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Introduction
Sepsis is a life-threatening clinical syndrome character-
ized by organ dysfunction caused by a patient’s dysreg-
ulated response to infection [1]. Acute kidney disease 
(AKI) is a syndrome defined as a fast increase serum 
creatinine (CRE), a decrease urine output (UO) or both 
[2]. Sepsis is highly correlated with AKI. In patients with 
sepsis, the kidneys are the most common organs to be 
affected. Sepsis is associated with up to 50% of AKI, and 
up to 60% of patients with sepsis have AKI [3, 4]. More-
over, sepsis-associated acute kidney injury (SA-AKI) is 
strongly associated with poor prognosis. Previous studies 
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Abstract
Introduction  Sepsis-associated acute kidney injury (SA-AKI) is strongly associated with poor prognosis. We aimed to 
build a machine learning (ML)-based clinical model to predict 1-year mortality in patients with SA-AKI.

Methods  Six ML algorithms were included to perform model fitting. Feature selection was based on the feature 
importance evaluated by the SHapley Additive exPlanations (SHAP) values. Area under the receiver operating 
characteristic curve (AUROC) was used to evaluate the discriminatory ability of the prediction model. Calibration 
curve and Brier score were employed to assess the calibrated ability. Our ML-based prediction models were validated 
both internally and externally.

Results  A total of 12,750 patients with SA-AKI and 55 features were included to build the prediction models. We 
identified the top 10 predictors including age, ICU stay and GCS score based on the feature importance. Among the 
six ML algorithms, the CatBoost showed the best prediction performance with an AUROC of 0.813 and Brier score of 
0.119. In the external validation set, the predictive value remained favorable (AUROC = 0.784).

Conclusion  In this study, we developed and validated a ML-based prediction model based on 10 commonly used 
clinical features which could accurately and early identify the individuals at high-risk of long-term mortality in patients 
with SA-AKI.
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have demonstrated that SA-AKI was associated with 
higher risk of short- and long-term mortality, longer hos-
pital stay and renal replacement therapy (RRT) require-
ment [5–7].

It is nearly impossible to identify the exact onset of 
AKI because of the complex and unique pathophysiol-
ogy mechanism of sepsis, making it difficult to perform 
timely intervention for prevention of renal injury [8]. 
Accordingly, severity scores and risk stratification are the 
key points in the management of AKI, which is condu-
cive to clinical decision-making. The current prediction 
models for mortality are limited by small sample size and 
unsatisfactory prediction performance [9, 10].

In recent years, machine learning (ML), which inte-
grates mathematics and computer science, has been 
introduced in medicine prediction issues and presented 
with favorable prediction performance [11–14]. In this 
study, we aimed to establish a prediction model to early 
identify individuals at high-risk of long-term mortality in 
patients with SA-AKI, which may help to take appropri-
ate preventive strategies and significantly improve out-
comes for them.

Methods
Source of data
The patients’ data were obtained from two sources: 
the Medical Information Mart for Intensive Care IV 
(MIMIC-IV, version 2.0) and the MIMIC-III (version 
1.4). The MIMIC-IV is a comprehensive US-based data-
base that includes information from over 200,000 indi-
viduals who were admitted to various ICUs at the Beth 
Israel Deaconess Medical Center (BIDMC) between 2008 
and 2019 [15]. On the other hand, the MIMIC-III data-
base comprises data collected from the same hospital 
but during a different period compared to the MIMIC-
IV database [16]. Therefore, data from the MIMIC-III 
database were utilized for temporal external validation 
purposes. Since this study involved the analysis of third-
party databases with pre-existing institutional review 
board approval, ethical approval and consent to partici-
pate were not applicable. However, it is important to note 
that one of the authors has completed the Collaborative 
Institutional Training Initiative course and possesses the 
necessary certification (certification number 35,965,741) 
to access the databases. The study adhered to the recom-
mendations outlined in the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) statement [17].

Study population
In this retrospective study, patients with sepsis who suf-
fered from AKI during hospitalization were eligible for 
inclusion. In the present study, sepsis was diagnosed 
based on the Sepsis-3 criteria [18]. Moreover, AKI was 

diagnosed based on the following clinical practice guide-
lines: increase in CRE ( by ≥ 0.3 mg/dL (or ≥ 26.5 µmol/L) 
in 48 h, increase in CRE to 1.5 times over baseline levels 
in 7 days, and patient UO ≤ 0.5 mL/kg/h for 6 h [2]. The 
definition of SA-AKI was based on the consensus report 
of the 28th Acute Disease Quality Initiative workgroup. 
According to this report, SA-AKI should be consid-
ered when AKI occurs within 7 days of sepsis diagnosis, 
and can be further differentiated into early (AKI occurs 
up to 48  h after sepsis diagnosis) or late SA-AKI (AKI 
occurs between 48 h and 7 days of sepsis diagnosis) [19, 
20]. Patients aged < 18 years old or length of stay in hos-
pital < 48  h were excluded. The primary outcome was 
1-year mortality after hospital admission.

Data collection and imputation
We extracted a range of data from the two databases, 
including demographics, vital signs, laboratory test 
results, and comorbidities. To enhance the practicality 
of the model, we specifically chose the data from the first 
medical records rather than relying on the maximum or 
minimum values observed during hospitalization. The 
baseline creatinine levels are determined by the results of 
the first biochemical blood test conducted within 24 h of 
the patient’s admission. During the data collection pro-
cess, we encountered several variables with missing val-
ues. To address this issue, we implemented a systematic 
approach. Firstly, variables with a missing value ratio 
exceeding 30% were excluded from the analysis. For vari-
ables with missing values below 5%, we utilized mean 
imputation to impute the missing data. Additionally, 
for features with missing values ranging from 5 to 30%, 
we employed multiple imputations to impute the miss-
ing data [21]. By utilizing these techniques, we aimed to 
minimize the impact of missing data on the accuracy and 
reliability of our findings.

Model development and validation
Feature selection
We employed the Shapley Additive explanations (SHAP) 
values, a game theoretic approach, to assess the impor-
tance of each feature in our model [22]. This analysis 
allowed us to identify the key features that significantly 
contribute to the predictive performance. To enhance the 
practicality of the model and simplify its implementation, 
we selected the top 10 predictors as the main features for 
model building. By focusing on these highly influential 
predictors, we aimed to create a more efficient and user-
friendly model that can effectively capture the essential 
information needed for accurate predictions.

Model evaluation
We utilized the area under the receiver operating char-
acteristic curve (AUROC) to evaluate the discriminatory 
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ability of the models. This metric provides a compre-
hensive assessment of the models’ ability to distinguish 
between positive and negative outcomes. To further eval-
uate the calibration of the models, we employed the cali-
bration curve and the Brier score. The calibration curve 
offers a qualitative assessment of how well the predicted 
probabilities align with the observed outcomes, while the 
Brier score quantitatively measures the accuracy of the 
predicted probabilities. To assess the clinical utility of 
the models, we conducted decision curve analysis (DCA) 
to calculate the decision benefit. This analysis helps 
determine the net benefit of using the models in clinical 
decision-making. Furthermore, we evaluated the predic-
tion performance of each model using various metrics, 
including accuracy, sensitivity, specificity, positive pre-
diction value (PPV), negative prediction value (NPV), 
Matthews correlation coefficient (MCC), and F1-score. 
These metrics provide a quantitative evaluation of the 
models’ performance in terms of accuracy, true positive 
rate, true negative rate, precision, and overall predictive 
power.

Algorithm selection
We employed six commonly used machine learning algo-
rithms, namely CatBoost, XGBoost, LightGBM, logistic 
regression (LR), random forest (RF), and Bagging, for 
model fitting. Each algorithm was evaluated based on 
its discriminatory and calibrated abilities. After evaluat-
ing the performance of these algorithms, we selected the 
one that demonstrated the best prediction performance 
for further analyses. This selection was based on the algo-
rithm’s ability to achieve optimal discriminatory and cali-
brated results.

Model optimization
Hyperparameter optimization (HPO) was performed 
to optimize the prediction models. By finding the ideal 
combination of hyperparameters, the predictive perfor-
mance of machine learning models can be significantly 
improved.To facilitate the visualization of the HPO pro-
cess, we utilized the Optuna package (version 2.10.0), an 
open-source optimization framework. Optuna allowed 
us to efficiently and dynamically conduct HPO experi-
ments by testing various combinations of hyperparam-
eters. Specifically, we employed the Hyperband method 
within Optuna to perform HPO and identify the best set 
of hyperparameters for our models [23, 24].

Model validation
In this study, both internal and external validations were 
conducted to assess the robustness and generalizabil-
ity of the model. For the external validation, data from 
the MIMIC-III database were utilized. Furthermore, we 
compared the predictive performance of the ML-based 

models with commonly used clinical scores such as the 
Logistic Organ Dysfunction System (LODS), Simpli-
fied Acute Physiology Score-II (SAPS), and Charlson 
comorbidity index. This comparison aimed to further 
demonstrate the superior predictive value of the ML-
based models. To provide a visual representation of the 
prediction results, we developed a nomogram based on 
the external validation set. This nomogram allowed for 
a graphical presentation of the predicted probabilities. 
Additionally, a decision tree was constructed using recur-
sive partitioning analysis, using the total points from the 
nomogram for risk stratification of patients. Further-
more, the predictions for each patient were plotted in 
order of their risk, providing an assessment of the predic-
tion distribution generated by the model.

Statistical analysis
All statistical analyses were conducted using Python (ver-
sion 3.9.0) and R (version 4.1.0). The primary Python 
packages utilized in this study include ‘sklearn.model_
selection’, ‘catboost’, ‘numpy’, ‘pandas’, ‘sklearn.metrics’, 
and ‘shap’, etc. Continuous variables were presented as 
mean ± standard deviation, while categorical variables 
were reported as numbers with percentages. To assess 
differences between two groups for continuous vari-
ables, the t-test was employed, while the chi-square test 
was used for categorical variables. Additionally, mul-
ticollinearity among the variables in the nomogram 
was evaluated using the variance inflation factor (VIF), 
where a VIF > 4.0 indicated the presence of multicol-
linearity. Logistic regression analyses were performed to 
identify the key factors among the included features. A 
significance level of p < 0.05 was considered statistically 
significant.

Results
Baseline characteristics
This study included 12,750 patients with SA-AKI, with 
10,200 patients (80%) in the training set and 2550 patients 
(20%) in the internal validation set (Fig.  1). A total of 
2442 patients (19.2%) died within the 1-year follow up 
period. Compared with the survival group, patients in the 
non-survival group were older (71.5 ± 14.7 vs. 68.0 ± 15.4, 
p < 0.001), had longer ICU stay (7.19 ± 7.98 vs. 4.91 ± 6.43, 
p < 0.001) and lower GCS score (10.0 ± 4.5 vs. 12.2 ± 3.6, 
p < 0.001). Moreover, non-survivors had more complex 
comorbidities and worse renal function than survivors. 
The baseline characteristics of the validation cohort were 
summarized in Table 1.

Development of the prediction model
A total of 55 variables were included in this study (Table 
S1). To eliminate redundant or irrelevant features 
and improve the practicability of the model, feature 
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Table 1  Baseline characteristic
Variables Training cohort (n = 12,750) Validation cohort (n = 1658)

Survival (n = 10,308) Non-Survival (n = 2442) P value Survival (n = 851) Non-Survival (n = 807) P value
Age, year 68.0 ± 15.4 71.5 ± 14.7 < 0.001 65.9 ± 16.8 72.0 ± 14.9 < 0.001
LOS_ICU, day 4.91 ± 6.43 7.19 ± 7.98 < 0.001 4.17 ± 6.78 6.60 ± 8.32 < 0.001
GCS score 12.2 ± 3.6 10.0 ± 4.5 < 0.001 13.6 ± 2.6 12.7 ± 3.5 < 0.001
HTN, % 7147 (69.3%) 1943 (79.5%) < 0.001 354 (41.6%) 303 (37.5%) 0.092
CKD, % 5000 (48.5%) 1589 (65.1%) < 0.001 103 (12.1%) 208 (25.7%) < 0.001
HGB, g/dL 11.3 ± 2.0 10.7 ± 2.2 < 0.001 10.5 ± 1.8 10.1 ± 2.1 < 0.001
CRE, mmol/L 1.59 ± 1.57 1.80 ± 1.59 < 0.001 1.98 ± 1.74 2.20 ± 1.48 < 0.001
BUN, mmol/L 28.2 ± 19.5 37.7 ± 24.6 < 0.001 38.3 ± 25.7 47.5 ± 27.8 < 0.001
AST, U/L 103 ± 299 175 ± 407 < 0.001 425 ± 707 661 ± 887 < 0.001
UO, mL/kg/h 0.88 ± 0.64 0.66 ± 0.55 < 0.001 0.95 ± 0.72 0.60 ± 0.57 < 0.001
LOS_ICU: length of the stay in intensive care unit; GCS: Glasgow coma scale; HTN: hypertension; CKD: chronic kidney disease; HGB: hemoglobin; CRE: creatinine; BUN: 
blood urea nitrogen; AST: aspartate aminotransferase; UO: urine output

Fig. 1  Flow chart
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selection was firstly conducted. We used the SHAP value 
to evaluate feature importance of all variables. The results 
showed that age, ICU stay, Glasgow Coma Scale (GCS) 
score, hypertension (HTN), chronic kidney disease 
(CKD), CRE, blood urea nitrogen (BUN), aspartate ami-
notransferase (AST), hemoglobin (HGB) and UO were 
the top 10 important features (Fig.  2). In this study, we 
only selected the top 10 features to build the prediction 
model. The Logistic analyses showed that the 10 features 
were independent risk factors for 1-year mortality in 
patients with SA-AKI (Table S2). In addition, SHAP force 
plot enabled personalized interpretation of the model 
(Fig. S1). To assess the multicollinearity between the 10 
features, VIF test was conducted in this study. The result 
showed that VIFs of the 10 variables were less than 4.0, 
with mean VIF of 1.29, suggesting there was no signifi-
cant multicollinearity between them.

Based on the 10 variables, we compared the initial 
prediction performance (without model optimization) 
of the 6 ML algorithms. The result showed that the Cat-
Boost algorithm presented with the best prediction per-
formance with AUROC of 0.813 (Fig.  3). Furthermore, 
commonly used prediction model evaluation indica-
tors, including accuracy, sensitivity and specificity, were 
employed to quantitative evaluation the prediction per-
formance. We found that the CatBoost algorithm showed 
the best accuracy (0.833), MCC (0.646) and F1-score 
(0.756). The XGBoost had the best sensitivity (0.678) and 

NPV (0.819). And the Random Forest showed the best 
specificity (0.958) and PPV (0.905) (Table  2). In addi-
tion, calibration reflects the extent to which the pre-
dicted probabilities and actual probabilities agree, and 
is quantitively and quantitatively evaluated through cali-
bration curve and Brier score, respectively. Brier score is 
calculated based on the Euclidean distance between the 
actual outcome and the predicted probability assigned to 
the outcome for each observation, with low values being 
desirable. In the calibration analysis, we found the pre-
diction probability of the CatBoost model was the closest 
to the true probability among the 6 ML algorithms, and 
the CatBoost model had the lowest Brier score (0.119) 
(Fig.  S2). Moreover, DCA was conducted to assess the 
clinical decision benefit which based on the prediction 
model by calculating the ‘net benefit’. The result showed 
that the CatBoost algorithm presented with the best clin-
ical decision benefit (Fig. S3). Considering the superiority 
of the CatBoost algorithm in several aspects, the Cat-
Boost was selected as the primary algorithm for remain 
analyses.

Algorithm optimization is also a pivotal procedure 
for ML-based prediction model building. In the present 
study, HPO was employed to improve the performance 
of the CatBoost model. Based on the Optuna frame-
work, a total of 100 trials of optimal hyperparameter 
searching were performed, as a result, the best combi-
nation of hyperparameters was obtained (Fig.  S4). The 

Fig. 2  Feature Selection. (A) Feature importance assessed by SHAP values; the blue to red color represents the feature value (red high, blue low); the x-
axis measures the impacts on the model output (right positive, left negative); (B) Importance of the predictors based on SHAP values
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hyperparameter search domains and final settings were 
listed in Table S3. After HPO, the prediction perfor-
mance of the CatBoost was significantly improved with 
an AUROC of 0.837 (Fig.  S5). Based on the optimized 
CatBoost model, we discovered that the model could 
accurately predict 1-year mortality of both early and late 
SA-AKI, achieving AUROCs of 0.848 and 0.805, respec-
tively (Fig. S6).

Model evaluation and validation
To further demonstrate the prediction performance of 
the CatBoost model, the CatBoost model was compared 

with other commonly used clinical scores, including 
LODS, SAPS and Charson comorbidity index, which 
could evaluate the condition severity generally. The result 
showed that the CatBoost model presented with the best 
prediction performance (Fig. S7). In addition, the exter-
nal validation was performed to demonstrate the general-
izability of the CatBoost model. We extracted data of the 
10 features and the outcome from the MIMIC-III data-
base to perform the temporal external validation. The 
results showed that the CatBoost model presented with 
the best prediction performance (Fig. S8), with AUROC, 
accuracy, sensitivity, specificity and F1-score of 0.788, 

Fig. 3  Prediction performance of different models
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0.698, 0.952 and 0.809, respectively (Table  2). Accord-
ingly, we suggested that the CatBoost model had the cer-
tain generalizability.

Risk stratification
Risk stratification enabled early identification of high-risk 
patients at poor prognosis and subsequently personalized 
clinical decision-making. In this study, we developed a 
personalized nomogram and a risk stratification tool to 
elucidate the practicability of the CatBoost model. First, 
the 1-year mortality probabilities of each patient in the 
external cohort were obtained using the ‘predict_proba’ 
function of the CatBoost algorithm. The patients were 
ranked by the prediction probability. The prediction dis-
tribution plot of the CatBoost model with patients sorted 
in the order of risk showed positive clustering of patients 
who died within the 1-year follow up, suggesting the 
favorable discriminatory ability of the model (Fig.  4A). 
Second, the decision tree algorithm was employed to 
realize the risk stratification using the ‘rpart.plot’ pack-
age (Fig.  4B). Third, a nomogram based on the 10 fea-
tures was developed. The total points of each patient 
were calculated using the ‘nomogramFormula’ package. 
Then two cut-off values based on the total point were 
obtained using the decision tree algorithm. Accordingly, 
patients were divided into three groups: low-risk (total 
points < 214), middle-risk (total points ≥ 214 and < 251), 
and high-risk group (total points ≥ 251) (Fig.  4C). Final, 
the Logistic analysis was conducted to demonstrate the 
risk stratification ability of the nomogram. Compared 
with the low-risk group, patients in the middle- and high-
risk group had a 5-fold and 27-fold risk of 1-year mortal-
ity, respectively (Fig. 4D), which suggested the favorable 
practicability of the CatBoost model.

Discussion
In this study, we developed and validated an ML-based 
model to accurately predict 1-year mortality of patients 
with SA-AKI using 6 commonly used ML algorithms. 
We screened 10 key features, including age, ICU stay, 
GCS score, HTN, CKD, HGB, CRE, BUN, AST and UO, 
to build the prediction model. Our model showed supe-
rior prediction performance than traditional risk scores, 
including LODS, SAPS-II and Charson comorbidity 
index. The favorable performance was also validated in 
the external validation set. The prediction model enabled 
early identification of SA-AKI patients with high-risk of 
poor prognosis, which may help to optimize the man-
agement of the patients with SA-AKI and to improve the 
outcomes.

All six ML classifiers included in this study were fully 
established and commonly used to perform prediction 
issues. Although the difference of prediction perfor-
mance between the 6 ML algorithms was insignificant, 
the CatBoost algorithm presented with the best perfor-
mance among them. The CatBoost belongs to gradient 
boosting algorithms and could successfully handle cate-
gorical features and takes advantage of dealing with them 
during training as opposed to preprocessing time. More-
over, CatBoost uses a new schema to calculate leaf values 
when selecting the tree structure, which is conducive to 
reducing overfitting [25]. The superiority of the CatBoost 
algorithm has been demonstrated in our previous study 
[12].

Although the typical advantage of using ML models is 
that they can handle higher dimensional data, numerous 
variables would reduce the practicability of the model. 
Therefore, we sought to develop a refined model based 
on the top predictors. A total of 10 key features (age, 
ICU stay, GCS score, HTN, CKD, HGB, CRE, BUN, AST 
and UO) were identified by using the SHAP value. The 

Table 2  Model performance
Model AUROC ACC SENS SPEC PPV NPV MCC F1-score
Internal validation
CatBoost 0.813 0.833 0.668 0.938 0.871 0.818 0.646 0.756
LightGBM 0.803 0.830 0.666 0.932 0.861 0.816 0.638 0.752
XGBoost 0.790 0.826 0.678 0.920 0.842 0.819 0.629 0.751
Random Forest 0.788 0.822 0.634 0.958 0.905 0.806 0.639 0.746
Logistic Regression 0.790 0.810 0.621 0.929 0.846 0.796 0.594 0.716
Bagging 0.739 0.771 0.578 0.873 0.708 0.796 0.477 0.636
External validation
CatBoost 0.784 0.788 0.698 0.952 0.964 0.634 0.623 0.809
LightGBM 0.772 0.786 0.724 0.899 0.929 0.641 0.596 0.812
XGBoost 0.747 0.779 0.743 0.846 0.898 0.644 0.565 0.813
Random Forest 0.758 0.784 0.691 0.952 0.963 0.628 0.617 0.805
Logistic Regression 0.767 0.781 0.724 0.887 0.921 0.638 0.585 0.810
Bagging 0.682 0.761 0.670 0.913 0.901 0.701 0.593 0.768
AUROC: area under the receiver operating characteristic curve; ACC: accuracy; SENS: sensitivity; SPEC: specificity; PPV: positive prediction value; NPV: negative 
prediction model; MCC: Matthews correlation coefficient
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Fig. 4  Model validation and risk stratification. (A) Prediction distributions of the risk of 1-year mortality; (B) The risk stratification of 1-year mortality ac-
cording to a decision tree; (C) A nomogram of the CatBoost model for predicting 1-year mortality during in patients with sepsis associated acute kidney 
injury; (D) Logistic analysis of the risk of 1-year mortality based on the risk stratification
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CatBoost model also showed the satisfactory prediction 
performance only based on the 10 variables. Among the 
10 key features, age played the most important role in the 
model of predicting 1-year mortality.

In general, elders had more comorbidities than young 
patients, thus had a poorer outcome. Hu et al. also found 
that age was an independent risk factor for short-term 
mortality in patients with SA-AKI [26]. Longer ICU stay 
and lower GCS score represented the more severe con-
dition of patients. The predictive values of ICU stay and 
GCS score in predicting prognosis in SA-AKI patients 
have been demonstrated in the previous study [27]. CKD, 
CRE, BUN and UO were highly related to renal function, 
and were predictors for mortality in patients with SA-
AKI [27].

Because both sepsis and AKI are clinical diagnoses, 
it is difficult to identify the exact onset of organ injury. 
Accordingly, risk stratification tool and clinical risk 
scores are important for decision-making in patients 
with SA-AKI. There were several clinical scores, such 
as LODS and SAPS-II score, which were widely used to 
predict outcomes in the critical care settings. However, 
these clinical scores were limited by the undistinguished 
prediction performance and inadequate specificity [28, 
29]. In the present study, the performances of the LODS 
and SAPS-II in predicting 1-year mortality in SA-AKI 
patients were common, with AUROC of 0.719 and 0.703, 
respectively. Moreover, there were very limited pre-
diction models to predict the long-term prognosis of 
patients with SA-AKI. Hu et al. [26] and Luo et al. [27] 
only focused on the development of clinical models to 
predict in-hospital and short-term mortality in patients 
with SA-AKI. In this study, we firstly built a clinical 
model that enabled accurate prediction of 1-year mortal-
ity in SA-AKI patients.

It is the determining factor for a clinical application 
whether a model has practicality. The previous studies 
mainly concentrate on the model development itself, but 
little on the application value [9, 26, 27]. In this study, we 
established a risk stratification tool based on the nomo-
gram that enabled easily and accurately identification 
of SA-AKI patients with high-risk of poor prognosis. 
Moreover, the 10 features for the nomogram develop-
ment were readily accessible and frequently monitored 
in routine clinical practice, therefore, the model could be 
generalized on a large scale, especially for undeveloped 
regions.

Limitations
Our study has several limitations. First, our work is based 
on a retrospective analysis of data, and further prospec-
tive studies are needed to confirm the findings. Second, 
data used in this study are extracted from public data-
bases. Many important variables including C-reaction 

protein and procalcitonin are excluded for the unaccept-
able rate of missing values, which may affect the final 
model. Additionally, the absence of follow-up data lim-
its our models’ ability to predict major adverse kidney 
events effectively. Third, treatments including antibiot-
ics, vasoactive agents, or mechanical ventilation are not 
included in this study for inadequate data, which may 
provide some biases.

Conclusion
In the present study, we developed and validated an ML-
based model which could accurately predict for 1-year 
mortality in patients with SA-AKI. Moreover, we estab-
lished a risk stratification tool based on the 10 key fea-
tures of the nomogram that enabled early identification 
of high-risk patients, thus, prognosis could be improved 
by providing reasonable alerting and feedback.
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