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Abstract 

The analysis of extensive electronic health records (EHR) datasets often calls for automated solutions, with machine 
learning (ML) techniques, including deep learning (DL), taking a lead role. One common task involves categorizing 
EHR data into predefined groups. However, the vulnerability of EHRs to noise and errors stemming from data collec-
tion processes, as well as potential human labeling errors, poses a significant risk. This risk is particularly prominent 
during the training of DL models, where the possibility of overfitting to noisy labels can have serious repercussions 
in healthcare. Despite the well-documented existence of label noise in EHR data, few studies have tackled this chal-
lenge within the EHR domain. Our work addresses this gap by adapting computer vision (CV) algorithms to mitigate 
the impact of label noise in DL models trained on EHR data. Notably, it remains uncertain whether CV methods, 
when applied to the EHR domain, will prove effective, given the substantial divergence between the two domains. 
We present empirical evidence demonstrating that these methods, whether used individually or in combination, can 
substantially enhance model performance when applied to EHR data, especially in the presence of noisy/incorrect 
labels. We validate our methods and underscore their practical utility in real-world EHR data, specifically in the context 
of COVID-19 diagnosis. Our study highlights the effectiveness of CV methods in the EHR domain, making a valuable 
contribution to the advancement of healthcare analytics and research.
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Introduction
In recent years, there has been a substantial surge in digital 
data within the healthcare sector. Notably, electronic health 
records (EHRs), which encompass patient health informa-
tion such as medical history, diagnoses, medications, and 
lab test results, have played a pivotal role in enhancing 
patient safety, streamlining care coordination, and improv-
ing efficiency. The widespread adoption of EHRs has trans-
lated into a substantial increase in the volume of digital 
data, providing a robust foundation for machine learning 
(ML) applications in healthcare. Leveraging this wealth of 
data, ML models can enhance precision, develop person-
alized treatment strategies, and enable predictive analyt-
ics, ultimately resulting in improved patient outcomes and 
more efficient healthcare delivery.
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However, while EHRs serve as a valuable data source 
for ML tasks, their utilization can pose challenges due 
to potential noise and errors. These issues can arise from 
various common sources, including data entry errors [1–4], 
incomplete information [1, 2, 4], inconsistencies [2, 5, 6], 
system errors [7–9], and diagnostic test errors [10–13].

Previous studies have highlighted the need for greater 
effort to improve the accuracy and completeness of EHR 
data [10, 14–17]. For example, a survey study published in 
2020 asked a total of 136,815 patients at three US health-
care organizations to read their EHR notes and identify 
any errors [10]. Of the 29,656 patients who provided a 
response, 1 in 5 reported a mistake, with 40% of these mis-
takes being perceived by the patient as serious. Among 
patient-reported serious errors, the most common mis-
takes included those related to diagnoses, medical history, 
medications, and test results. Another record-review study 
published in 2018 investigated the errors and causes of fail-
ure in the communication of patients’ information between 
different hospital information/EHR systems [15]. Through 
the review of 882 hospital records, the study identified 
1,256 errors of 41 different types. These errors were classi-
fied into system level errors (65%) and operator-dependent 
errors (35%), and further stratified into four categories: 
administrative-financial errors (61%), errors related to 
national codes (23%), clinical errors (9%), and other errors 
(7%). The presence of errors in EHR data can have serious 
consequences for patient care and outcomes, as well as for 
research and analysis that relies on this data. Therefore, 
ensuring the accuracy and completeness of EHR data is an 
ongoing challenge for healthcare providers and researchers.

Despite the substantial evidence pointing to the preva-
lence of noisy and erroneous EHR data, the existing ML 
models documented in the literature for EHR data analy-
sis have yet to address this concern. These models typically 
operate under the assumption that the data and labels are 
free from unwanted noise and corruption, a premise that 
does not accurately reflect real-world datasets. Addition-
ally, it is widely acknowledged that ML models (especially 
deep learning [DL] models), are susceptible to overfitting 
to noisy labels [18–20]. This susceptibility can lead to sig-
nificant consequences, such as reduced generalization 
performance on unseen patient EHR records, unreliable 
predictions, the perpetuation of undesired biases in predic-
tions, and potentially serious repercussions for patient care. 
Consequently, this could erode trust among healthcare 
professionals regarding the utilization of ML/DL models. 
Therefore, it is crucial to acknowledge the inherent imper-
fect nature of EHR data and devise mechanisms for training 
ML/DL methods to effectively handle noisy data.

Expanding upon previous research, we acknowledge the 
presence of noisy data and labels during the training of DL 
models and aim to tackle this concern within the context 

of EHR data. Thus, our study is centered on EHR classi-
fication, with particular emphasis on situations where 
only the class labels are affected by noise or errors. Tak-
ing inspiration from recent methodologies in computer 
vision (CV) that account for noisy labels when training DL 
models [21–23], we undertake an exploration of their suit-
ability for the EHR domain. It is essential to highlight that 
our tabular EHR data is distinctively different from image 
data for which these CV methods are originally proposed 
for. In contrast to images, where pixel values represent 
visual features, tabular EHR data encompasses a diverse 
array of patient records, diagnostic codes, timestamps, 
and various clinical parameters. Additionally, the amount 
of high quality data available in CV (with benchmarks like 
ImageNet  [24] for training DL models) is typically many 
magnitudes larger than that available for EHRs. The differ-
ences between these two domains calls for ensuring that 
these methods function effectively and provide meaningful 
insights when applied to EHR.

In this study, we aim to bridge this gap. With relatively 
little adaptations tailored to the unique characteristics of 
EHR data, we found that some of the recently proposed 
methods in CV domain can substantially mitigate the 
risks associated with overfitting to noisy labels in EHR 
data. This finding highlights the adaptability and poten-
tial of these techniques, even in the presence of substan-
tial differences in data structure and content. Moreover, 
our research goes beyond the individual application of 
these methods. We investigate the synergy of combining 
multiple approaches, and our results demonstrate that 
the integration of these techniques not only effectively 
addresses the issue of noisy labels, but also surpasses 
the performance of each method independently in many 
cases. Our findings emphasize the potential to transform 
how we handle and analyze EHR data, offering new ave-
nues for improved healthcare outcomes and research in 
the EHR domain.

Related works
Various techniques have been employed in different 
domains to address the challenges posed by noisy labels 
for ML tasks. In general, these can roughly be divided 
into two groups, 1) label correction, which focuses spe-
cifically on identifying and rectifying mislabeled data 
points to improve the quality of the training data, and 
2) regularization, which penalises over-confident pre-
dictions to prevent overfitting and indirectly reduce the 
impact of noisy labels.

With respect to label correction, one approach is data 
cleaning [25], which involves removing data points that 
are clearly incorrect or inconsistent. This can be achieved 
through manual inspection or by clustering [26, 27] and 
outlier detection algorithms [28–30]. However, manual 



Page 3 of 15Yang et al. BMC Medical Informatics and Decision Making          (2024) 24:183 	

inspection is expensive and time-consuming [25]; and 
removing samples wastes valuable information that 
could still provide useful information for training [31]. 
Conversely, algorithm-driven approaches, including 
self-training [32–34] and co-training [35, 36], iteratively 
update and improve labels based on a model’s predic-
tions. These methods can be effective in improving the 
quality of labeled data; however, they typically rely on the 
initial labeled data. Thus, if the initial labels are noisy or 
biased, these can be propagated during training, poten-
tially exacerbating the problem. Similarly, these tech-
niques can lead to overconfident predictions on noisy 
data, especially if the model is uncertain about the true 
labels, resulting in the inclusion of incorrect labels in the 
training set. Additionally, these techniques may not be 
well-suited for very small datasets where the benefits of 
leveraging unlabeled data might be limited.

Given that these methods rely on the assumption of 
having access to a limited, dependable set of clean sam-
ples, our research will focus on situations where this 
assumption does not hold, which is frequently encoun-
tered in clinical data scenarios. Consequently, we will 
focus our investigations on regularization methods. 
These include robust loss functions, label smoothing, 
taking a convex combination of samples/labels, and using 
consistency as a metric for evaluation.

Robust loss functions can be utilized to minimize the 
impact of outliers and noisy labels in the loss function [37, 
38]. While employing these outlier-robust loss functions 
offer advantages, they also exhibit drawbacks, including 
the potential loss of crucial information, especially notable 
in real healthcare data, where outliers can yield valuable 
insights. The loss of outlier information can also introduce 
bias into a model’s predictions, potentially skewing them 
away from the true underlying data distribution. Further-
more, it’s important to acknowledge that within healthcare 
data, a spectrum of disease severity exists. Consequently, 
even when incorrect labels are present, the individual data 
samples themselves may not necessarily qualify as outliers.

Label smoothing [22, 39, 40] is often used in cases 
where data is imperfectly labeled or contains errors. It 
aims to improve the generalization and robustness of a 
model by preventing it from overfitting to the training 
data. It does this by adding small amounts of uncertainty 
to the target labels while the model is being trained, 
encouraging the model to assign lower probabilities to 
incorrect classes and distribute the probability mass 
more evenly across all classes. Label smoothing has pre-
viously been demonstrated to effectively remove noise 
from corrupted labels [22].

Mix-up [23] is a data augmentation technique com-
monly used in CV for tasks such as image classification. 

It was introduced as a regularization method to 
improve the generalization and robustness of mod-
els, especially in scenarios with limited labeled data. 
Combining different features and labels with one 
another prevents the model from becoming overconfi-
dent about the relationship between features and their 
labels, thereby regularizing the model.

Previous studies have also leveraged the concept of 
generating consistent outputs as a means to constrain 
training. One such method is bootstrapping [41], 
whereby the standard prediction objective is enhanced 
with a term for perceptual consistency. Here, a predic-
tion is defined as consistent when a network produces 
the same prediction when presented with similar fea-
tures. Another method is Neighbour Consistency 
Regularization (NCR)  [21]. Similarly, NCR enforces 
consistency among the predictions of a model on neigh-
boring/similar samples. During training, the model is 
trained using both a standard supervised loss (such as 
cross-entropy) and an additional regularization term 
that encourages the predictions of neighboring sam-
ples to be consistent. By doing so, a model learns to be 
robust to label noise, as the regularization term penal-
izes inconsistencies in the predictions caused by noisy 
labels.

Although not specific to addressing noisy labels, 
ensemble methods offer another possible avenue for 
mitigating the effects of noisy labels. By training multiple 
models on different subsets of the data and combining 
their predictions, ensemble methods can help reduce the 
influence of individual noisy labels.

In the domain of EHR data analysis, limited studies to 
date address the problem of label noise. Very recently, 
Tjandra et  al.  [42] tackled the problem of instance 
dependent label noise in EHR data where the authors 
assume the availability of a small subset of clean data 
and labels in addition to a larger noisy dataset for 
learning a two-stage discriminative model. Boughor-
bel et  al.  [43] present an alternating loss-correction 
approach for training models with longitudinal EHR 
data with noisy labels. This method also requires the 
availability of separate clean and noisy datasets and 
alternates the training between these two sets. Unlike 
these approaches, we do not assume any prior knowl-
edge about which datapoints are labeled correctly or 
incorrectly, and hence we do not require separate clean 
and noisy datasets. We show that even for EHR data-
sets, methods like NCR  [21], Mix-up  [23] and Label 
smoothing  [22, 39, 40] (which do not need any addi-
tional information from a separate clean dataset) can 
be effectively applied with minor adaptations, thereby 
offering new avenues for improved EHR data analysis.
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Data and methods
An overview of the methods employed is shown in Fig. 1. 
We focus specifically on a real-world COVID-19 case 
study where the task is to use patients’ EHRs to classify 
them as being either COVID positive or negative. With 
government regulation for mandatory testing at the time, 
there is vast, clinically-rich EHR data available, alongside 
positive and negative COVID-19 presentations (deter-
mined through PCR tests, the gold standard test for 
diagnosing viral genome targets). Additionally, due to 
incomplete penetrance of PCR testing during the early 
stages of the pandemic and imperfect sensitivity, there 
is uncertainty in the viral status of patients who tested 
negative, thus making this case study uniquely suitable to 
test model development in the presence of noisy/incor-
rect labels.

Datasets and pre‑processing
For the purpose of this study, we use the CURIAL data-
sets [44, 45], which consist of anonymized EHR data for 
patients presenting to emergency departments (EDs) 
across four independent United Kingdom (UK) National 
Health Service (NHS) Trusts. These include Oxford 
University Hospitals NHS Foundation Trust (OUH), 
University Hospitals Birmingham NHS Trust (UHB), 
Portsmouth Hospitals University NHS Trust (PUH), and 
Bedfordshire Hospitals NHS Foundations Trust (BH). 
United Kingdom NHS approval via the national over-
sight/regulatory body, the Health Research Authority 
(HRA), has been granted for development and valida-
tion of artificial intelligence models to detect COVID-19 
(CURIAL; NHS HRA IRAS ID: 281832).

Previous studies have shown that ML classification 
models trained on EHR features could diagnose patients 
presenting with COVID-19 up to 26% sooner than lat-
eral flow device (LFD) testing and 90% sooner than PCR 
testing [44] on average, while simultaneously achieving 
high sensitivities and performing effectively as a rapid 
test-of-exclusion [31, 44–48]. Similarly, we trained mod-
els for the purpose of rapid triage using laboratory blood 
tests and vital signs, as these are routinely collected dur-
ing the first hour of patients attending emergency care in 
hospitals in middle- to high-income countries [45]. The 
feature sets included are the same as those used in [31, 

45–48]. Supplementary Section  C summarizes the final 
features used.

For model development, a training set was used for 
model training; a validation set was used for continuous 
validation and threshold adjustment; and after success-
ful development, internal and external test sets were used 
to evaluate the performance of final models. For training 
and validation, we used patient presentations from PUH. 
From PUH, we obtained patient presentations to the ED 
between March 1, 2020 and February 28, 2021. We cre-
ated training, validation, and test sets using randomly 
selected 60%, 20%, and 20% splits, respectively. This 
resulted in 22,737 (1,182 COVID-19 positive), 7,579 (439 
positive), and 7,580 (385 positive) presentations for PUH 
training, validation, and test sets, respectively.

We additionally curated datasets from three inde-
pendent hospitals - OUH, UHB, and BH. From OUH, 
we curated two data extracts. The first extract contains 
701 COVID-19 positive cases from the “first wave” of 
the COVID-19 epidemic in the UK (December 1, 2019 
to June 30, 2020), with 91,970 pre-pandemic controls 
(COVID-free patient presentations from OUH prior to 
the global COVID-19 outbreak). The second extract con-
tains 22,857 presentations (2,012 positive) from the “sec-
ond wave” (October 1, 2020 - March 6, 2021). There was 
one cohort from UHB (presentations between December 
1, 2019 and October 29, 2020) and BH (presentations 
between January 1, 2021 and March 31, 2021), consisting 
of 10,293 (439 positive) and 1,177 (144 positive), respec-
tively. These cohorts were used to externally validate per-
formance and generalizability, emulating the real-world 
implementation of such a diagnostic method.

Consistent with previous studies, we addressed the 
presence of missing values by using population median 
imputation, then standardized all features in our data to 
have a mean of 0 and a standard deviation of 1. A sum-
mary of the inclusion and exclusion criteria for patient 
cohorts, summary population statistics, and all training, 
validation, and test cohort splits can be found in Sec-
tion C of the Supplementary Material.

For experiments with synthetic noise, we randomly 
changed the label to the incorrect diagnosis (i.e. increas-
ing the false-negative and false-positive levels). For 
COVID-19 diagnosis by PCR, sensitivities were esti-
mated to be around 80%-90% during different times of 

Fig. 1  Flowchart of methods employed
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the pandemic [49–51], while specificity was estimated to 
be around 98%-100% [49–51]. Thus, to represent more 
realistic label corruption, we created additional false neg-
atives using 10%, 20%, 30%, and 40% of the COVID-19 
positive presentations. Simultaneously, we kept the num-
ber of additional false positives consistent, representing 
0.5% of the COVID-19 negative cases. This approach was 
chosen to a) mirror the estimated specificity of PCR test-
ing for COVID-19 and b) address the significant label 
imbalances prevalent in the training data.

Baselines
As a baseline, we use the same general neural network 
architecture using cross-entropy loss shown to be suc-
cessful in  [31, 46–48] for the COVID-19 classification 
task (varying hyperparameters depending on the best 
results obtained during grid search). Additionally,   [44, 
45, 47, 48] showed that XGBoost works remarkably well 
for this task, and serves as another strong baseline.

XGBoost
XGBoost  [52] is an ensemble method which combines 
the predictions of several base estimators (in this case, 
decision trees) in order to improve generalizability and 
robustness. The idea is that the weaknesses of one model 
can be compensated for by the strengths of another, 
resulting in a more robust ensemble model.

Baseline neural network
Following [31, 46–48], we trained a fully-connected neu-
ral network which used the rectified linear unit (ReLU) 
activation function in the hidden layers and the sigmoid 
activation function in the output layer. For updating 
model weights, the Adam optimizer was used during 
training. Details of the architecture are presented in Sec-
tion  B of the Supplementary Material. This architecture 
will also be referred as Baseline NN going forward.

CV‑inspired techniques to address noisy labels
Here we briefly describe three recently proposed meth-
ods which were shown to be effective for training neural 
networks with noisy labels in CV tasks (Fig. 2). We inves-
tigated both their individual and combined effectiveness 

in mitigating the impact of label noise in EHRs when 
employed in conjunction with the baseline NN described 
in “Baseline neural network”.

Label smoothing
Label smoothing [22, 39, 40] is a regularization technique 
that adds a small amount of noise to the target labels dur-
ing training. Similar to [22, 40], instead of using 0 or 1 as 
the correct label, we use a value of 1− ǫ for the correct 
label and ǫ

(C−1)
 for the other labels. Here, C is the number 

of classes, and ǫ is sampled uniformly in [0, 1].

Mix‑up
Mix-up [23] is an augmentation method that creates new 
examples as convex combinations of the original train-
ing samples. Given a dataset with labeled examples, Mix-
up combines pairs of input samples (both the features and 
labels) by taking a weighted linear combination.

Therefore, for two data points ( x1 , y1 ) and ( x2 , y2 ), the 
mixed data point ( xmix , ymix ) is computed as follows:

Here, � denotes a mixing coefficient, which is sampled 
from a beta distribution, Beta(α,α) , where α is a hyper-
parameter controlling the shape of the distribution, and 
α ∈ (0,∞) [23]. In our implementation, we also set a prob-
ability of mix-up per batch.

Neighbour consistency regularization
Neighbour Consistency Regularization (NCR) (Fig. 3) is a 
regularization technique which relies on enforcing the sim-
ple idea that examples from the same class will have similar 
latent representations and hence should be classified to the 
same class irrespective of their labels (which may be noisy 
and different) [21]. As presented in [21], we define the 
similarity between two examples by the cosine similarity of 
their feature representations:

(1)xmix = � ∗ x1 + (1− �) ∗ x2

(2)ymix = � ∗ y1 + (1− �) ∗ y2

(3)si,j = cos (vi, vj) =
vTi vj

�vi� vj

Fig. 2  Addressing noisy labels using computer vision-inspired techniques
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Here, the feature representations are non-negative val-
ues (obtained after a ReLU transformation) from a specific 
layer hidden layer. If vi and vj have high cosine similarity si,j , 
then a classifier f, is encouraged to predict the same label 
for f (vi) and f (vj) , regardless of their labels yi and yj . This 
discourages the model from overfitting to any incorrect 
mapping (x, y), if either (or both) of yi and yj are noisy.

To enforce neighbor consistency regularization, the 
objective function is formulated to minimize the distance 
between logits zi and zj , when their corresponding feature 
representations vi and vj are similar. Using 3, the NCR term 
can be written as:

In this formulation, the DKL represents the Kullback-
Leibler (KL) divergence loss used to measure the dissimi-
larity between two distributions. The term NNk(vi) refers 
to the set of k nearest neighbors of vi in the feature space. 
To ensure that the similarity values form a probability dis-
tribution, we normalize them. Additionally, we set the self-
similarity si,i to zero to avoid it dominating the normalized 
similarity. Gradients are propagated back to all inputs. 
Thus, this NCR term encourages the output of a classifier 
to classify xi in a way which aligns to its latent space neigh-
bors, regardless of the potentially noisy label yi.

We combine this NCR with the standard supervised 
classification loss function, namely cross entropy, to form 
the final objective function that is minimized during 
training, i.e.,

Here, the hyper-parameter α controls the strength 
of the NCR term. This differs slightly from the 

(4)

LNCR :=
1

m

m
�

i=1

DKL




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σ(zi)

�

�

�

�

�

�

�

�

jǫNNk (vi)

si,j
�

k

si,k
σ(zj )







(5)Ltotal := LCE + αLNCR,

implementation in [21], where the authors vary the 
NCR term by α and the CE term by 1− α (however, both 
implementations adjust the relative contributions of the 
CE and NCR loss terms).

As alternatives to KL-divergence, we also investi-
gate the effect of Jensen-Shannon divergence and mean 
absolute error within the NCR term. Results for these 
additional metrics can be found in Section F of the Sup-
plementary Material.

Evaluation metrics
We evaluate the trained models with commonly used 
classification metrics: area under the receiver operator 
characteristic curve (AUROC), area under the preci-
sion recall curve (AUPRC), sensitivity and specificity, 
alongside 95% confidence intervals (CIs) based on 1,000 
bootstrapped samples taken from the test set. Tests of 
significance (represented by p-values), comparing the 
accuracies between models, are calculated by evaluat-
ing how many times one model performs better than 
another, across 1,  000 pairs of bootstrapped iterations 
drawn from the test set.

Hyperparameter optimization and threshold adjustment
Hyperparameter values were chosen through grid search 
and standard five-fold cross-validation, using the train-
ing set (note that the validation and held-out test sets 
are used in threshold adjustment and final model evalua-
tion, respectively). Grid search was used to determine the 
number of hidden layers of baseline NN, the number of 
nodes used in each layer, the learning rate, the max depth 
of XGBoost, the number of nearest neighbours in NCR, 
the weight of the NCR term, the starting epoch for NCR, 
and the ǫ and � values used in Label Smoothing and Mix-
up, respectively. Details on the hyperparameter values 

Fig. 3  Neighbour consistency regularization diagram
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used in the reported results can be found in Supplemen-
tary Table 4.

In ML classification models, the output typically repre-
sents the probability of the input belonging to a certain 
class, where often a threshold on this probability needs to 
be set to determine a discrete label. We determined this 
threshold via grid search on the validation split.

For our specific objective, we tuned the threshold to 
achieve sensitivities of 0.85, ensuring that the model 
maintains clinically acceptable performance in effectively 
identifying positive COVID-19 cases. This sensitivity was 
chosen to exceed lateral flow device (LFD) tests, which 
achieved a sensitivity of 56.9% (95% confidence interval 
51.7%-62.0%) for OUH admissions between December 
23, 2021 and March 6, 2021 [44]. Additionally, the gold 
standard for diagnosing viral genome targets is by real-
time PCR (RT-PCR), which had estimated sensitivities 
around 80%-90% during different times of the pandemic 
[49–51].

Results
Comparison of methods
In Fig.  4, we compare the performance of all the meth-
ods in terms of AUROC for different amounts of label 
noise. Full numerical results can be found in Supplemen-
tary Table  7. The regularizers from CV domain provide 
significant improvement over the baselines, with Mix-up 
and NCR emerging as the best performing methods in 
14 out of 25 test sets. Since both the Mix-up and NCR 
methods demonstrated strong performance, we also con-
ducted an assessment of their combined use. The model 
performances remained fairly consistent across the Mix-
up, NCR, and combined Mix-up and NCR methods, with 
the combined method consistently outperforming the 
others. NCR or Mix-up method followed as the second-
best performers in 18 out of 25 test cases. However, the 
difference in accuracy between Mix-up (both indepen-
dently and when combined with NCR) compared to 
NCR, was not found to be significant ( p > 0.05 , based 
on 1,000 bootstrapped iterations; exact p-values can be 
found in the Supplementary Table  6). Amongst the CV 
methods, label smoothing performed the worst, steadily 
decreasing in AUROC as the error in the training data 
increased, across all test sets (AUROC decreased by up 
to 3% when there was 40% error in COVID-19 positive 
cases). A more detailed discussion of these results can be 
found in “Conclusion and discussion” section.

When considering the mean AUROC performances 
(alongside standard deviation) for each test set (see Sup-
plementary Table 5), across different methods, we found 
that models trained with NCR (both alone and combined 
with Mix-up) exhibited lower standard deviations, indi-
cating more consistent classification performance across 

different noise ratios. Standard deviations were between 
0.004-0.008 for NCR and Mix-up+NCR methods, across 
all test sets, compared to standard devisions of >0.010 
for all other methods (except Mix-up, where standard 
deviation was 0.005-0.006 for three of the five test sets). 
This implies that the performance drop with increasing 
noise was reduced with NCR compared to other meth-
ods. This is true across all test sets, suggesting that the 
models trained with NCR are robust and generalizable 
across independent and unseen cohort distributions. Full 
numerical values can be found in Supplementary Table 5.

Motivated by these findings, we conducted a more 
comprehensive assessment of training with NCR. With 
respect to clinical applications, we chose to focus on 
NCR since it does not involve altering the data. This is 
in contrast to Mix-up, which might be considered as 
using “synthetic data,” and may potentially be unsuitable 
for clinical tasks. NCR also performed closely to that of 
Mix-up and the combination of Mix-up and NCR. These 
results fell within confidence intervals, with accuracies 
that exhibited no significant differences across 1,000 
bootstrapped runs.

Extended analysis with neighbour consistency 
regularization
After performing grid search, using five-fold standard 
cross validation, we determined the best hyperparam-
eters to use in training (final hyperparameter values used 
can be found in Supplementary Table  4. The following 
results shown are for NCR with KL-divergence as men-
tioned in Eq. 4. This is the same formulation as presented 
in the original NCR paper [21]; however, we additionally 
performed similar analyses with other divergence meas-
ures. Results for these have been reported in Section  F 
of the Supplementary Material. Our results indicate that 
these divergence measures produce outcomes similar to 
those achieved when utilizing KL-divergence.

Ablation study
We further investigate the effect of the key hyperparam-
eters of NCR at different noise levels. Specifically, we 
analyze the impact of the hidden layer used for extracting 
the latent representations for calculating the NCR term, 
the weight of the NCR term, the epoch at which NCR is 
initialized, the batch size used, and the number of neigh-
bors k. A subset of results for only PUH and BH datasets 
is shown in Fig.  5 for different noise levels and the full 
set of results (including the hidden layer and the batch 
size used) can be found in Supplementary Fig. 4. Figure 5 
illustrates that increasing the weight of NCR can improve 
performance at higher noise ratios, up to a certain extent. 
Furthermore, it is clear that irrespective of the noise 
level, providing a warm-up period of around 30 epochs 
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Fig. 4  Change in performance (AUROC) at different training label corruption levels across different methods. Panels (a-e) show results for different 
test sets
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with just the binary cross-entropy loss enabled (before 
switching on the NCR loss term) helps achieve superior 
performance than enabling both loss terms (as shown in 
Eq.  4) from the start of training. A detailed discussion 
of these results can be found in “Conclusion and discus-
sion”  section. Finally, we also observe that considering 
around 10 nearest neighbors in the NCR loss formula-
tion achieves the best results, with performance saturat-
ing with increasing number of neighbors. Hence, we ran 
all our experiments with 10 neighbors. Complete abla-
tion results including all test sets and hyperparameters, 
across different noise ratios, can be found Supplementary 
Figure 5.

In comparison to the baseline NN model, NCR achieves 
a significant improvement in performance, reaching up 
to a 3.7% increase across all noise ratios for all test sets 
(Table  1). Surprisingly, the use of NCR achieves perfor-
mance that is comparable, and in some cases even supe-
rior, to that of standard cross entropy when there is 0% 
added noise ( p > 0.05 ), suggesting a general regulariza-
tion effect of NCR.

As per expectations, the improvement in AUROC is 
particularly pronounced in the presence of higher levels 
of label noise within the training set (p-values were gen-
erally significant, i.e. < 0.05 , at most noise ratios above 
10%), providing credibility to the fact that NCR indeed 
plays a crucial role in constraining the model to learn 
meaningful patterns, rather than simply memorizing 
noisy data labels. Detailed numerical results for AUROC, 
AUPRC, sensitivity, and specificity are shown in Table 1 

(results for positive predictive value (PPV) and negative 
predictive value (NPV) can be found in Supplementary 
Table 8).

In addition to the considered datasets so far, we present 
results from two additional case studies conducted using 
the eICU Collaborative Research Database and the Adult 
(Census Income) Dataset. Again, NCR proved to be 
effective in addressing label noise at various noise rates 
thereby showing its utility in healthcare as well as other 
tabular data domains. Comprehensive results and analy-
sis for these two tasks can be found in Section H of the 
Supplementary Material.

Analysis of feature embeddings
By utilizing datasets that contain known noise, we have 
the opportunity to compare the feature similarity among 
training examples, considering whether they are cor-
rectly or incorrectly labeled as belonging to the same or 
different classes. In an ideal scenario, the distributions 
of within-class and between-class similarities for clean 
examples would not overlap and would perfectly match 
the true within-class and between-class similarities for 
mislabeled examples. We perform this comparison for 
both the baseline NN model and the model when trained 
with NCR. Although the distributions for the baseline 
model exhibit overlap, they are not identical, indicat-
ing that the feature similarities still contain some useful 
information that NCR can leverage. The utilization of 
NCR during training results in improved separation of 
classes in the feature space (Fig. 6).

Fig. 5  Ablation study showing model performance with NCR with varying NCR hyperparameters for PUH and BH test sets, across varying a NCR 
starting epochs, b NCR weights, and c number of nearest neighbors (k). Results presented for 20% error in cases and 0.5% error in controls, and 40% 
error in cases and 0.5% error in controls
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Table 1  AUROC, AUPRC, Sensitivity, and Specificity comparison between baseline and NCR models, across different amounts of 
error and test sets. In addition to label error in COVID-19 positive cases, there is also 0.5% label error in the negative controls. 0% error 
represents the original dataset, without any added label noise. p-values shown compare differences in performance between the 
baseline NN (trained with cross entropy loss only) and the same model trained with NCR in addition to cross entropy loss (denoted by 
NCR). Bold faced values for each metric denote best performing method across different test sets

AUROC AUPRC Sensitivity Specificity

Test Set Baseline NN CE+NCR Baseline NN CE+NCR Baseline NN CE+NCR Baseline NN CE+NCR p-value

0% error

     PUH 0.884(0.868-
0.901)

0.894(0.878-
0.910)

0.538(0.494-
0.583)

0.579(0.536-
0.624)

0.841(0.81-
0.871)

0.807(0.774-
0.838)

0.722(0.713-
0.731)

0.831(0.824-
0.838)

p = 0.38

     UHB 0.858(0.839-
0.875)

0.858(0.841-
0.876)

0.309(0.278-
0.340)

0.387(0.348-
0.431)

0.861(0.833-
0.889)

0.831(0.800-
0.859)

0.638(0.629-
0.646)

0.723(0.716-
0.731)

p = 0.396

     BH 0.922(0.898-
0.942)

0.932(0.911-
0.949)

0.691(0.627-
0.751)

0.753(0.690-
0.803)

0.931(0.894-
0.961)

0.903(0.859-
0.941)

0.659(0.636-
0.684)

0.770(0.748-
0.790)

p = 0.346

     OUH 
“wave 2”

0.868(0.860-
0.877)

0.878(0.869-
0.885)

0.554(0.536-
0.573)

0.635(0.616-
0.653)

0.875(0.862-
0.887)

0.845(0.831-
0.858)

0.604(0.598-
0.609)

0.717(0.712-
0.722)

p = 0.485

     OUH 
“wave 1”

0.843(0.828-
0.859)

0.845(0.830-
0.860)

0.087(0.078-
0.097)

0.155(0.133-
0.181)

0.859(0.837-
0.882)

0.806(0.78-
0.83)

0.615(0.613-
0.618)

0.729(0.726-
0.731)

p = 0.273

Error in 10% cases

     PUH 0.890(0.872-
0.906)

0.885(0.867-
0.903)

0.572(0.529-
0.617)

0.553(0.509-
0.601)

0.846(0.816-
0.875)

0.875(0.846-
0.904)

0.745(0.737-
0.754)

0.677(0.668-
0.687)

p = 0.164

     UHB 0.855(0.837-
0.873)

0.858(0.841-
0.876)

0.353(0.318-
0.399)

0.315(0.285-
0.353)

0.854(0.825-
0.882)

0.877(0.852-
0.903)

0.679(0.671-
0.687)

0.641(0.633-
0.649)

p = 0.014

     BH 0.920(0.897-
0.942)

0.917(0.890-
0.939)

0.693(0.630-
0.760)

0.701(0.635-
0.763)

0.917(0.874-
0.954)

0.924(0.884-
0.958)

0.734(0.712-
0.756)

0.713(0.689-
0.738)

p = 0.379

     OUH 
“wave 2”

0.867(0.858-
0.875)

0.867(0.858-
0.875)

0.615(0.596-
0.634)

0.584(0.566-
0.604)

0.865(0.851-
0.877)

0.888(0.876-
0.899)

0.647(0.641-
0.652)

0.565(0.56-
0.571)

p = 0.005

     OUH 
“wave 1”

0.839(0.823-
0.853)

0.845(0.83-
0.86)

0.124(0.106-
0.146)

0.098(0.087-
0.11)

0.850(0.827-
0.871)

0.873(0.852-
0.894)

0.642(0.639-
0.645)

0.564(0.562-
0.567)

p = 0.325

Error in 20% cases

     PUH 0.879(0.860-
0.898)

0.882(0.863-
0.899)

0.471(0.427-
0.519)

0.537(0.492-
0.584)

0.854(0.823-
0.883)

0.878(0.850-
0.904)

0.723(0.715-
0.733)

0.681(0.673-
0.691)

p = 0.491

     UHB 0.829(0.809-
0.850)

0.851(0.833-
0.869)

0.272(0.243-
0.305)

0.361(0.322-
0.408)

0.834(0.803-
0.863)

0.886(0.862-
0.910)

0.646(0.638-
0.654)

0.608(0.599-
0.616)

p = 0.079

     BH 0.925(0.904-
0.943)

0.930(0.908-
0.949)

0.679(0.614-
0.74)

0.718(0.65-
0.792)

0.910(0.868-
0.947)

0.924(0.885-
0.959)

0.718(0.695-
0.741)

0.702(0.677-
0.723)

p = 0.01

     OUH 
“wave 2”

0.855(0.845-
0.864)

0.869(0.86-
0.877)

0.524(0.504-
0.542)

0.618(0.599-
0.638)

0.860(0.847-
0.873)

0.892(0.881-
0.903)

0.606(0.601-
0.612)

0.548(0.542-
0.554)

p = 0.303

     OUH 
“wave 1”

0.819(0.802-
0.836)

0.84(0.825-
0.855)

0.065(0.058-
0.072)

0.126(0.110-
0.147)

0.840(0.818-
0.863)

0.876(0.854-
0.897)

0.607(0.605-
0.610)

0.571(0.568-
0.573)

p = 0.038

Error in 30% cases

     PUH 0.856(0.834-
0.876)

0.886(0.868-
0.902)

0.493(0.448-
0.544)

0.516(0.471-
0.565)

0.865(0.834-
0.891)

0.888(0.861-
0.914)

0.593(0.583-
0.602)

0.644(0.635-
0.653)

p = 0.051

     UHB 0.830(0.809-
0.851)

0.849(0.830-
0.868)

0.315(0.281-
0.356)

0.371(0.331-
0.416)

0.868(0.84-
0.892)

0.863(0.836-
0.89)

0.527(0.519-
0.536)

0.612(0.604-
0.621)

p = 0.005

     BH 0.916(0.891-
0.937)

0.920(0.898-
0.941)

0.675(0.605-
0.74)

0.678(0.609-
0.75)

0.958(0.928-
0.985)

0.917(0.874-
0.952)

0.555(0.530-
0.581)

0.696(0.673-
0.721)

p = 0.464

     OUH 
“wave 2”

0.857(0.848-
0.866)

0.867(0.858-
0.875)

0.581(0.560-
0.600)

0.577(0.557-
0.597)

0.891(0.879-
0.902)

0.899(0.888-
0.910)

0.514(0.509-
0.520)

0.520(0.514-
0.525)

p = 0.001

     OUH 
“wave 1”

0.834(0.818-
0.849)

0.835(0.819-
0.851)

0.121(0.104-
0.142)

0.116(0.099-
0.136)

0.880(0.858-
0.899)

0.873(0.852-
0.895)

0.511(0.508-
0.514)

0.524(0.522-
0.527)

p = 0.023

Error in 40% cases

     PUH 0.856(0.836-
0.876)

0.884(0.865-
0.901)

0.488(0.443-
0.543)

0.553(0.506-
0.598)

0.870(0.841-
0.898)

0.870(0.840-
0.898)

0.548(0.539-
0.558)

0.642(0.634-
0.652)

p = 0.014

     UHB 0.823(0.802-
0.844)

0.846(0.826-
0.865)

0.352(0.313-
0.399)

0.331(0.295-
0.375)

0.852(0.823-
0.879)

0.875(0.848-
0.902)

0.576(0.568-
0.585)

0.598(0.589-
0.606)

p = 0.027
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We further compare the distribution of cosine similari-
ties for training examples that are correctly or incorrectly 
labeled as the same class or different classes in Fig. 6. The 
features learned using NCR exhibit noticeably better class 
separation when compared to the features learned using the 
baseline NN utilizing only cross entropy (CE) loss (top row).

Analysis of prediction confidence
In Fig.  7, additional evidence is provided to sup-
port the hypothesis that NCR effectively prevents the 

memorization of noisy labels. Namely, we assessed the 
confidence level associated with the predicted label for 
each training example. Panel b) of the figure demon-
strates that the model trained with NCR more frequently 
assigns higher confidence to correctly labeled samples. 
In contrast, the model trained without NCR, in panel a), 
tends to overfit to the noisy labels, resulting in a lower 
confidence assignment to a larger number of correctly 
labeled samples.

Table 1  (continued)

AUROC AUPRC Sensitivity Specificity

Test Set Baseline NN CE+NCR Baseline NN CE+NCR Baseline NN CE+NCR Baseline NN CE+NCR p-value

     BH 0.894(0.863-
0.922)

0.929(0.904-
0.949)

0.701(0.640-
0.760)

0.7(0.631-
0.776)

0.903(0.859-
0.941)

0.938(0.903-
0.969)

0.634(0.612-
0.660)

0.668(0.644-
0.693)

p = 0.262

     OUH 
“wave 2”

0.830(0.819-
0.84)

0.863(0.854-
0.871)

0.553(0.532-
0.572)

0.577(0.557-
0.598)

0.852(0.839-
0.865)

0.898(0.886-
0.908)

0.514(0.508-
0.519)

0.511(0.505-
0.516)

p < 0.001

     OUH 
“wave 1”

0.805(0.788-
0.821)

0.842(0.828-
0.857)

0.122(0.105-
0.144)

0.09(0.078-
0.104)

0.84(0.818-
0.863)

0.89(0.871-
0.911)

0.497(0.494-
0.500)

0.534(0.531-
0.537)

p = 0.002

Fig. 6  Feature similarity distributions at the end of training, for samples correctly and incorrectly labelled, across both similar and different classes 
without and with NCR. Feature similarity is calculated using cosine similarity as described in Eq. 3. Results shown are for models trained on data 
with 40% noisy labels

Fig. 7  Predicted confidence of correctly labeled and incorrectly labeled training examples during different stages of training. a shows the predicted 
confidences when using Baseline NN trained using only cross entropy (CE) loss and b that of the same model when trained using CE+NCR loss 
terms



Page 12 of 15Yang et al. BMC Medical Informatics and Decision Making          (2024) 24:183 

Conclusion and discussion
The results of this research highlight the significant 
promise of incorporating CV methods to tackle the issues 
stemming from noisy labels in EHR data. Our investi-
gation underscores that despite the notable differences 
between CV and EHR datasets, the adaptation and fusion 
of various CV techniques to address label inaccuracies 
can offer substantial benefits in healthcare applications. 
Through the utilization of these recently introduced CV 
techniques, specifically Label Smoothing, Mix-up, and 
NCR, we can significantly improve the robustness of DL 
models when confronted with noisy labels during the 
analysis of EHR data.

Similar to previous studies  [18–20], we noticed that 
deep neural networks, when trained without these noise-
mitigation methods, have the capability to memorize 
random and noisy labels and exhibit poor generaliza-
tion on unseen test sets (see Supplementary Table 7 and 
Fig.  4). In particular, we showed that both Mix-up and 
NCR, individually as well as when combined, demon-
strated strong performance in mitigating overfitting to 
noisy class labels. This success can be attributed to the 
fact that neither of these methods solely relies on the ini-
tial labels (which can be noisy) for evaluating the model’s 
performance.

We also found that the use of NCR achieves perfor-
mance that is comparable, and in some cases even supe-
rior, to that of standard cross entropy when there is 0% 
added noise, suggesting a general regularization effect of 
NCR. This may be because the original training data from 
the hospitals is already noisy to begin with (even without 
addition of synthetic noise to the labels), and thus, NCR 
is able to show improved performance when trained with 
inherently noisy labels. Improvement in AUROC was 
generally found to be significant, i.e. p < 0.05 , across 
the majority of test sets for noise ratios above 10%. This 
is reflective of how NCR has greater effect when there 
is higher levels of label corruption, and less significant 
effect at low levels of label corruption.

In addition to examining each method in isolation, 
our findings revealed that combining multiple methods, 
specifically Mix-up and NCR, exhibited superior per-
formance, outperforming each method when used inde-
pendently. This improvement stems from the joint effect 
of Mix-up and NCR in mitigating label noise, with Mix-
up also contributing to data augmentation during the 
training process. This paves the way for future research 
possibilities, further encouraging the use of multiple CV-
based techniques for effectively addressing label noise.

Of the three CV techniques considered, label smooth-
ing performed the worst. We hypothesize that this is 
because it adds noise to both noisy and clean labels. 
Thus, as the majority of labels (particularly, COVID-19 

negative controls) in our training set are correct, label 
smoothing can be less effective and actually decrease 
the accuracy of the model in many cases. Furthermore, 
previous studies have found that the advantage of label 
smoothing vanishes when label noise is high [40], which 
we also observed when the error in COVID-19 positive 
cases was high.

Our ablation studies with NCR reveal that increas-
ing the weight of NCR can improve performance at 
higher noise ratios, up to a certain extent. This find-
ing aligns with the expectation that higher noise ratios 
require a stronger NCR effect to counteract the impact of 
noise. Additionally, we found that providing a warm-up 
period of few training epochs with just the binary cross-
entropy loss enabled (before switching on the NCR loss 
term) helps achieve superior performance compared to 
enabling both loss terms from the start of training. We 
hypothesize that this is because the initial training phase 
with just the cross entropy loss allows the model to learn 
the underlying patterns in the noisy data before applying 
the regularizer, which appears to be more effective when 
the model has converged to some extent. Also we can 
view it from a curriculum learning perspective, where 
the model progressively tackles more challenging aspects 
of the task, i.e., to account for the noise in the data and 
learning to avoid overfitting to it.

While our efforts were directed at mitigating label 
noise, it is crucial to emphasize that errors can persist 
within the features themselves, potentially leading to 
inaccuracies in the model performance. Feature noise has 
been a subject of extensive research  [53–58]; however, 
it was not the primary focus of our study. In addition 
to feature noise, we also encountered missing data con-
cerning the features. To handle this issue, we opted for 
population median imputation, consistent with similar 
COVID-19 studies that utilized the same dataset. Nev-
ertheless, it is worth noting that the underlying reasons 
for and the nature of missing data could carry important 
information about the source and nature of errors. There-
fore, future research should continue exploring alterna-
tive approaches for assessing and address missing data.

It should also be noted that the techniques employed 
can alter decision boundaries and the outcomes of 
models, potentially affecting the perceived significance 
of features in classification. For example, mix-up com-
bines features from paired input samples, resulting in 
smoother decision boundaries within the feature space. 
Consequently, the importance of individual features 
may become less pronounced or more diffuse com-
pared to models trained without blending. Additionally, 
mix-up promotes the learning of robust and generaliza-
ble representations by introducing perturbations in the 
input data space. This can lead to higher importance 
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being assigned to features less affected by mix-up 
blending, while those highly sensitive to blending may 
be considered less important. Research has shown the 
benefits of mix-up in learning rare features compared 
to standard methods [59].

Similarly, Neighbor Consistency Regularization 
(NCR) also encourages smoothness and consistency 
in predictions among neighboring data points. Thus, 
features contributing to stable predictions and smooth 
decision boundaries within local neighborhoods are 
likely to be prioritized by the model. However, an 
excessive reinforcement of feature significance within 
local neighborhoods may lead to a focus on local rather 
than global feature importance.

Furthermore, label smoothing enhances the model’s 
resilience to noisy or incorrectly labeled training data 
by reducing the influence of individual erroneous labels 
during training. Consequently, this can result in a more 
accurate estimation of feature importance by mitigat-
ing the effects of label noise on the acquired decision 
boundaries.

Overall, the impact of such techniques on feature 
importance may vary depending on the specific charac-
teristics of the dataset, model architecture, and training 
process. Therefore, future studies may benefit from fur-
ther investigation into model explainability.

Moreover, probabilities can prove valuable for spe-
cific tasks, particularly when binary classification lacks 
the necessary depth of information. This approach 
aligns well with the CV techniques we explored, namely 
Mix-up and Label Smoothing, both of which yield con-
tinuous values instead of discrete binary outcomes. Our 
decision to employ binary classification (COVID-19 
positive or negative) was made to align with rapid triag-
ing processes used in hospitals [44, 48].

Finally, we are also aware that the COVID-19 data-
sets we employed provide a limited perspective com-
pared to the extensive information available in EHR 
systems. It is worth noting that significant portions of 
EHR data, such as treatment-related specifics or life-
style and environmental factors, among others, are not 
fully represented in the datasets we have utilized in this 
study. Therefore, further research is required to gain 
a comprehensive understanding of the consequences 
of diverse types of label noise and to assess how dif-
ferent noise mitigation techniques influence model 
performance.
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