ranked as the most crucial predictor for DPN and the 
third most significant for LEAD. This finding was consist-
ent with a large retrospective cohort study that identified 
UACR as a crucial predictor for DPN [27]. Additionally, 
a 30% or greater increase in UACR was reported to be 
a risk factor for the onset of DPN [28]. Previous studies 

Fig. 5 Feature importance of SHAP values for XGBoost model in detecting DPN and for RF model in detecting LEAD. A SHAP values of XGBoost 
model in detecting DPN; B SHAP values of RF model in detecting LEAD. SHAP, SHapley Additive exPlanation. RF, random forest. DPN, diabetic 
peripheral neuropathy. LEAD, lower extremity arterial disease
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also discovered that UACR served as a biomarker for the 
early detection of LEAD [29] and a risk factor for mortal-
ity in LEAD patients [30]. This underscored the critical 
importance of regular UACR monitoring to prevent DPN 
and LEAD, thereby potentially reducing the risk of DFUs.

As expected, HbA1c and older age were critical shared 
risk factors for both conditions, aligning with previous 
studies [27, 31–33]. Unlike FBG, which can fluctuate sig-
nificantly due to various factors, HbA1c provides a more 
stable measure of blood glucose levels over the preceding 
three months. Chronic hyperglycemia in diabetes contrib-
uted to the development of DPN through mechanisms 
such as increased oxidative stress and inflammation [34]. 
These processes disrupt blood flow to peripheral nerves 
and impair nerve function. Chronic hyperglycemia can 
also cause damage to endothelial cells and thicken the 
intima-media layer in blood vessels, particularly in the 
lower extremities [35]. Additionally, as individuals age, the 
key components of the extracellular matrix, particularly 
elastic fibers, are subjected to degradation and fragmenta-
tion. Age-related increases in cross-linking between col-
lagen fibers could further contribute to the development 
of arterial stiffness [36], which may diminish blood flow 
to nerves and affect their repair capabilities, potentially 
increasing the prevalence of DPN [37]. These findings 
underscored the importance of maintaining good glyce-
mic control, especially in older patients.

Scr is a key marker for kidney function, with elevated 
levels often indicating renal damage. Impaired kidney 
function can affect the microcirculation in distant organs 
[38], potentially compromising blood flow to peripheral 
nerves and arteries, which increases the risk of DPN and 
LEAD. Moreover, carotid stenosis was also recognized 
as a significant risk factor for both conditions. While 
the direct link between carotid stenosis and DPN is less 
studied, recent findings suggested that carotid athero-
sclerosis, the primary cause of carotid stenosis, could 
independently predict small fiber nerve dysfunction in 
individuals with T2DM [39]. Furthermore, a cross-sec-
tional study of 653 patients with LEAD found that 415 
(63.5%) had carotid stenosis [40], implying that carotid 
stenosis may be a contributing risk factor for LEAD. 
Therefore, diabetic patients should also pay more atten-
tion on kidney function and neck vascular health to 
reduce the prevalence of DPN and LEAD.

Furthermore, unique risk factors were also identified. 
For DPN, decreased serum albumin was a critical pre-
dictor. Among patients with T2DM, a serum albumin 
level below 36.75g/L was independently associated with 
impaired peripheral nerve function, with a sensitivity of 
65.6% and a specificity of 78.0% for detecting abnormal 
function in those with albuminuria [41]. Recent stud-
ies further supported the inverse relationship between 
serum albumin levels and the prevalence of DPN among 

Table 3 Comparative analysis of the proposed work with previous studies for DPN and LEAD prediction models

DPN diabetic peripheral neuropathy, LEAD lower extremity arterial disease, LR logistic regression, ANN artificial neural network, SVM support vector machine, RF 
random forest

Studies Features Models Results

DPN

 Lian et al. [11] medical records and laboratory tests LR, k-nearest neighbor, decision tree, 
naive bayes, RF, and XGBoost

The XGBoost model outperformed oth-
ers with an accuracy of 0.746, precision 
of 0.765, recall of 0.711, F1-score of 0.736, 
and AUC of 0.813

 Metsker et al. [25] age, gender, 27 laboratory tests ANN, SVM, Decision tree, Liner Regres-
sion, LR

The highest recall (0.809) for ANN, preci-
sion (0.683) for LR, and F1 score (0.730) 
and accuracy (0.747) for Liner Regression

 Rashid et al. [26] demographic, clinical, and laboratory 
profiles

LR, RF, and SVM Both RF and SVM models reached a peak 
accuracy of 67.8%, with RF showing 
68.09% recall and 67.44% specificity, 
and SVM at 68.89% recall and 66.67% 
specificity

 Proposed work demographic, clinical, and laboratory 
data

RF, LR, XGBoost XGBoost showing the highest perfor-
mance, with an accuracy of 85.4%, a recall 
of 83.7%, a specificity of 86.8%, a precision 
of 83.7%, and an AUC of 0.903

LEAD

 Gao et al. [4] clinical and laboratory features RF, LR RF showing a sensitivity of 90.7%, a speci-
ficity of 90.4%, and an accuracy of 91.2%

 Proposed work demographic, clinical, and laboratory 
data

RF, LR, XGBoost RF excelled, with an accuracy of 91.9%, 
a recall of 85.7%, a specificity of 92.9%, 
a precision of 80.0%, and an AUC of 0.923
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T2DM patients [42, 43]. These findings suggest that 
serum albumin may play a protective role against the 
development of DPN, potentially due to its antioxidant, 
anti-inflammatory, and anti-atherosclerotic properties 
[42]. Another unique but often overlooked risk factor for 
DPN was lymphocyte count. Both serum albumin and 
lymphocyte count are indicators for nutritional status 
[44], highlighting the importance for patients with DPN 
to closely monitor and manage their nutrition.

For LEAD, elevated NLR was identified as a unique 
key risk factor, consistent with previous studies [45, 
46], which discovered that NLR was positively related 
with the prevalence of LEAD. D-dimer was identified 
as another crucial predictor for LEAD. In a prospective 
cohort study, patients with LEAD had significant higher 
levels of D-dimer than those without LEAD [47]. In addi-
tion, the levels of D-dimer were observed to increase 
with the severity of LEAD [48]. Elevated D-dimer levels 
may reflect the extent of atherosclerosis, as they indicate 
ongoing fibrin formation and degradation [49].

Conclusion
Our study underscored the potential of ML models in 
predicting DPN and LEAD among diabetic patients. We 
found that XGBoost showed superior performance in 
identifying DPN, whereas RF model was more effective 
for diagnosing LEAD. SHAP analysis revealed the top 
five most critical risk factors common to both conditions, 
including elevated UACR, HbA1c, Scr, advanced age, and 
carotid stenosis. Additionally, unique predictors were 
identified for each condition: decreased serum albumin 
and lymphocyte count were associated with DPN, whereas 
increased NLR and D-dimer levels were linked to LEAD. 
These insights underscored the complexity of managing 
DPN and LEAD, emphasizing the need for personalized 
and comprehensive treatment strategies. Implementing 
these insights could enhance early detection and manage-
ment of these diabetic complications, particularly benefi-
cial in regions with limited medical resources. Prioritizing 
the management of shared risk factors, like glycemic con-
trol, renal function, and macrovascular health, may reduce 
the frequency of DPN and LEAD, thereby decreasing the 
risk of DFUs. Patients with DPN should also focus on 
maintaining good nutritional health. For future progress, 
research should be expanded to include a broader and 
more diverse population, and investigate the feasibility of 
developing a unified ML model capable of predicting both 
DPN and LEAD in individuals with diabetes.
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