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Abstract
Background  Linkage errors that occur according to linkage levels can adversely affect the accuracy and reliability of 
analysis results. This study aimed to identify the differences in results according to personally identifiable information 
linkage level, sample size, and analysis methods through empirical analysis.

Methods  The difference between the results of linkage in directly identifiable information (DII) and indirectly 
identifiable information (III) linkage levels was set as III linkage based on name, date of birth, and sex and DII 
linkage based on resident registration number. The datasets linked at each level were named as databaseIII (DBIII) 
and databaseDII (DBDII), respectively. Considering the analysis results of the DII-linked dataset as the gold standard, 
descriptive statistics, group comparison, incidence estimation, treatment effect, and moderation effect analysis results 
were assessed.

Results  The linkage rates for DBDII and DBIII were 71.1% and 99.7%, respectively. Regarding descriptive statistics and 
group comparison analysis, the difference in effect in most cases was “none” to “very little.” With respect to cervical 
cancer that had a relatively small sample size, analysis of DBIII resulted in an underestimation of the incidence in 
the control group and an overestimation of the incidence in the treatment group (hazard ratio [HR] = 2.62 [95% 
confidence interval (CI): 1.63–4.23] in DBIII vs. 1.80 [95% CI: 1.18–2.73] in DBDII). Regarding prostate cancer, there 
was a conflicting tendency with the treatment effect being over or underestimated according to the surveillance, 
epidemiology, and end results summary staging (HR = 2.27 [95% CI: 1.91–2.70] in DBIII vs. 1.92 [95% CI: 1.70–2.17] in 
DBDII for the localized stage; HR = 1.80 [95% CI: 1.37–2.36] in DBIII vs. 2.05 [95% CI: 1.67–2.52] in DBDII for the regional 
stage).

Conclusions  To prevent distortion of the analyses results in health and medical research, it is important to check that 
the patient population and sample size by each factor of interest (FOI) are sufficient when different data are linked 
using DBDII. In cases involving a rare disease or with a small sample size for FOI, there is a high likelihood that a DII 
linkage is unavoidable.
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Background
Over the past several years, the health and medical 
fields have achieved breakthroughs in evidence-based 
personalized medical services, including medical care, 
service improvement, and treatment innovations [1]. 
Such achievements can be attributed to the continued 
efforts to research and develop the medical, academic, 
and industrial communities to collect a vast amount of 
data, including health examinations, electronic medical 
records, and genomic data, through various routes, and 
explore various ways of utilizing such data [2].

Starting with data collected from public agencies, each 
country has performed intra- or inter-agency data link-
ages and integration to maximize the value of big data 
[3, 4]. Prime examples of health and medical linked data 
include clinical research using linked bespoke studies and 
electronic health records (CALIBER) of the UK, Cancer 
Registry Data (Zentrum für Krebsregisterdaten, ZfKD) 
of Germany, National Health Data System of France, 
and National Center for Health Statistics – Housing and 
Urban Development of the US [5–9]. In 2018, the Min-
istry of Health and Welfare (MoHW) of Korea launched 
a pilot big data project to support health and medical 
research using linked data consisting of name, sex, and 
date of birth (DOB) information from four public agen-
cies (National Health Insurance Service [NHIS], Health 
Insurance Review and Assessment Service [HIRA], Korea 
Disease Control and Prevention Agency [KDCA], and 
National Cancer Center [NCC]). Accordingly, various 
studies, including mortality trends and mortality pre-
diction among patients with lung cancer, are being con-
ducted [10, 11].

Inter-agency data integration in each country takes 
place on a limited basis within the scope permitted by 
law. Moreover, linkage based on non-personally identifi-
able information without any unique identifiers, such as 
resident registration number (RRN), for reasons such as 
the protection of DII, could lead to two types of errors: 
false matches and missed matches. A false match refers 
to the records of two different individuals being falsely 
linked to each other, while a missed match refers to infor-
mation being omitted because the records of the same 
individuals are not linked to each other. Such errors can 
affect the bias and precision of analysis results [12]. False 
matches are known to cause biases in the estimates and 
weaken the associations between variables in different 
datasets even when the error rate is < 1%, while missed 
matches weaken the statistical power by reducing the 
sample size, causing underestimation [12–15].

To generate big data-based evidence in the health 
and medical fields, the accuracy and reliability of study 
results are vital. Therefore, studies on the effects of link-
age errors in research findings are essential. However, 
such studies that have very low linkage errors have been 

conducted sporadically in the UK, US, and Australia, 
whereas studies in Brazil and Tanzania that have very 
high linkage errors have been conducted on very limited 
topics [16–19]. Such studies are insufficient to present 
comprehensive guidelines for research findings according 
to linkage accuracy and reliability.

Datasets were established for each of the five topics in 
databases linked using information, such as name, DOB, 
and sex, based on the Health Care Big Data Platform 
pilot project launched by the MoHW in 2018. After con-
ducting analyses by level, including descriptive statistics, 
group comparison, and modeling, the results were com-
pared with those of datasets linked to the RRN, unique 
identifier information, for multidimensional investigation 
of the effects of errors according to linkage level on infer-
ences from health and medical research based on dataset 
scale and analysis methods.

Methods
Data source
Through the Health Care Big Data Platform pilot proj-
ect launched by the MoHW in 2018, researchers have 
conducted various studies linking data from four public 
agencies (NHIS, HIRA, KDCA, and NCC). We linked 
NHIS claims data and NCC cancer registry data to ana-
lyze osteoporotic fractures according to treatment for 
five different types of cancer.

In South Korea, the Personal Information Protection 
Act (PIPA) governs the processing and protection of 
all personal information [20]. NHIS strictly adheres to 
the PIPA by obtaining explicit consent before process-
ing personal information, implementing robust security 
measures, and promptly notifying relevant authorities 
and affected individuals in the event of a data breach. 
Therefore, every stage of this study utilizing NHIS claim 
data was conducted with the utmost effort to protect all 
personal information included in the data in accordance 
with the PIPA [21].

The NHIS system in South Korea requires manda-
tory enrollment of all citizens and determines insur-
ance premiums based on various eligibility criteria, such 
as income level, and subsidizes a portion of the fees for 
services received from care institutions. Therefore, all 
citizens with RRN pay an insurance contribution to the 
NHIS every month, which is proportional to their income 
and assets [22]. The claims data of the NHIS are popu-
lation-based, real-world data, which reduce selection 
bias and are consistently updated in a validation system 
[23]. Accessing claims data from the NHIS is possible 
only through the analysis centers after receiving permis-
sion from the National Health Insurance Data Provision 
Review Committee, which plays a crucial role in mak-
ing decisions regarding the use and disclosure of the 
claims data considering issues such as the unauthorized 
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use and protection of sensitive information during its 
deliberations [24]. As in other countries, the claims data 
in South Korea are actively assessed in terms of quality. 
Although there are data limitations such as difficulty in 
determining causal relationships for diseases, the qual-
ity of the claims data from the NHIS is being improved 
consistently by the deployment of specialized person-
nel and increasing resources [23, 25]. Accordingly, the 
Korea National Health Insurance Database manages data 
on qualification and insurance premiums, care institu-
tion usage, and examination results of all South Korean 
citizens from birth to death. The eligibility and insurance 
premium database includes data regarding DOB, sex, 
area of residence, insurance type, and premium quan-
tile of each subscriber. The care detail database includes 
general information, such as care institution, the start 
date of care, number of days in care, and disease name; 
treatment information such as treatment and surgery in 
care institutions and inpatient prescriptions; and disease 
information, including sub-diagnosis and outpatient pre-
scriptions. The health screening database includes health 
inquiry and examination data, such as actual measured 
data from each screening, lifestyle, family history, and 
disease history [26].

The Korea Central Cancer Registry (KCCR), which 
was established to monitor cancer incidence and manage 
patients with cancer at the national level, consists mainly 
of cancer patient data at the local level registered at train-
ing hospitals or higher-level hospitals between 1988 and 
2003. It was subsequently expanded for the continuous 
collection of data at the national level. Among individuals 
who had filed an insurance claim for cancer, those with 
no prior diagnosis of cancer in the past three years, hav-
ing a history of hospitalization for cancer in the applica-
ble year, and the total care expense exceeding a certain 
amount were defined and registered as new patients with 
cancer. The information collected at the time of registra-
tion includes patient information and information on 
cancer type [27].

Data linkage
The data were linked largely using two methods. The 
first method was indirectly identifiable information link-
age based on name, DOB, and sex, and the other was 
directly identifiable information linkage based on RRN, 
a unique identifier (named DBIII and DBDII, respectively). 
The Korea Internet & Security Agency, a government-
designated composite key management agency, generates 
composite keys based on the directly identifiable infor-
mation supplied by each agency, and the keys are sent to 
each agency. DBIII and DBDII are generated by combining 
datasets between agencies based on such keys, and they 
include false and missed matches. DBIII and DBDII were 
generated using the same process [28].

Research topic and participants
Bone loss among patients with cancer is associated with 
osteoporotic fractures caused by cancer-specific thera-
pies, such as androgen deprivation therapy for prostate 
cancer and aromatase inhibitors (AIs) for breast cancer 
[29, 30]. Especially, one-year mortality of older adult 
patients with osteosarcopenic hip fractures is higher than 
that for patients without osteosarcopenia [31], and the 
five-year survival rate of osteoporotic fractures was 45.8% 
in South Korea [32]. Additionally, patients with breast, 
prostate, thyroid, cervical, or gastric cancer have a higher 
incidence of osteoporotic fractures than normal partici-
pants according to the NCC registry [33–35]. We evalu-
ated the risk of fractures among Korean patients with 
thyroid cancer (TC), gastric cancer (GC), breast cancer 
(BC), prostate cancer (PC), and cervical cancer (CC). 
To develop an appropriate linkage method in the Health 
Care Big Data Platform launched by the MoHW in 2018, 
we conducted diverse medical and clinical studies by 
linking data from four public agencies (NHIS, HIRA, 
KDCA, and NCC). For a multidimensional comparison 
of the accuracy of the analysis results and linkage rate at 
the DII linkage level according to the dataset scale and 
analysis methods, five subtopics were set according to 
treatment groups for each type of cancer. This topic was 
chosen because there have been discussions about can-
cer-related osteoporosis and fracture, and we determined 
the effect of cancer as a risk factor for osteoporotic frac-
ture in the South Korean population.

1.	 Incidence of osteoporotic fractures according to 
postoperative vitamin D use in patients with TC.

2.	 Incidence of osteoporotic fractures according to 
surgery type (total gastrectomy, subtotal gastrectomy, 
and endoscopic submucosal dissection (ESD)/
endoscopic mucosal resection (EMR) in patients 
with GC.

3.	 Incidence of osteoporotic fractures according to the 
type of anti-hormone therapy (HT) prescribed to 
patients with BC.

4.	 Incidence of osteoporotic fractures according to 
androgen deprivation therapy (ADT) in patients with 
PC.

5.	 Incidence of osteoporotic fractures according to 
radiation therapy (RT) in patients with CC.

The dataset for each topic is established in two steps. 
First, among the new cancer cases between 2008 and 
2016 available from the KCCR, patients with no history 
of death among adults with no cancer-related diagnosis 
in 2007 were defined as the initial cancer patient popula-
tion. Subsequently, different inclusion and exclusion cri-
teria that met the research topics for the characteristics 
of different cancers were set to establish the final dataset. 
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Further details are provided in the additional applicable 
criteria file (Supplementary Table 1).

Variable
The index date in this study was defined as the date when 
the treatment was administered for each cancer type. 
Osteoporotic fracture, which is the outcome variable, was 
defined as the first incidence of fracture among hip, ver-
tebral, distal radius, and proximal humerus fractures in 
cancer cases, except for CC. For CC, pelvic insufficiency 
fracture was defined as the outcome variable. Patients 
with no fracture or discontinuation of follow-up owing to 
death or immigration were censored.

The baseline characteristics used in the analysis were 
age, age group (10 years), sex, area of residence, insurance 
type, premium quantile, and the Charlson Comorbid-
ity Index (CCI). The age at the time of index dating was 
applied for age. The area of residence was divided into 
urban areas for 17 city/district units (Seoul, Gyeonggi-
do, and metropolitan cities) and rural areas for all other 
areas. The types of insurance were divided into employ-
ment insurance and dependents, local insurance and 
dependents, and medical aid and dependents. The pre-
mium quantile was divided into 11 levels with 1–20 per-
centile for two levels each and medical aid as level 0. This 
information was considered to indicate the income level 
of the subscriber. CCI was defined using the criteria pro-
posed by Quan et al. [36] based on the name of the dis-
ease diagnosed within one year prior to the initial cancer 
diagnosis. Depending on the number of comorbidities, 
the CCI was divided into 0–1, 2, 3, and ≥ 4 [36]. Further 
details are provided in the additional applicable informa-
tion file (Supplementary Table 2).

Clinical characteristics included SEER summary stag-
ing, use of osteoporosis drugs, bone mineral density 
(BMD) test, and RT. For SEER summary staging, vari-
ables classified as localized, regional, primary, or uniden-
tified based on the registration information at the time 
of initial diagnosis were utilized. The use of osteoporosis 
drugs, BMD tests, and RT was defined based on applica-
ble prescription/fee codes within one year of the cancer 
diagnosis. Further details regarding the codes used for 
the operational definitions of the treatment, outcomes, 
and clinical variables are provided in the additional appli-
cable information file (Supplementary Table 3).

Statistical analyses
Continuous variables are expressed as numbers, 
mean ± standard deviation, and median (minimum 
and maximum) values, while categorical variables are 
expressed as frequencies and percentages. For continu-
ous variables, a two-sample t-test or Mann–Whitney U 
test was performed to compare the two groups according 
to whether the normality assumption was satisfied. For 

the comparison of three or more groups, a one-way anal-
ysis of variance or the Kruskal-Wallis test was performed. 
Categorical variables were examined using Pearson’s chi-
square test or Fisher’s exact test, depending on whether 
cells with an expected frequency < 5 exceeded 20%. For 
the event of interest, the incidence was calculated based 
on the number of cases relative to the follow-up period in 
person-years, and the % Poisson CI was calculated [37]. 
A simple Cox proportional hazards regression model 
was fitted for individual factors, and multiple Cox pro-
portional hazards regression models, including predeter-
mined correction variables, were fitted for each analysis.

All statistical analyses were performed using SAS (ver-
sion 9.4; SAS Institute Inc., Cary, NC), R (version 4.0.3; 
The R Foundation for Statistical Computing, Vienna, 
Austria). As a general rule, all tests were performed as 
two-sided tests with a significance level of 5%.

Evaluation measure
To identify the effect size for the difference in statistics 
calculated from DBIII and DBDII, Cohen’s h was applied 
for percentage of categorical variables or distribution 
of attribute variables, and Cohen’s f was applied for the 
explanatory power of the regression model [38, 39]. How-
ever, these can be applied when comparing the difference 
between two independent groups, and because the data 
used in this study were considered to be data generated 
by independently linking two different datasets, it was 
assumed that independence was assured.

The effect size was interpreted as none if < 0.01, very 
small if ≥ 0.01 but < 0.2, small if ≥ 0.2 but < 0.5, medium 
if ≥ 0.5 but < 0.8, and large if ≥ 0.8. For a comprehensive 
comparison of the two datasets, the results from DBIII 
were classified as “good,” “poor,” and “insufficient” rela-
tive to the results from DBDII, as described below. First, 
if the effect size of the difference was < 0.5 or the esti-
mates were similar, then such cases were defined as being 
“good” (○) based on the determination that there was no 
difference in the analysis results between the linkage lev-
els. Second, if the effect size of the difference was ≥ 0.5 
but < 0.8, the direction of the effect size was the same, but 
the values were over/underestimated or the direction of 
the effect size differed but was not significant. Accord-
ingly, such cases were defined as “poor” (△) based on the 
determination that the results from different linkage lev-
els are not similar. Third, if the effect size of the difference 
was ≥ 0.8, or the direction of the effect size was signifi-
cantly estimated in opposite directions, then such cases 
were defined as “insufficient” (X) based on the determi-
nation that the results from the DBIII-linked dataset are 
unreliable compared with DBDII.
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Results
Linkage result
Figure  1 shows the results of linking NHIS data for 
916,854 patients diagnosed with TC, GC, BC, PC, or CC 
at least once among all patients with cancer registered in 
the KCCR between 2007 and 2016. When the KCCR and 
national health insurance claims data were linked based 
on III (sex, name, and DOB), there were 1,730 (0.2%) false 
matches and 263,080 (28.7%) missed matches. When 
linked based on DBDII (RRN), there were 2,455 (0.3%) 
missed matches. When these were excluded, DBIII had 
652,004 patients, and DBDII had 914,399 patients; thus, 
the linkage rate of DBIII relative to DBIII was 71.3%. To 
define new cancer cases, patients diagnosed with cancer 

disease codes starting with the letter “C” as of 2007 were 
excluded. The findings showed that the linkage of DBIII 
O relative to DBDII was 65.1%, whereas the linkage rate 
by cancer type varied between a minimum of 62.6% 
and a maximum of 69.3%. When the analysis sets were 
extracted by applying the inclusion and exclusion criteria 
by cancer type, the TC results showed 118,039 patients 
with DBIII and 189,458 patients with DBDII. TC had the 
largest sample size among all the cancer types, followed 
by GC, BC, PC, and CC. The linkage rate according to 
the cancer type varied between 62.3% and 73.0%. subtotal 
gastrectomy.

Fig. 1  Flow chart for the linkage process
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Descriptive statistics
The distribution of treatment groups by cancer type (use 
of vitamin D for TC, total gastrectomy or subtotal gas-
trectomy or ESD/EMR for GC, anti-hormone therapy for 
BC, ADT for PC, and (RT) for CC) was similar in DBIII 
and DBDII. Investigation of the distribution of treatment 
groups by strata according to sex and age group also 
showed a similar distribution in DBIII and DBDII. Further 
details are provided in the additional applicable informa-
tion file (Supplementary Table 4).

To investigate the distribution of variables other than 
treatment groups by cancer type within the analysis 
set, the distribution of baseline characteristics in the 
two linked datasets was compared. In TC, the percent-
age of patients with CCI 0 or 1 was 17.2% in DBIII and 
9.9% in DBDII (Cohen’s h = 0.216). For BC, the percentage 
of patients who underwent the BMD test was 39.5% for 
DBIII and 56.6% for DBDII (Cohen’s h = 0.343), showing a 
“small” difference. For all other variables, the effect size 
of the difference between DBIII and DBDII was “none,” 
“almost none,” or “very small”. The additional applicable 
information shows this in more detail [see Supplemen-
tary Table 5].

Group comparison
In the comparison of differences in the effect size 
between DBIII and DBDII to determine whether there 
were differences in the results from comparing the 

baseline characteristics between the treatment groups 
by cancer type, the direction or the size of the differ-
ence between groups appeared slightly different for BMD 
test in BC and CCI ≤ 1 in TC that showed “small” effect 
size for the difference in descriptive statistics analysis 
(Cohen’s h = 0.222 for less than one CCI for TC; 0.337 
for BMD test in BC). However, a comparison of the dis-
tribution of all other variables in the two linked datasets 
showed that the differences were “almost none” or “very 
small”. Further details are provided in the additional 
applicable information file (Supplementary Tables 6–10).

Incidence rate estimation
A comparison of the total incidence of osteoporotic frac-
tures between treatment groups by cancer type showed 
that the incidence of all fractures and fractures in dif-
ferent parts of the body was underestimated in DBIII, as 
compared with DBDII (Table 1). With regard to the inci-
dence of all fractures, the incidence rates were estimated 
to be higher in the no vitamin D group in TC, ADT group 
in PC, and RT group in CC for both DBIII and DBDII. In 
GC, the frequency of fractures according to the type of 
surgery appeared in the order of total gastrectomy, sub-
total gastrectomy, and ESD/EMR. In BC, the AI-only 
group showed the highest incidence of fractures, whereas 
the tamoxifen-only group showed the lowest incidence. 
Regarding the incidence of fractures in different parts of 
the body, the frequency of fractures appeared in the order 

Table 1  Comparison of incidence rate estimation and treatment effect evaluation per linkage level
Treatment by Cancer Type Incidence rate per 100,000 person-years (95% CI) Adjusted HR* (95% CI)

DBIII DBDII Effect
size

DBIII DBDII Effect size

Thyroid cancer
  No Vitamin D 1.3 (1.2–1.4) 1.5 (1.5–1.6) 0.02 1 (Reference) 1 (Reference)
  Vitamin D 1.1 (0.9–1.2) 1.4 (1.3–1.5) 0.00 0.83 (0.70–0.99) 0.83 (0.75–0.91) 0.00
Gastric cancer
  Total gastrectomy 2.6 (2.4–2.9) 3.2 (3.0–3.4) 0.02
  Subtotal gastrectomy 2.1 (2.0–2.2) 2.7 (2.6–2.8) 0.04 1.24 (1.10–1.39) 1.26 (1.15–1.37) 0.01
  ESD/EMR 1.8 (1.6–1.9) 2.3 (2.2–2.5) 0.02 1 (Reference) 1 (Reference)
Breast cancer
  Non-HT 2.2 (2.1–2.4) 2.2 (2.1–2.4) 0.00 1 (Reference) 1 (Reference)
  AI-only 3.5 (3.2–3.7) 3.6 (3.4–3.8) 0.00 0.95 (0.85–1.07) 1.03 (0.94–1.14) 0.04
  TAM-only 1.2 (1.1–1.3) 1.2 (1.1–1.3) 0.00 0.77 (0.69–0.87) 0.80 (0.73–0.89) 0.02
  AI + TAM 1.3 (0.6–2.4) 2.9 (1.9–3.9) 0.01 0.42 (0.21–0.85) 0.94 (0.66–1.35) 0.44
Prostate cancer
  Non-ADT 1.3 (1.2–1.4) 1.9 (1.8–2.1) 0.05 1 (Reference) 1 (Reference)
  ADT 4.1 (3.8–4.5) 5.4 (5.1–5.7) 0.04 2.14 (1.85–2.48) 1.96 (1.76–2.17) 0.05
Cervical cancer
  Non-RT 0.4 (0.3–0.5) 0.5 (0.4–0.6) 0.01 1 (Reference) 1 (Reference)
  RT 1.1 (0.8–1.6) 1.0 (0.7–1.3) 0.01 2.62 (1.63–4.23) 1.80 (1.18–2.73) 0.21
Abbreviations: ADT: androgen deprivation therapy; AI: aromatase inhibitors; CI: confidence interval; DB: data base; DII: directly identifiable information; III: indirectly 
identifiable information; ESD: Endoscopic submucosal dissection; EMR: Endoscopic mucosal resection; HR: hazard ratio; HT: hormone therapy; III: indirectly 
identifiable information; RT: radiation therapy

*Adjusted HR was computed after all covariates excluding the treatment group variable
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of distal radius, vertebral, hip, and proximal humerus 
fractures in the TC, GC, and BC groups. In PC, however, 
a vertebral fracture was the most common, and proximal 
humerus fracture was the least common, with DBIII and 
DBDII showing different orders for the frequency of hip 
and distal radius fractures. Further details are provided 
in the additional applicable information file (see Supple-
mentary Table 11). Among these, CC that had a relatively 
smaller sample size, showed that incidence in the non-RT 
group was underestimated in DBIII compared with DBDII, 
whereas the incidence in the RT group was overestimated 
in DBIII compared with DBDII. Accordingly, the risk of RT 
being overestimated in DBIII was determined.

Cox PH regression model for treatment effect
To calculate the treatment effect on the incidence of 
osteoporotic fractures by cancer type, multiple Cox pro-
portional hazards regression model was fitted to adjust 
the covariates, such as age, sex, and CCI. The treatment 
risks are shown in Table  1 and Supplementary Table 
12. Relative to the DBIII results, the risk of fracture was 
lower by 0.83 (95% CI, 0.70–0.99) when using vitamin 
D after surgery as compared with not using vitamin D 
in TC cases. In BC cases, the risk of fracture was lower 
by 0.95 (95% CI, 0.85–1.07), 0.77 (95% CI, 0.69–0.87), 
and 0.42 (95% CI, 0.21–0.85) in the AI, Tamoxifen, and 
AI + Tamoxifen groups, respectively, as compared with 
the non-HT group. In GC cases, the risk of fracture was 
higher by 1.24 (95% CI, 0.10–1.39) in the gastrectomy 
group than in the ESD/EMR group. In PC cases, the risk 
of fracture was higher by 2.14 (95% CI, 1.85–2.48) in the 
ADT group than in the non-ADT group. In CC cases, the 
risk of fracture was higher by 2.62 (95% CI, 1.63–4.23) 
in the RT group than in the non-RT group. Risks in the 
same direction were derived using DBDII. Relative to 
DBDII, the risks in DBIII showed a “very small” effect size 
of all differences of < 0.2; however, the results confirmed 
that the treatment effect was overestimated in DBIII for 
treatment group of all cancer types, except TC.

Subgroup analysis for the moderation effect
To investigate whether treatment effects would change 
according to other factors, such as age or cancer stage, 
differences between treatment groups according to age 
and summary staging in BC and PC cases were com-
pared, the outcomes of which are shown in Table 2. In BC 
cases, using AIs increased the risk of fracture compared 
with non-HT in patients aged < 50 years, but decreased 
the risk in patients aged ≥ 50 years. Despite the contra-
dictory effects, the results were not significant, and simi-
lar results were observed for both DBIII and DBDII. In 
PC cases, investigation of treatment effects according to 
summary staging revealed that in the localized group, the 
risk for fracture in the ADT group in DBIII and DBDII was 
2.27 (95% CI, 1.91–2.70) and 1.92 (95% CI, 1.70–2.17), 
respectively, showing that the risk was overestimated in 
DBIII. In the regional group, the risk was 1.80 (95% CI, 
1.37–2.36) in DBIII and 2.05 (1.67–2.52) in DBDII, con-
firming that it was underestimated.

Synthetic result
When the results from analyses using unique DBDII-
linked data and DBIII-linked data were classified into 
three levels (good, poor, and insufficient), the results for 
BC cases showed that the treatment effect in treatment 
effect evaluation appeared in the opposite direction. 
However, because the results were not significant, it was 
classified as poor research level. In CC cases, the treat-
ment effect size in incidence and treatment effect evalu-
ations was overestimated. Thus, it was determined to be 
a poor research level. In PC cases, analysis of the mod-
eration effect for identification of the risk of fracture with 
ADT according to summary staging showed conflicting 
over/underestimation of the risk. Hence, the research 
level was assessed to be “insufficient” (Table 3).

Table 2  Comparison of the result of moderation effect evaluation by subgroup analysis
Subgroup 
by cancer type

Adjusted HR* (95% CI) Adjusted HR* (95% CI)
DBIII DBDII Effect 

size
DBIII DBDII Effect 

size
Breast cancer In age < 50 In age ≥ 50
  Non-HT 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)
  AI-only 1.31 (0.94–1.84) 1.21 (0.85–1.71) 0.04 0.89 (0.79–1.01) 0.98 (0.88–1.08) 0.05
  TAM-only 0.83 (0.69–1.01) 0.93 (0.78–1.10) 0.06 0.80 (0.68–0.94) 0.78 (0.69–0.89) 0.01
  AI + TAM 0.19 (0.01–3.03) 0.27 (0.04–1.95) 0.19 0.46 (0.23–0.92) 0.98 (0.68–1.42) 0.42
Prostate cancer Localized stage Regional stage
  Non-ADT 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)
  ADT 2.27 (1.91–2.70) 1.92 (1.70–2.17) 0.09 1.80 (1.37–2.36) 2.05 (1.67–2.52) 0.07
Abbreviations: ADT: androgen deprivation therapy; AI: aromatase inhibitors; CI: confidence interval; DB: data base; DII: directly identifiable information; III: indirectly 
identifiable information; HR: hazard ratio; HT: hormone therapy; III: indirectly identifiable information

*Adjusted HR was computed after all covariates excluding the treatment and subgroup variables
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Discussion
We identified the characteristics and limitations of the 
analysis results according to the data linkage level in big-
data-based health and medical research. Accordingly, 
linkage levels appropriate for analysis topics and sample 
sizes were tested on the basis of the empirical analysis of 
the incidence of osteoporotic fracture, which is a meta-
bolic disorder that accompanies patients with cancer.

The accuracy of the descriptive statistics and group 
comparison analyses was dependent on the sample size. 
In the comparison of the distribution of baseline charac-
teristics according to epidemiological indicators, such as 
prevalence and cross-sectional incidence, or variables of 
interest, disease groups with sufficient sample sizes, such 
as TC, GC, and BC, showed good results even if the level 
of identified information needed for data linkage was 
not that high. In CC cases that had the smallest sample 
size, descriptive statistics and group comparison analysis 
results were at a good level, but the sample size was less 
than 1,000 in certain categories, such as age group and 
insurance type. Therefore, when the sample size for each 
category of FOI is too small, the linkage level should be 
increased to ensure sufficient statistical power, which can 
prevent distorted results.

In the incidence analysis, the results showed a “poor” 
research level for CC that was determined to be the effect 
of an absolutely small sample size. However, for incidence 
considering time, it is difficult to assess the sample size 
alone. Therefore, the linkage level could vary depending 
on whether a sufficient follow-up period can be assured 
and the expected incidence of the event of interest.

In the regression models for the treatment effect evalu-
ation, a poverty-poor research level was found for BC and 
CC. In CC cases, distribution by group or distribution of 
baseline characteristics appeared differently owing to the 
small sample size. Therefore, regression models based 
on such variables would produce results that are over or 
underestimated. Although not significant, BC cases that 
showed an effect size in opposite directions showed rela-
tively low levels of 22.34% and 0.77% in the AI and com-
bination therapy groups, respectively. Therefore, even if 
the total sample size is sufficiently large, it is necessary 

to have a sufficient sample size for each level of the vari-
able of interest in BC. Thus, when evaluating the treat-
ment effect, identifying the risk factors, or developing 
the prediction models, the total sample size for the vari-
ables included in the models and the sample size for each 
category of the variables of interest should be reviewed. 
If a sufficient sample size is secured, a “good” level of 
research results can be expected, even with indirectly 
information-linked data.

In the analysis of the moderated mediation effect, to 
assess whether the effect of the FOI varied according to 
the parameters or subgroups, an “insufficient” research 
level was derived in PC cases. Despite having at least 30% 
of patients per summary staging category, an increase or 
decrease in the treatment effect according to summary 
staging appeared contrary. This notion cannot be attrib-
uted simply to a problem with sample size; instead, it is 
necessary to check the characteristics of patients who 
were omitted when linking III.

DBIII-linked data and unique DBDII-linked data were 
analyzed on different servers owing to space constraints. 
Consequently, it was impossible to identify patients who 
were omitted during the data linkage process; therefore, 
this study has the limitation of not being able to con-
duct additional analysis of the characteristics of omitted 
patients. In the future, it will be necessary to identify the 
cause of the differences in moderation effects by evalu-
ating the baseline characteristics of patients who were 
omitted during the data linkage process.

This study also confirmed the limitation of not being 
able to guarantee 100% accuracy, even when a unique 
DII was used for inter-agency data linkage. When plan-
ning a study with a small size, because it is a rare dis-
ease or a topic with a narrow scope, it is necessary to 
assume that analysis could become impossible owing to 
the omission of information. Accordingly, it is necessary 
for the agencies providing the data to sufficiently con-
sult the researchers in advance about the percentage for 
each category and the percentage of an event of interest 
by category that meets the study objectives, such as the 
entire study population, age groups, and comorbidities. 
Moreover, a preliminary review report based on sample 

Table 3  Synthetic result and related research scope of III linkage compared with DII linkage
Analysis method Study level of each topic* Related research scope

TC GC BC PC CC
Descriptive statistics ○ ○ ○ ○ ○ Epidemiologic indices including prevalence or cross-sectional proportion
Group comparison ○ ○ ○ ○ ○ Comparison of characteristics by the factor of interest
Incidence rate estimation ○ ○ ○ ○ △ Incidence and cumulative survival rates over time
Cox PH regression model ○ ○ △ ○ △ Evaluation of treatment effect, risk factor exploration, development of prediction model, etc.
Subgroup analysis - - △ X - Moderation effect evaluation by subgroup analysis or the interaction effect testing
Abbreviations: III: indirectly identifiable information; DII: directly identifiable information; TC: thyroid cancer; GC: gastric cancer; BC: breast cancer; PC: prostate 
cancer; CC: cervical cancer; PH: proportional hazard

*Study level was divided into three categories: O = good, △ = insufficient, and X = poor
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size and statistical power should be drafted and reviewed 
to design the best possible environment for provid-
ing a unique DII linked to datasets. Additionally, when 
researchers present articles or reports on epidemiologi-
cal indicators, such as incidence rate, based on link data, 
they are recommended to provide information, such as 
linkage rate and group percentage before and after link-
age. We incorporated the expertise of professionals from 
each institution that provided data for our study through 
two expert forums. Owing to the absence of a large-scale 
expert-opinion gathering process, there were limita-
tions in constructing checklists similar to RECORD or 
STROSA [40–42]. We plan to address this limitation in 
future research.

While the primary focus of this study was to compare 
the effect sizes of two linkage methods, it is important 
to acknowledge the limitation regarding the absence of 
propensity score matching results for comparison. Pro-
pensity score matching was not conducted for the link-
age data as it diverged from the main objective. However, 
recognizing the significance of this methodological 
approach, we plan to address this limitation in future 
research. By conducting a more comprehensive com-
parison between the original dataset and the propensity-
score-matched dataset, which is categorized by each type 
of cancer and specific topics, we aim to provide further 
insights into the effectiveness of different linkage meth-
ods and their implications for cancer research.

Conclusions
Two different datasets based on DBIII and unique DBDII 
were linked to conduct an empirical analysis of the 
results. Considering linkage errors that occur during the 
data linkage process, it is important to ensure that the 
patient population for each disease and sample size for 
each FOI are large enough, while the linkage level could 
vary depending on the size of statistical power. In the 
future, we should make a study plan with diverse link-
age methods depending on the research purpose, with 
an exact sample size for each disease type. Through such 
efforts, it is expected that agencies and researchers can 
be used as references when setting the data linkage level.
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