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Abstract 

An ever-increasing amount of data on a person’s daily functioning is being collected, which holds information to revo-
lutionize person-centered healthcare. However, the full potential of data on daily functioning cannot yet be exploited 
as it is mostly stored in an unstructured and inaccessible manner. The integration of these data, and thereby expe-
dited knowledge discovery, is possible by the introduction of functionomics as a complementary ‘omics’ initiative, 
embracing the advances in data science. Functionomics is the study of high-throughput data on a person’s daily func-
tioning, that can be operationalized with the International Classification of Functioning, Disability and Health (ICF).

A prerequisite for making functionomics operational are the FAIR (Findable, Accessible, Interoperable, and Reus-
able) principles. This paper illustrates a step by step application of the FAIR principles for making functionomics data 
machine readable and accessible, under strictly certified conditions, in a practical example. Establishing more FAIR 
functionomics data repositories, analyzed using a federated data infrastructure, enables new knowledge generation 
to improve health and person-centered healthcare. Together, as one allied health and healthcare research community, 
we need to consider to take up the here proposed methods.
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Introduction
Omics research and the definition of functionomics
An ever-increasing amount of health, healthcare and 
related research data on a person’s daily functioning is 
collected by a variety of stakeholders: people themselves, 
healthcare professionals and researchers, among others. 
By joint analysis of these data a tremendous amount of 
information can be derived from these data and has the 
potential to revolutionize person-centered prevention and 
healthcare, potentially improving health and life expec-
tancy. Within the fields of oncology, radiology and genetics, 
computerized analysis of high-throughput data has already 
shown benefits for the personalization and optimization 
of healthcare [1–3]. These initiatives are often referred to 
as ‘omics’ research, where analyses of big data on genes 
(genomics), RNA (transcriptomics), proteins (proteomics), 
metabolites (metabolomics), and imaging (radiomics) are 
performed to advance personalized and preventive health 
and healthcare [4, 5]. To make this possible, ‘omics’ initia-
tives rely more and more on machine actionable data.

In this study we propose the integration of a new ‘omics’, 
namely functionomics. The current ‘omics’ research field 
focusses on biomedical or internal exposures, whilst 
functionomics can specifically contribute to eliciting 

interactions with personal and general external exposures 
(Table 1).

The concept of functioning and its underlying phenom-
ena are globally described by the World Health Organi-
zation (WHO) in the International Classification of 
Functioning, Disability and Health (ICF) [9] (Fig. 1).

The ICF is used internationally in different types of 
interdisciplinary healthcare and social research settings, 
as well as to inform health policy development [12, 13]. 
Therefore the ICF is an ideal framework for providing a 
common format for making functionomics data machine 
actionable in an international setting.

Until now the potential of functionomics data can-
not yet be fully exploited, as they are usually stored in 
an unstructured manner in all sorts of mostly inaccessi-
ble data-silos. The lack of machine actionable data makes 
it difficult for people themselves as well as for outsiders 
(those not involved in the data collection and storage) to 
access, understand, analyze, interpret, and reuse these 
data. Imagine your own hard drive which holds all sorts 
of research datasets which cannot be accessed or under-
stood by others. This prohibits joint analysis of data, caus-
ing dilution of information and loss of valuable knowledge 
which may result in suboptimal clinical decisions and 

Table 1  Definitions ‘omics’ research initiatives

Feature -omics/-ome type Definition

Gene Genomics Science that studies the structure, function, evolution, and mapping of genomes and aims at char-
acterization and quantification of genes, which direct the production of proteins with the assistance 
of enzymes and messenger molecules [6]. 

Genome Entirety of an organism’s hereditary information. It is encoded either in DNA or, for many types of viruses, 
in RNA. The genome includes both the genes and the non-coding sequences of the DNA/RNA [6]. 

RNA Transcriptomics Study of the transcriptome—the complete set of RNA transcripts that are produced by the genome, 
under specific circumstances or in a specific cell—using high-throughput methods, such as microarray 
analysis [7]. 

Transcriptome Set of all messenger RNA molecules in one cell, tissue, or organism. It includes the amount or concentra-
tion of each RNA molecule in addition to the molecular identities [6]. 

Protein Proteomics Science that studies those proteins as related to their biochemical properties and functional roles, 
and how their quantities, modifications, and structures change during growth and in response to internal 
and external stimuli [6]. 

Proteome Sum of all the proteins in a cell, tissue, or organism [6]. 

Metabolite Metabolomics Science that studies all chemical processes involving metabolites. More specifically, metabolomics 
is the study of chemical fingerprints that specific cellular processes establish during their activity; it 
is the study of all small-molecule metabolite profiles [6]. 

Metabolome Collection of all metabolites in a biological cell, tissue, organ, or organism, which are the end products 
of cellular processes [6]. 

Morphological feature Radiomics High-throughput extraction of quantitative features that result in the conversion of images into mineable 
data and the subsequent analysis of this data for decision support [8]. 

Radiome Complete set of imaging features extracted from available medical imaging in one patient [8]. 

Functioning Functionomics Functionomics is the study of high-throughput data on daily functioning associated with health, 
as defined and objectified in the International Classification of Functioning, Disability and Health 
(ICF). [9]

Functionome The sum of all features of daily functioning for an individual: body functions and structures, 
activities and participation and those that influence functioning: environmental factors and 
personal factors.
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ultimately less effective care [14]. Therefore, a transition 
towards the integration of functionomics as an additional 
‘omics’ initiative, and at the same time embracing the 
advances in data science and information technology (IT), 
is necessary. Integrating functionomics in health, health-
care, education and research practice has an additional 
benefit on top of the other ‘omics’, as it provides a means 
to capture a more holistic view of health, rather than the 
limited biomedical view. Functionomics research can spe-
cifically contribute to eliciting interactions with personal 
and general external exposures (Fig. 2) and to broaden the 
scope of person-centered healthcare.

Functionomics in the context of allied health professionals
Allied healthcare disciplines are well-positioned to pio-
neer a functionomics initiative, as these disciplines gener-
ate large amounts of data that can be captured within the 
ICF. Allied healthcare comprises a large group of health 
professionals, that are not physicians, with the core focus 

of enabling people to enjoy optimal functioning in their 
daily lives (e.g., physiotherapists, dieticians, speech ther-
apists). For example: there are currently annually 3.84 
million people treated by approximately 35 000 physio-
therapists in the Netherlands and there are 560 000 phys-
iotherapists in the European Union (EU) [16, 17] and 216 
920 in the United States (US) [18]. If we assume that the 
average physiotherapist generates approximately 0.1 GB 
of data per patient, [19] we can estimate a data volume 
of roughly 375 terabytes per year in the Netherlands, 5.9 
petabytes in the EU and 2.4 petabytes in the US. Translat-
ing these data into information that is actionable at the 
point of care and subsequently using that information to 
guide prognosis, diagnosis, prevention, and treatment 
pave the way towards more adequate and personalized 
physiotherapy [20, 21]. However, this huge amount of 
functionomics data can only be processed by machines. 
Subsequently, acceleration of knowledge generation can 
only be achieved by making data machine actionable.

Fig. 1  The ICF-framework

Fig. 2  The human exposome reflects the totality of internal and external exposures within a human life cycle. Current ‘omics’ research field focus 
solely on biomedical or internal exposures, whilst functionomics can specifically contribute to eliciting interactions with personal and general 
external exposures. (adapted from Vrijheid et al. [15])
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Barriers to implementation
To enable functionomics research, there are four major 
challenges in data collection, processing and storage 
that need to be addressed: 1) variability in data col-
lection and storage strategies, 2) lack of implementa-
tion of community data standards, 3) ethical and social 
dilemmas like patient privacy issues, and 4) interoper-
ability between IT systems [22]. In this paper we will 
focus on suggesting solutions for these challenges, 
where we will focus on the problem that functionomics 
data are currently not machine actionable as they are 
collected in a mostly unstructured manner and stored 
in inaccessible data-silos. The potential to compro-
mise patient privacy when linking records across data 
silos is an additional complicating factor (challenge 3). 
These issues could be resolved by creating a federated 
functionomics data infrastructure before functionom-
ics research can live up to its full potential and will be 
discussed in this paper.

Transition from data storage to data use
A robust data infrastructure between the many data silos 
is a prerequisite for any ‘omics’ initiative, as it allows joint 
analysis of multiple data sources. Such a data infrastruc-
ture relies on usage of a ontology and data processing. 
Particularly, data should be transformed following the 
FAIR (Findable, Accessible, Interoperable, and Reusable) 
principles [23]. FAIR principles are internationally pro-
moted as best practice in data management, with exam-
ples of successful application in other types of ‘omics’ 
initiatives [24]. FAIR principles are recommended by 
organizations like WHO, G20, European Commission, 
and European Open Science Cloud [25]. Computational 
ontologies and Semantic Web technologies, are strongly 
recommended methods to help achieve FAIR data [26]. 
Applying these methods will provide citizens, health pro-
fessionals and researchers with machine readable data 
that can be analyzed via a federated data infrastructure. 
These concepts are currently under-utilized, as many are 
unfamiliar with them and what they can bring to daily life 
challenges up to clinical practice quests.Moreover, many 
of the prerequisites for making functionomics data FAIR 
are currently not available in this field. Combined efforts 
are needed to resolve these issues.

Therefore, the aim of this article is to provide a step-by-
step guide on how to implement and utilize FAIR func-
tionomics data, by proposing a method for creating an 
ontology based on the ICF and introducing internation-
ally advocated concepts (FAIR principles operational-
ized through Semantic Web technology) for making data 
machine actionable. In the discussion we will address 
remaining issues for making data FAIR within the 
domain of functionomics.

Materials and methods
In this study we used a single database example from a 
retrospective cohort study, to walk through the steps of 
creating FAIR data ready for federated analysis. The data 
were collected with the goal of developing a decision-
support system to aid in the personalization of the perio-
perative care pathway by identifying which patients are at 
risk for worse short- and long-term outcomes [27]. This 
study was assessed by the local medical ethical commit-
tee AzM/UM (METC AzM/UM) and was considered 
not applicable to the Medical Research Involving Human 
Subject Act (number 2019 − 1426). In Table 2, we provide 
the reader with a glossary of some fundamental terms 
and abbreviations used in this paper.

A practical example
We will describe the first steps in the methodological 
process to develop a FAIR functionomics database, using 
the above mentioned dataset, by: A) creating a compu-
tational ontology using the ICF, B) making data machine 
readable, C) publishing data on the Semantic Web to 
transform clinical data into FAIR and linked data, and D) 
analyzing data (queried) using a federated learning infra-
structure (Fig.  3). The letters A till D in Fig.  3 are used 
throughout the Methods and Results sections to delimit 
the different steps in the process.

Case description
Routine clinical data from 160 adult patients were col-
lected during the perioperative care period for patients 
with degenerative disorders of the lumbar spine opting 
for fusion surgery. The database contained a set of diverse 
variables: patient demographic characteristics, patient-
reported pain and functioning (including activities), and 
other clinical outcome measures (Table 3).

Ontology
An ontology was formulated (column A, Fig. 3) to make 
the data from case study interoperable. The created 
ontology only provides classes for concepts in our used 
case. It should be viewed as an example of how the allied 
health research community can approach building a 
functionomics ontology. In an ontology, a research field 
agrees on formal definitions of the terms in the domain 
and relations among them and are expressed in machine 
readable language [28]. A machine readable language 
means that computers can easily find, ‘read’ and under-
stand data, without manual intervention. In our study, 
we used the open access Protégé (Stanford University, 
Stanford, CA, USA) software, which incorporates cur-
rent standards for developing machine readable ontolo-
gies: Resource Description Framework Schema (RDFS) 
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Table 2  Terms and abbreviations

Computational ontology - defines a set of concepts (classes, attributes) in a specific domain, and the relationships among these concepts to explicitly 
represent knowledge about an application domain. Ontologies are part of the W3C standards stack for the Semantic Web, in which they are used 
to specify standard conceptual vocabularies in which to exchange data among systems, provide services for answering queries, publish reusable 
knowledge bases, and offer services to facilitate interoperability across multiple, heterogeneous systems and databases.

DOI - Digital Object Identifier; a code used to permanently and stably identify (usually digital) objects. DOIs provide a standard mechanism for retrieval 
of metadata about the object, and generally a means to access the data object itself.

FAIR - Findable, Accessible, Interoperable, Reusable

Federated learning - Learning from data without the data leaving the place at which it was originally stored. The algorithm visits the data storage silos 
and only moves aggregated results back to the sender of the algorithm.

GitHub – GitHub is a free to use cloud-based service were developers, data scientists and others can store their, mostly open, coding projects and track 
version of these codes.

Interoperability - the ability of data or tools from non-cooperating resources to integrate or work together with minimal effort.

OWL - Web Ontology Language; is a Semantic Web language designed to represent rich and complex knowledge about things, groups of things, 
and relations between things. OWL documents, known as ontologies, can be published in the World Wide Web and may refer to or be referred 
from other OWL ontologies.

R2RML - A language for expressing customized mappings from relational databases to RDF datasets. A mapping takes as input a logical table, i.e., 
a database table, a database view, or an SQL (Structured Query Language) query. A logical table is mapped to a set of RDF triples.

RDF - Resource Description Framework; a globally-accepted framework for data and knowledge representation that is intended to be read and inter-
preted by machines. The way RDF connects data pieces together is via triples.

RDF triple – an RDF triple consists of a ‘subject’, ‘predicate’ and ‘object’. The subject and the predicate are resources and are identified by an URI, whereas 
the object can be either a resource or a literal value.

REST API – is short for RESTful Application Program Interface and can be used to access and use data via the world wide web.

SPARQL - SPARQL Protocol and RDF Query Language; enables users to query (analyze) information from databases or any data source that is mapped 
in RDF.

Semantic Web – the Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers 
and people to work in cooperation.

URI – A Uniform Resource Identifier; is a string that provides a unique address (either on the Internet or on another private network, such as a computer 
filesystem or an Intranet) where a resource can be found.

Fig. 3  FAIRification process in a practical example. Section A: data prepping, section B: make data linkable, section C: publish FAIR data, section D: 
query FAIR data. If process A, B and C are repeated by different clinics multiple published linked datasets will arise that can be queried



Page 6 of 12Janssen et al. BMC Medical Informatics and Decision Making          (2024) 24:184 

and the Web Ontology Language (OWL). Herein we 
combined terms from existing terminologies in the bio-
medical field to give universally agreed-upon defini-
tions and structure to our dataset: SNOMED-CT, and 
Units of Measurement Ontology (UO). The ICF was 
used as an upper level class structure for our ontology. 
We added classes from SNOMED-CT and UO to define 
specific concepts that were available in these ontologies 
for variables in our dataset (e.g., age, sex). For biopsy-
chosocial variables that could not be defined using the 
existing ontologies, we formulated a new class. The basic 
idea of this mapping process was to link each data struc-
ture (row, columns and values) within the database to 
its corresponding component (concept, property, rela-
tionship). The way variables are interlinked was defined 
within the ontology and was based on clinical expertise 
and understanding of these relationships by the authors. 
These components were developed using feedback loops 
with experts in the field of lumbar spinal fusion (LSF), 

perioperative care and the ICF. The reader should keep in 
mind that this is only an example, ontologies are flexible 
and can easily incorporate new variables and relation-
ships or adjust existing variables/relationships. Ideally an 
ontology should be based on international community 
standards and consensus.

Semantic web technologies
Semantic Web technologies are an extension of the 
World Wide Web (WWW) and provide people with 
a means of publishing and storing data on the Web. 
Within the Semantic Web, data are described in triples, 
based on the Resource Description Framework (RDF; 
column B, Fig.  3). A triple consists of three compo-
nents, namely: a subject, a predicate and an object. Each 
of these components has a semantic definition, defined 
within the ontology. These three components from the 
defined ontology are combined to make a triple, for 
example see Table 4:

Table 3  Variables within the retrospective cohort database of patients opting for lumbar spinal fusion surgery

Abbreviations: ASA American society of anesthesiology, BMI Body mass index, HRQOL Health related quality of life, PLIF Posterior interbody fusion, TLIF Transforaminal 
interbody fusion

Variable Value/unit Measurement instrument

Age Years

Gender Male, Female

BMI Weight(kilogram)/Height(in meter)2

ASA-class Class I, II, III

Smoking status Yes, No

Level of educational attainment High, Low

Working status Employed (fulltime), Employed (parttime), 
Retired, non-remunerative employment, Seeking 
employment

Study identifier Study code

Disorder of the back Lumbar post-laminectomy, disorder of the lum-
bar disc, lumbar spondylolisthesis

Power of the muscles of the trunk Seconds Sorensen test

Proprioceptive function of the trunk N correct tests Waiter’s bow/ One leg stance/ Sitting knee 
extension/ Posterior pelvic tilt

Mobility of the trunk Centimeters Finger-floor distance

Aerobic capacity Wattpeak/kilogram Steep ramp test

Pain in body part 0-100 Visual Analogue Scale

HRQOL 0-100 RAND-36 mental component and physical 
component subscale

ODI 0-100 Oswestry disability index

Mental health 0–21 or 0–52 Hospital Anxiety and Disability Scale or Patient 
Catastrophizing Scale

Lumbar spinal fusion PLIF, TLIF, spondylodesis

Patient encounter Date

N levels Number of levels fused

Discharge day Date

Postprocedural recovery status 0–30 Modified Iowa Level of Assistance Score

Postoperative complication Yes/no
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In a relational database, all variables within a two-dimen-
sional table (e.g., csv file, excel file, SPSS file) have a rela-
tion to each other, which needs to be defined in the process 
of making data machine readable. In this study we used 
R2RML descriptions to transform our data into RDF tri-
ples using the Ontop software package. Once in the data-
set all data were transformed into RDF triples, the triples 
were stored on a web platform called GraphDB (Ontotext, 
Sofia, Bulgaria) running on the hospitals’ intranet (column 
C, Fig. 3). We checked the triple mapping using the visual 
graph interface of GraphDB. The intranet is a private part 
of the WWW, accessible only to employees of the hospi-
tal. The GraphDB instance held the RDF triples and hosts 
a REST API to receive requests to query the data hosted in 
the GraphDB instance. The universal language that can be 
used to query data transformed into RDF triples is SPARQL.

The Personal Health Train (PHT) [10] federated infra-
structure allows a researcher or other external parties 
to perform analyses on data from multiple GraphDB 
instances or data silos without physically having access to 
the data (column D, Fig. 3). Through the REST API in the 
PHT infrastructure a researcher can send their analysis 
to one or more data stations communicating with a cen-
tral PHT server. Subsequently the analysis is performed 
locally in data stations (e.g. hospitals, physiotherapy 
practices) and only aggregated results are sent back to 
the researcher via the same infrastructure. This infra-
structure can be utilized to send all different types of data 
analyses – queries and algorithms – to the data stations, 
like quality assessment, prediction modelling or effec-
tiveness calculations. A SPARQL query and algorithm 
for performing a simple count of gender was written and 
performed via the federated infrastructure.

To assess the FAIRness of the data (e.g., the degree to 
which the digital resource adheres to the FAIR data prin-
ciples) the data was analyzed using the FAIRMetrics [11]. 
We used the standardized FAIR maturity indicators man-
ual assessment, which assesses Findability, Accessibility, 
Interoperability and Reusability of the resource using 
thirtyfour indicators.

Results
As this paper aimed to provide guidance on how to 
implement functionomics in clinical practice, a step-by-
step tutorial of the described results was created in our 

GitHub repository: https://​github.​com/​ERCJa​nssen/​Funct​
ionom​ics. Readers can use this tutorial including dummy 
data similar to the real dataset to recreate the same steps 
themselves.

Ontology
We developed an ontology describing basic concepts, 
relationships and properties within the preoperative con-
text of a patient deciding forLSF (column A, Fig. 3).The 
ICF was used as the upper level hierarchy of classes for 
this ontology, containing 1,596 classes. We added ‘new’ 
lower level concepts to the ICF structure when these 
concepts, defining the variables in our dataset, were not 
available in the ICF. We mapped all variables from our 
dataset as concepts in the ontology reusing concepts 
from well-known published ontologies, wherever pos-
sible (e.g., SNOMED CT and UO).If no appropriate 
concepts or relationships were available in existing ontol-
ogies, which was often the case for data about a patient’s 
daily functioning, new concepts were added. In total we 
added 42 classes and 10 predicates to the ontology. From 
this process we can see that many of these ‘new’ concepts 
about a patient’s daily functioning can appropriately be 
mapped to the ICF hierarchy. This ontology was pub-
lished on Github (Fig.  4). The ontology can be (re)used 
and fine-tuned by others to fit their data on a person’s 
daily functioning.

Using semantic web technology
To transform the .csv dataset into machine readable 
data (RDF triples) we made an R2RML script (column B, 
Fig. 3). This script reads the .csv file, using the previously 
created ontology, and is translated it into 74 triples. An 
example of the mapping file is shown in Fig.  5. The full 
mapping can be found on GitHub.

The RDF mapping and data were published in a 
GraphDB instance on a local server, which linked the 
data repository to the web (column C, Fig. 3). From this 
point on, data could be analyzed by external parties by 
linking to the GraphDB instance via the PHT infrastruc-
ture (column D, Fig. 3).The PHT infrastructure allows the 
researcher to perform analysis without having to physi-
cally collect the data in a central server [29]. To perform 
such an action we linked two computers via internet in a 
password secured infrastructure to prevent unauthorized 

Table 4  Example of a RDF based triple

RDF triple Subject Predicate Object

In the dataset Patient_1 is diagnosed with lumbar spondylolisthesis

Semantic triple Patient_1 is_diagnosed_with_patient_1_
diangosis

patient_1_diangosis

Definition from vocabulary rdf: type SCTID:116154003 patient_1_FUN rdf: type SCTID:32117100119102

https://github.com/ERCJanssen/Functionomics
https://github.com/ERCJanssen/Functionomics
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access to the data. A researcher then sent the example 
SPARQL query and algorithm to our GraphDB instance 
via the PHT infrastructure from their own computer. The 
results of this query were calculated locally in our local 
GraphDB instance. Subsequently, the aggregated results 
– frequencies of gender - of this simple query were 
sent back the researcher via the PHT infrastructure: N 
females = 101, N males = 59.

FAIRness of the data is described in GitHub repository. 
The main focus of this example was on the interoperabil-
ity part of the FAIR principles, as such the scoring for 
FAIRness metrics on policies is low.From the applicable 
indicators we scored 7/8 for findability, 2/3 for accessibil-
ity, 7/7 for interoperability and 1/4 for reusability.

Discussion
Recent history shows the usefulness of big data analysis 
in personalizing healthcare through ‘omics’ research in 
many medical fields [5, 30, 31]. In our practical exam-
ple we redefined functionomics to include data on 
daily functioning of a person and showed how it can 
be operationalized and used, here in a clinical setting. 
A functionomics ontology for the specific setting and 

population of the example was created, based on the 
ICF. Both biomedical and psychosocial data were trans-
formed into a machine readable language (RDF) and 
published on the web (Graph DB instance). Next, these 
data were queried (using SPARQL) and gender counts 
were generated via an analytic algorithm. This paper 
and the tutorial in the accompanying GitHub reposi-
tory enables others to familiarize themselves with the 
proposed approach, establish their own functionom-
ics data station and send all different types of analy-
ses to these stations. Using this approach we will be 
able to create a network of linked FAIR functionomics 
datasets.

From its conception many scientific breakthroughs 
have been established through ‘omics’ research. For 
example, in the recent years, radiomics has made a seri-
ous impact on personalization of radiotherapy, due to 
firm investment in available IT and statistical solutions 
[2]. This has resulted in multiple scientific and clinical 
advancements; for example, an internationally validated 
prediction model for cancer survival has been developed 
and new knowledge on tumor phenotypes has been gen-
erated [31, 32]. However, when considering the whole 

Fig. 4  Basic concepts and relationships within the example dataset, defined within different existing ontologies. Abbreviations: ASA American 
society of anesthesiology, BMI Body mass index, DIS Disease, HADS Hospital anxiety and depression scale, HRQOL Health related quality of life, 
KG Kilograms, LAM Laminectomy, LAT Lateral, LUM Lumbar, mILAS Modified iowa level of assistance scale, ODI Oswestry disability index, PCS Pain 
catastrophizing scale, POST Posterior, SRT Steep ramp test, TRANS Transversal, VAS Visual analogue scale
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human exposome, major concepts are often not included 
in these ‘omics’ research types: the specific and general 
external exposome, and a considerable amount of the 
biopsychosocial aspect of the internal exposome. To fur-
ther improve health and healthcare research, all elements 
of the human exposome should be included, informed by 
a biopsychosocial perspective.

In our practical example, we suggested how to opera-
tionalize this transition towards functionomics by using 
the ICF for the development of an appropriate ontol-
ogy. The ICF is an international framework and termi-
nology often used by allied healthcare professions to 
describe and organize data on a patient’s daily function-
ing. However, the transition from the ICF to a functio-
nomics ontology requires to solve some major gaps in 
knowledge established in our study. Firstly, a classifica-
tion of personal factors is lacking in the current ICF class 
hierarchy and – although different articles are published 
with preliminary lists - the WHO has decided to refrain 
from a classification of personal factors in the near future 
[9]. Secondly, no predicates were available in the ICF to 
establish relationships between classes. Thirdly, some 

concepts are hard to map within the current ICF class 
hierarchy, as they involve multiple ICF classes. In the 
community there is disagreement on methods of meas-
uring functioning and how to map different concepts 
to the ICF [33]. Mapping the perception of one’s qual-
ity of life, for example, has led to some discussion about 
its position in the class hierarchy in our practical exam-
ple as well as in other research, [34] even when applying 
the linking rules of the ICF [35]. Without consensus on 
this issue, it will remain difficult to make functionomics 
data FAIR. Therefore, we propose to address these gaps 
in knowledge in an international and interdisciplinary 
collaboration, to enable structured capture of real-world 
functionomics data. By addressing these issues, we can 
make functionomics operational, firstly in datasets and 
field examples, and step by step around the globe.

Making data FAIR has scientific value with a tremen-
dous impact on population health, healthcare and the 
economy. The cost of not making data FAIR comes at 
a high price; annually around €100  billion is lost due 
to missed innovation opportunities [36]. We invest 
large amounts of time and effort in data capturing, but 

Fig. 5  Example of an R2RML mapping to FAIRify functionomics data



Page 10 of 12Janssen et al. BMC Medical Informatics and Decision Making          (2024) 24:184 

these data are only operable for single-use purposes, as 
they are mostly captured in an – when considering a 
global scale – unstructured and inaccessible manner. 
The FAIR principles, operationalized in Semantic Web 
Technology, guide the development of a global infra-
structure and tooling to make all health and research 
data optimally reusable for machines and people alike 
resulting in the internet of FAIR data and services, 
where data, far more divergent than just health and 
research, can be found, accessed, and (re)used by any-
one [25]. Accomplishing this will revolutionize the sci-
entific and societal value of this data.

A major advantage of applying Semantic Web tech-
nologies and building a functionomics ontology is the 
ability to link different silos of data and concurrently to 
query them. In our example an external researcher was 
able to query our data without it leaving the data silo 
based in the hospital. Moreover, the researcher only 
received the aggregated results and not the individual 
patient data, meaning it is privacy preserving. Applying 
these techniques can help to solve the issues of physical 
data integration.

Ultimately, this approach could lead to ‘digital twins’, 
where one would be in the possession of very detailed 
biopsychosocial information of a person over time and 
relate them to similar persons who already underwent 
diagnostic, prophylactic and/or therapeutic interven-
tions for their health challenges and very accurately 
predict their health outcomes [37].

Possible barriers for implementation of functionomics
An important issue that we have not addressed in this 
paper is unstructured, free text, data describing a per-
son’s functioning. Often data on functioning are not 
collected in a structured manner, as from our example. 
Concepts of functioning, including the influencing con-
textual factors (personal and environmental factors), are 
hard to capture in a cohesive whole using measurement 
tools. There are two ways we can deal with this issue. The 
first one is investing in making functionomics data more 
structured, for example by creating new validated meas-
urement tools and implementing these tools in standard 
clinical and research practice. However, as mentioned 
above, data on functioning is very context sensitive, using 
measurement tools we may lose this context and may 
not accurately present the patient’s perspective [38]. The 
second approach is to apply free text mining, like natural 
language processing (NLP), to extract meaningful con-
cepts from the free text and convert them to structured 
formats.

Our current science landscape does not promote data 
and knowledge sharing [39]. This issue is inherent to put-
ting great value on impact factors, publication numbers 

and grant acquisition. A major worry for many is that 
when data are shared too early, others will foreshadow 
their work [40]. Another issue is the analysis of privacy 
sensitive healthcare data, stored at many different loca-
tions. Functionomics data are often collected on the 
same person by different healthcare providers, social 
organizations or even by people themselves. Combin-
ing these privacy sensitive data repositories for functio-
nomics research requires a privacy-preserving approach. 
By using federated learning techniques we could largely 
solve this issue, as it enables local analysis of data with 
only aggregated results leaving the place of storage, 
through privacy-by-design. Still, it is obligatory to gain 
informed consent of any individual to use their health-
care data for research purposes. This would not be fea-
sible in the proposed system, as different types of queries 
could be sent to the data silo on a daily basis. A tiered 
informed consent may be a viable solution. Here peo-
ple grant permission for the (research) purposes of their 
choice, but not for all [41].

Another thing to keep in mind is that FAIR is not equal 
to Open: The ‘A’ in FAIR stands for ‘Accessible under 
well-defined conditions’ [42]. Even when publishing data 
on the Semantic Web it is still stored locally on a ‘private’ 
network. The ‘owner’ of the data can still control who 
gets access to them, in our case through the PHT net-
work, for example by requiring password authentication 
and authorization. In contrast, opening up data (Open 
Access) yields most benefits, as it provides researchers 
access to large amounts of data to analyze.

The next steps in functionomics
Big data analysis is not only a way to improve the 
robustness of science today, but can drive new scien-
tific discovery of tomorrow. The analysis of big data on 
functionomics will give valuable insight in how to move 
forward in personalizing healthcare. For this, an inter-
nationally accepted functionomics ontology should be 
built, capturing all relevant data from the ICF, open 
access mapping scripts, a trustworthy data infrastruc-
ture and international agreements on data usage poli-
cies. Therefore, we call to action to all stakeholders in 
functionomics to contribute to a new ontology and par-
ticipate in making their (own) data more FAIR.

Conclusion
In this study functionomics as the study of high-
throughput data on daily functioning, as defined and 
objectified in the ICF, is introduced. Functionomics 
research can have great benefits for health and person-
centered healthcare, thus improving health of peo-
ple and with people. Investments, by an international 
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community in the domain of functionomics, in the 
proposed IT solutions for big data analysis - FAIR prin-
ciples through Semantic Web technologies - are neces-
sary to achieve this. Together, as one united health and 
care (research) community, we need to make serious 
efforts to take up the proposed methods.
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