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Abstract 

Background  Machine Learning (ML) plays a crucial role in biomedical research. Nevertheless, it still has limitations 
in data integration and irreproducibility. To address these challenges, robust methods are needed. Pancreatic ductal 
adenocarcinoma (PDAC), a highly aggressive cancer with low early detection rates and survival rates, is used as a case 
study. PDAC lacks reliable diagnostic biomarkers, especially metastatic biomarkers, which remains an unmet need. 
In this study, we propose an ML-based approach for discovering disease biomarkers, apply it to the identification 
of a PDAC metastatic composite biomarker candidate, and demonstrate the advantages of harnessing data resources.

Methods  We utilised primary tumour RNAseq data from five public repositories, pooling samples to maximise 
statistical power and integrating data by correcting for technical variance. Data were split into train and valida-
tion sets. The train dataset underwent variable selection via a 10-fold cross-validation process that combined three 
algorithms in 100 models per fold. Genes found in at least 80% of models and five folds were considered robust 
to build a consensus multivariate model. A random forest model was constructed using selected genes from the train 
dataset and tested in the validation set. We also assessed the goodness of prediction by recalibrating a model using 
only the validation data. The biological context and relevance of signals was explored through enrichment and path-
way analyses using QIAGEN Ingenuity Pathway Analysis and GeneMANIA.

Results  We developed a pipeline that can detect robust signatures to build composite biomarkers. We tested 
the pipeline in PDAC, exploiting transcriptomics data from different sources, proposing a composite biomarker can-
didate comprised of fifteen genes consistently selected that showed very promising predictive capability. Biological 
contextualisation revealed links with cancer progression and metastasis, underscoring their potential relevance. All 
code is available in GitHub.

*Correspondence:
Eva Caamaño Gutiérrez
caamano@liverpool.ac.uk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02578-0&domain=pdf
http://orcid.org/0000-0001-7737-5941


Page 2 of 15Mahawan et al. BMC Medical Informatics and Decision Making          (2024) 24:175 

Conclusion  This study establishes a robust framework for identifying composite biomarkers across various disease 
contexts. We demonstrate its potential by proposing a plausible composite biomarker candidate for PDAC metastasis. 
By reusing data from public repositories, we highlight the sustainability of our research and the wider applications 
of our pipeline. The preliminary findings shed light on a promising validation and application path.

Keywords  Biomarker identification, Machine Learning, PDAC, Pancreatic cancer, Metastasis

Background
Advances in computational biomarker discovery have 
significant implications for biomedical research and are 
playing an important role for diagnosis and personal-
ised treatment of patients [1, 2]. Machine learning (ML) 
based methods have been widely applied to biomedical 
research, especially cancer research [3]. However, ML-
based methods face a data leakage and reproducibility 
crisis, with poor practices affecting numerous studies 
[4]. Inappropriate data handling and poorly designed 
workflows can lead to faulty and over-optimistic 
results. Moreover, variations in input parameters and 
sample variability from a target population can lead to 
vastly different predicted outcomes, leading to identi-
fication of inconsistent biomarker candidates [5]. Con-
trolling these variabilities to extrapolate true biological 
signal, consequently establishing a consensus in the 
variable selection process is paramount for identifying 
robust biomarkers. This is particularly important when 
using biological data derived from omics experiments 
(e.g. transcriptomics, proteomics, or metabolomics) as 
a low variable number to sample ratio and high vari-
ance between experimental batches is common and can 
impact negatively potential results, normally requiring 
statistical corrections for data integration. Moreover, in 
clinical studies, is not uncommon to face a shortage of 
control subjects, which could result in class imbalance, 
which most off-the-shelf methods are not designed to 
handle. These challenges emphasise the need for a con-
sistent analytical framework for biomarker discovery, 
to produce reliable and robust results.

By focusing on well-known health problems, our 
research aims to make a meaningful contribution to the 
methodology and understanding of a critical biomedi-
cal issue. Pancreatic ductal adenocarcinoma (PDAC) 
was selected to be explored in this study. PDAC is a 
highly aggressive cancer and a high potential for metas-
tasis [6], which makes treatment challenging [7]. Previ-
ous work has focused on finding biomarkers to detect 
PDAC tumours at an early stage, because the majority 
of PDAC cases (80–85%) are diagnosed with advanced 
or metastatic disease, with only 15–20% eligible for 
potentially curative resection. [8]. The 5-year survival 
rate for PDAC patients with metastatic disease is only 
5–10% [9].

Despite these challenges, many recent studies have 
been conducted on PDAC using ML, including risk pre-
diction, early diagnosis, pancreatic fistula after pancrea-
ticoduodenectomy, pathological tumour response to 
neoadjuvant chemotherapy, molecular subtyping, and 
microsatellite instability status [10].

There have been numerous attempts to achieve early 
detection using ML. For example, a study applied AI 
methods to clinical data to predict the risk of pancreatic 
cancer, showing promising results beneficial for future 
disease screening [11]. A three-dimensional convoluted 
neural network (3D-CNN) was used in PDAC diagnosis, 
predicting lymph node metastasis and the postoperative 
positive margin status based on preoperative CT scans 
[12]. ML models such as tree regression and logistic 
regression were implemented in clinical decision mak-
ing in surgery of early-stage PDAC patients [13]. Gene 
expression biomarker signatures have been reported in 
other cancers such as colorectal cancer progression but 
have not been effective for PDAC [14]. Despite these 
advancements in disease surveillance, diagnosis, and 
treatment, PDAC progression remains challenging to 
manage and warrants further studies.

Early detection of PDAC is difficult due to asymp-
tomatic or nonspecific symptoms in the early stages, 
resulting in patients being ineligible for surgical resec-
tion when clinical symptoms appear [15]. Diagnostic 
imaging is useful tool to diagnose PDAC early but may 
miss early-stage cancer before symptoms appear. Surveil-
lance programs for high-risk patients are necessary, but 
screening asymptomatic individuals is challenging due to 
potential false positive results and costs [16]. The FDA-
approved diagnostic biomarker for PDAC, serum carbo-
hydrate antigen 19-9 (CA 19-9), has limited effectiveness 
for this purpose [17, 18]. Most diagnosed PDAC patients 
already have metastatic cancer and even those undergo-
ing surgical resection may succumb to metastatic disease 
since they already have with clinically undetectable micro 
metastases at the time of surgery, presenting detectable 
tumours later [19, 20]. Finding reliable biomarkers to pre-
dict PDAC metastasis remains an unmet need and could 
help to identify patients in need of anti-metastatic thera-
pies, thereby improving patient outcomes [21].

Here, we propose a machine-learning in-silico bio-
marker discovery pipeline that can be applied to multiple 
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disease contexts. We showcase how it applies to integrat-
ing gene expression data to identify biomarker candidates 
for PDAC metastasis. Our robust workflow follows ML 
best practices, including feature selection, resampling 
techniques, and classification models, to generate con-
sistent and reliable biomarker candidates for metastatic 
PDAC patient classification. We then contextualise the 
markers identified by examining their biological func-
tion. These biomarker candidates can be investigated fur-
ther in laboratory and validated in clinical studies in the 
future.

Methods
Data preparation and inclusion criterion
In this study, we investigated PDAC datasets from all 
major public repositories, including The Cancer Genome 
Atlas (TCGA) [22], Gene Expression Omnibus (GEO) 
[23], the International Cancer Genome Consortium 
(ICGC) databases [24], and The Clinical Proteomic 
Tumour Analysis Consortium (CPTAC) [25]. We applied 
a filter-out selection criterion to the data based on the 
following parameters: samples collected from primary 
tumour tissues of unpaired PDAC patients only, data-
sets containing patient clinical data for lymph node and 
distant metastasis, age and sex, and data acquired from 
RNA sequencing platforms. All datasets were processed 
from data summarised at the gene level, with exception 
of CPTAC which only raw counts were available. The 
patient stratification was summarised in Figure S1 in 
Additional file 1.

The datasets comprised PDAC cases with and without 
metastasis. We stratified the samples into two groups 
based on their metastasis status to local lymph nodes 
using AJCC cancer staging, including pathologic tumour 
and TNM staging where T is the size of the tumour, N is 
local lymph node invasion and metastasis, and M is dis-
tant metastasis [26]. We use these definitions: the sam-
ples from stage IA to IIA PDAC patients with no regional 

lymph node metastasis (N-0) were categorised as the 
“non-metastasis group”. In contrast, the “metastasis 
group” included stage IIB to IV PDAC patients. Our anal-
ysis utilised five datasets, as summarised in Table 1. We 
used TCGA-PAAD, PACA-AU and PACA-CA [27–29] as 
our train dataset for the variable selection steps for train/
test processes and CPTAC-PDAC and GSE79668 [30, 31] 
as the validation datasets (accessed 10/10/2021).

PDAC data pre‑processing and integration
Data analyses using R version 4.2.2 [32] involved normal-
isation, gene filtering, identifying consistent expression 
patterns, dataset merging, and batch effect removal. The 
dataset showed vast differences based on technical vari-
ance (see Figures S2 and S3 in Additional file 1). Trimmed 
Mean of M-values (TMM) normalisation was applied 
using the edgeR package [33] to account for sequencing 
depth and composition differences between samples [34]. 
Genes with low expression levels (< 5% quantile & < 0.1 
Absolute Fold Change) were filtered out. To address 
batch effects, which introduce unwanted variability 
between experiments, we used ARSyN (ASCA removal 
of systematic noise) mode 1 (batch correction only) 
from the MultiBaC package [35]. This method requires 
a lower number of features to converge. This reduction 
was undertaken by filtering out genes that did now show 
a consistent expression pattern across technical batches 
in the train dataset. Batch correction was undertaken on 
both train and validation datasets together to transform 
the datasets to allow biological signals to be identified, 
given the large technical variance.

Biomarker candidate identification process
Analysis workflow
We designed an in-silico workflow for biomarker discov-
ery to predict metastatic tumour stages as a binary out-
come using ML (see Fig.  1). After data processing, data 
was split into train and validation data. The train data 

Table 1  Patient Stratification and Sample Sizes - This table presents the stratification of samples based on cancer stages. The samples 
are divided into two classes: metastasis (involving lymph nodes and/or liver) and non-metastasis. Stages IA to IIA are categorized as 
non-metastasis, while stages IIB to IV are classified as metastasis. The table displays the count and percentage representation of each 
class in train and validation datasets. The metastasis and non-metastasis groups are imbalanced

Tumour stage T N M Class Train data (%) Validation data (%)

IA T1 N0 M0 Non-metastasis 107 (34.74) 43 (23.75)

IB T2 N0 M0

IIA T3 N0 M0

IIB T1-3 N1 M0 Metastasis 201 (65.26) 138 (76.25)

III T4 N0, N1 M0

IV Any N0, N1 M1

Total no. of samples 308 181
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was further split into a 90% train set and a 10% test set. 
The train data underwent 10-fold cross-validation, using 
Least absolute shrinkage and selection operator (LASSO) 
logistic regression, glmnet package [36] for variable 
selection first, then selected variables from LASSO were 
further selected by Boruta [37], and the backwards selec-
tion algorithm within package varSelRF [38] on 100 mod-
els per fold. Genes found in at least 80% of models per 
fold and five folds in both Boruta and varSelRF were con-
sidered robust marker candidates.

We used random forest models [39] implemented via 
the ranger method in caret package [40], an ensemble 
of decision trees for improved classification accuracy, 
5-fold cross-validation, and oversampled by ADASYN 
[41] to balance the proportion of classes in all modelling 
approaches. The train set was used to build 100 models 
(Fig.  1, blue line), while the test set was used to assess 
each model shown in Fig.  1. The details of criteria and 
parameters used in each of these methods, together with 
all the code for this pipeline can be consulted in ML_
PDACBiomarker GitHub repository [42].

Model evaluation
The Random Forest models were evaluated using a com-
prehensive set of twelve metrics, specifically chosen for 
their effectiveness in analysing imbalanced data. These 

included Precision, Recall, and F1 score for both the 
metastasis (class 0) and non-metastasis (class 1) classes, 
which assessed the models’ performance in correctly 
identifying instances of each class. To provide a balanced 
view of the models’ overall performance, Macro-Aver-
aged Precision, Recall, and F1 score were also calculated, 
giving equal weight to each class [43]. The model’s ability 
to distinguish between the two classes at various thresh-
old settings was quantified using the Receiver Operating 
Characteristic - Area Under the Curve (ROC_AUC) [44]. 
The Precision-Recall - Area Under the Curve (PR_AUC) 
was used to measure the model’s precision-recall trade-
off at different threshold settings, a metric particularly 
useful for imbalanced datasets [45]. Lastly, the Matthews 
Correlation Coefficient (MCC) provided a balanced 
measure of the model’s performance, considering true 
and false positives and negatives [46]. Further details of 
evaluation metrics and their calculations can be found in 
Additional file 2 part 1.

Hyperparameter tuning
RF models require tuning of hyperparameters such as 
ntree (number of trees in forest), mtry (number of fea-
tures considered for splitting at each node), splitrule 
(rule for node splitting), and min.node.size (minimum 
number of observations required for a node to split). 

Fig. 1  Analysis workflow, including data pre-processing, variable selection, re-sampling technique, and classification model
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Hyperparameter tuning was undertaken with the train 
function from the caret R package [40], selecting the 
method as ranger. We tuned the hyperparameters using 
a grid search approach with 10 different combinations 
of values, facilitated by the tuneLength = 10 parameter. 
Additionally, we employed a 5-fold cross-validation (CV) 
strategy to ensure the generalizability of the model’s per-
formance across different subsets of the data. Further 
details of hyperparameters can be found in Additional 
file 2 part 2.

Model performance comparison
Model performance comparison with XGBoost
We compared the performance of the RF model created 
with the genes selected against an equivalent one using 
XGBoost (XGB), both of which are popular decision tree 
algorithms. We built XGB models using the same proce-
dures as the RF model. We employed the train function 
from the caret R package [40], selecting the method as 
‘xgbTree’ [47]. Hyperparameter tuning was performed 
with a range of tune grids, following hyperparameters: 
nrounds (the number of boosting rounds), max_depth 
(the maximum depth of a tree), eta (the learning rate), 
gamma (the minimum loss reduction required to make 
a split), colsample_bytree (the fraction of columns to be 
randomly sampled for each tree), min_child_weight (the 
minimum sum of instance weight needed in a child), and 
subsample(the fraction of observations to be randomly 
sampled for each tree).We applied the XGB model to the 
training data, performed validation (a model trained by 
train data and tested by validation data), and model in 
validation data. The results are presented in Tables S11-
S13 (Additional file 2 part 3).

Model performance comparison between 15 selected genes 
and 15 random genes
We implemented the same analysis approach for vali-
dation using 15 randomly selected genes from the data 
matrix used for variable selection. A Random Forest (RF) 
model was trained on the train data and subsequently 
tested using validation data, as depicted in Figure  7S 
(Additional file 2 part 4). This process was repeated 100 
times to ensure robustness. The performance of the mod-
els were recorded for the same 12 metrics outlined above, 
and the mean and 95% confidence interval were calcu-
lated to provide a comprehensive view of their perfor-
mance shown in Figure 8S (Additional file 2, part 4).

In‑silico validation and biological contextualisation
In‑silico validation
To validate the predictive potential of our composite 
biomarker candidate, we created random forest models 
using selected genes from the train dataset and test their 

predictive capacity on the validation dataset (see Fig.  1 
pink line). The optimal hyperparameter configuration, 
as determined by the highest accuracy on the training 
set, included ntree = 500, mtry = 3, splitrule = extratrees, 
min.node.size = 1. We also assessed the goodness of fit 
on the validation data using a recalibration approach. 
Splitting the validation data into a 90% train set and 
a 10% test set; we created 100 new RF models with the 
candidate composite biomarker on the train validation 
data evaluating model performance on the test data, the 
model performances were averaged from these 100 mod-
els. This was done to ensure that the predictive capability 
of the selected biomarker candidates was stable and not 
dependent on a particular random seed or data split.

Biological contextualisation
The selected genes were explored in their biological con-
text using bioinformatics tools: QIAGEN IPA [48], Gene-
MANIA [49], and The Human Protein Atlas or HPA [50]. 
We used GeneMANIA in modes for gene function pre-
diction and network analysis of the candidate biomarker 
list. Composite biomarker candidate -fifteen genes 
(set1) were inputted into the GeneMANIA plugin ver-
sion 3.5.2 of Cytoscape version 3.1.1 software [51]. The 
software allowed setting the advanced options, H. sapi-
ens (Human), and query gene-based weight was set. The 
attributes e.g., drug interaction and miRNA targets were 
unchecked as we focused on gene–gene network. The top 
20 relevant genes based on weight were added to con-
struct a gene network. Biological processes were assessed 
by gene ontology enrichment analysis with statistics cor-
rected for false discovery rate. QIAGEN Ingenuity Path-
way Analysis (QIAGEN IPA) is a web-based software 
application that facilitates the analysis, integration, and 
understanding of data from various omics experiments. 
We utilised QIAGEN IPA for pathway and functional 
analysis. To further connect our analysis results with 
additional biological findings, we analysed the secretome 
of low and high metastatic murine pancreatic cancer cell 
lines using Stable Isotope Labelling by Amino acids in 
Cell culture (SILAC) as explained in Luckett et al., 2024 
and identified 34 proteins upregulated in the highly met-
astatic PDAC cells compared to the low metastatic PDAC 
cells [52].

We tested the differential expression of the mouse 
secretome using the Limma package [53], with an 
adjusted P < 0.05 and |Fold Change|> 1.0. We identified 37 
differentially secreted proteins (set2) and 34 exclusively 
secreted proteins (set3) in the high metastatic group. 
Using QIAGEN IPA, we undertook core analysis using 
variables from sets 1–3 as listed in Additional file 3, with 
the user data set as a reference. The canonical pathways 
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and network analysis are provided in Tables  5S-8S in 
Additional file 4.

We also tested protein-level data for the genes selected 
with our approach. Each gene was individually searched 
on the human protein atlas [50, 54]. General HPA infor-
mation was summarised (see Table  1S in Additional 
file 1), including characteristics of a protein class, pancre-
atic cell type enrichment, and antibody staining in PDAC 
samples.

Results
Selected genes and model performance
Using the workflow described in a methodology, we 
selected fifteen genes that met the filtering criteria and 
were consistently selected by the three variable selection 
methods shown in Table 2 to predict metastatic tumour 
stage. Gene distribution by class is shown in Figure S4 
of Additional file 1. We used pre-selection by LASSO to 
reduce the computational complexity and capture any 
linear relationships of genes with the patient class. Gen-
erally, LASSO can be computed very quickly and pro-
duces a larger pool of selected variables (more than 40 
genes after filtering criteria). We then applied Boruta and 
varSelRF in LASSO-selected genes, capturing non-lin-
ear relationships among genes. Boruta and varselRF are 
wrapper methods within RF models for variable selec-
tion in high-dimensional datasets. These computations 
are more intensive and benefit from the reduced variable 
list, which also benefits the sustainability of the pipeline 
(with simpler calculations contributing to environmen-
tally mindful science and lower energy consumption). 

Notably, Boruta selects these 15 genes in 10 out of 10 
train splits. The algorithm finds all relevant attributes, 
not finding a minimal-optimal set of genes as LASSO 
and backwards selection. It is designed for dealing with 
complex data, e.g., cancer gene expression data, which is 
needed to find all cancer-related genes [37]. While fur-
ther improvements and reductions of the candidate com-
posite marker may be possible, we took forward the most 
robust but conservative set.

Train data model performance
One hundred random forest models were created with 
these genes and assessed in different data splits in model 
training and testing in individual train data. The model 
performance in the train data was, as expected, very good 
in all evaluation metrics shown in Table 3.

Validation data model performance
The model build on the train dataset was assessed on its 
prediction power on the validation data. We also recali-
brated the model on the validation data on train/test 
splits. Performances for both approaches in Table 4. The 
results exemplify the predictive capacity of the candidate 
biomarker list that could set basis for a promising com-
posite biomarker.

Model performance comparison
We performed two comparison including model type 
(RF and XGB) and selected genes (15 final genes and 15 
random genes). We applied the XGB model to the train-
ing data, performed cross-dataset validation (a model 
trained by train data and tested by validation data), and 

Table 2  Top variable selection frequencies with different 
algorithms, numbers indicate number of folds out of 10 in which 
the gene was selected in at least 80% of models

Gene LASSO BORUTA​ VARSELRF

ABCC9 10 10 10

AP1M2 10 10 10

CAPN5 10 10 10

ITK 10 10 10

MPDZ 10 10 10

RCSD1 10 10 6

TMPRSS4 10 10 10

ABCA8 9 10 9

ELMO3 9 10 5

C1R 8 10 10

CELF2 8 10 10

IL7R 8 10 10

TTYH2 8 10 9

CD37 7 10 9

ZFP82 7 10 8

Table 3  performances on train data (on teh train/test splits) 
showing average values and 95% confidence interval on the 
validation data (100 models)

PC Precision, RC Recall, M Macro average, PR_AUC​ Area under the curve of pr 
curve, ROC_AUC​ Area under the curve of roc curve, MCC Matthews correlation 
coefficient, 0 Metastasis, 1 Non-metastasis, CI Confidence interval

Metric Mean 95% CI

PC0 0.925 [0.872;0.978]

RC0 0.889 [0.826;0.952]

F10 0.904 [0.845;0.963]

PC1 0.804 [0.725;0.883]

RC1 0.847 [0.775;0.919]

F11 0.816 [0.739;0.893]

MPC 0.864 [0.796;0.932]

MRC 0.868 [0.800;0.936]

MF1 0.860 [0.791;0.929]

ROC_AUC​ 0.945 [0.899;0.991]

PR_AUC​ 0.894 [0.832;0.956]

MCC 0.731 [0.642;0.820]
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re-calibration validation data. The results are presented 
in Tables S11-S13 (Additional file  2 part 3). Briefly, RF 
model outperformed marginally XGB in almost all evalu-
ation metrics and in the three modelling approaches, 
but results were reasonably comparable, which further 
highlights the biological signal potential of the biomarker 
candidate list.

The RF model performs drastically better when trained 
on the 15 selected genes compared to the 15 random 
genes as shown in in Table  14S (Additional file  2 part 
4). Random genes, poorly performed in almost all met-
rics (Figure 8S in Additional file 2) – note accuracy could 
appear high in some runs but it is coupled with a major-
ity class “guess” and linked to a low MCC. These results 
suggest that the 15-gene signature reported here, as con-
sistently outperforms the model trained on the random 
genes across all metrics, likely contains biologically rel-
evant information.

Biological contextualisation
The results of gene ontology enrichment analysis in 
GeneMANIA are summarised in Table  3S in Addi-
tional file 4. The gene network was created as shown in 
Figure  5S in Additional file  4. The details of nodes and 
edges of gene network can be found in Tables 3S and 4S 
in Additional file  4. The gene network revealed highly 
enriched immune response-associated pathways, as 
shown in Table 2S in Additional file 4.

Further investigations were done by running core anal-
yses of gene/protein sets 1–3 in QIAGEN IPA. Canoni-
cal pathways of set 1 showed highly significant immune 

responses, consistent with GeneMANIA results. While 
the results of set 2 were related to cancer metastasis, 
including extracellular matrix (ECM) remodelling and 
metabolic reprogramming, set 3 showed additional bio-
logical insights into angiogenesis, as shown in Fig.  2. 
These are processes involved in metastatic development.

To focus on our findings from ML, we conducted 
a detailed literature review on the 15 genes, which is 
graphically represented in Fig.  3. The schematic shows 
the complex and multifaceted interplay between immune 
response, ECM remodelling, metabolic reprogramming, 
and angiogenesis in PDAC metastasis. Many genes of 
our findings play import roles in PDAC progression and 
metastasis.

Further exploration at the protein level was under-
taken using the Human Protein Atlas database. The aim 
was to explore further the potential for this composite 
biomarker candidate and the feasibility of experimental 
validation. Several genes of interest, reported as disease-
related and associated with drug targets, were identi-
fied. These genes exhibited enrichment in both immune 
and non-immune cells. Antibody staining in pancreatic 
ductal adenocarcinoma (PDAC) samples, validated by 
TCGA data, demonstrated varying intensities for cer-
tain genes, ranging from low to high and weak to strong. 
While some genes were extensively investigated at pro-
tein level, others remain unexplored. The results from the 
HPA were summarised in Table S1 in Additional file 1.

A generalised workflow for in‑silico biomarker discovery
We have presented an example workflow applied to 
PDAC metastasis for identifying in-silico biomarkers fol-
lowing best practices in ML. In developing this workflow, 
we had to appraise multiple steps, overcome challenges, 
and compare methods. We have collated our findings 
and recommendations in the general workflow shown 
in Fig.  3. This workflow can be applied to any in-silico 
biomarker candidate discovery project, especially those 
employing omics technologies. Some of the main chal-
lenges to overcome in these processes are the typically 
small sample sizes, the vast technical variations typically 
observed in biological/clinical experiments and how to 
integrate data without invalidating the independence of 
train and test data splits. Based on our experience we 
are proposing these recommendations. Data sources 
should be kept consistent and undergo a selection crite-
rion defined by the research question and the data types 
available for analysis (aiming to select data from the same 
technological platforms for each layer of biological com-
plexity – for example, gene expression analysis should 
include data from either microarray or RNAseq tech-
nologies but avoid integration from both sources due to 
vast technical variations). Data pre-processing is key to 

Table 4  RF model performances of a model trained by train 
data and tested by validation data (second column) and, RF 
model performances showing average values and 95%CI on the 
validation data (100 models, third and fourth columns)

Metrics Cross-dataset validation 
performances

Re-calibration validation 
performances

Mean [95%CI]

PC0 0.946 0.928 [0.876;0.980]

RC0 0.884 0.971 [0.937;1.000]

F10 0.914 0.947 [0.902;0.992]

PC1 0.692 0.911 [0.854;0.968]

RC1 0.837 0.740 [0.652;0.828]

F11 0.758 0.793 [0.712;0.874]

MPC 0.819 0.919 [0.864;0.974]

MRC 0.861 0.855 [0.785;0.925]

MF1 0.836 0.870 [0.803;0.937]

ROC_AUC​ 0.839 0.941 [0.894;0.988]

PR_AUC​ 0.938 0.897 [0.836;0.958]

MCC 0.678 0.765 [0.680;0.850]
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data integration and further downstream analysis. Data 
should be processed via the same normalisation pipeline 
to minimise technical variance but aiming to keep inde-
pendence of the various data sets; normalisation methods 
depend on the technology of choice; some commonly 
used are Variance Stabilisation Normalisation (VSN) in 
proteomics [55], Probabilistic Quotient Normalization 
(PQN) in NMR metabolomics [56] or TMM for RNAseq 
[34]. Despite being commonly used, it is good to appraise 
different methods for each project and select the most 
appropriate one based on unbiased metrics (for exam-
ple, by appraising empirical housekeeping variables, the 
variance of which should be minimised by the best nor-
malisation method). All variables too close to the limit of 
detection should be discarded for biomarker discovery.

Data may also be transformed (for example, log-trans-
formed) and scaled to control for the effects of variable 
magnitude in model parametrisation, which is relevant 
in omics analyses [57]. This process is essential in some 

multivariate modelling as parameter sizes affect selec-
tion (while in most cases, we aim to detect the largest 
differences between groups independently of the specific 
magnitude of the variable). Different aspects need to be 
considered, including assessing technical effects and (if 
appropriate) batch correction. Technical and biological 
effects can be appraised with methods such as Principal 
Variance Component Analysis (PVCA) [58] or variance-
Partition [59]. These methods can inform on the main 
sources of variance the data accounts for, which will help 
appraise different modifications and select which covari-
ates are most appropriate to include in modelling. Batch 
corrections should be undertaken with methods designed 
to remove known batch variance only. Some examples are 
Combat [60], ARSyN – mode 1(batch correction only) 
[35] or RUVseq [61]. It is important to avoid methods 
that remove all variance unrelated to the interest group-
ing, such as SVA [62] or ARSyN – mode 4 (batch correc-
tion and noise reduction) [35]. These methods remove 

Fig. 2  Biological contextualisation using GeneMANIA and QIAGEN IPA: set 1 showed immune-related pathways enrichment, while sets 2 
highlighted EMC remodelling & metabolic reprogramming and set 3 enriched angiogenesis
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all variance not linked to the group of study, which can 
be particularly dangerous as this will invalidate the inde-
pendence of train/test data if both train/test datasets 
undergo this step and may remove important biological 
variance unknown with experimental groups but rel-
evant to the question at hand. Finally, missing values 
should be appraised if they exist with particular atten-
tion on whether they are missing completely at random, 
missing at random and missing not at random. Variables 
that pass certain control threshold for missingness could 
go through imputation with methods such as missForest 
[63] or multiple imputation by chained equations [64]. It 
is advisable to evaluate different methods in the process.

One of the most key steps for ML-based biomarker 
discovery methods is to control data leakage [65]. It is 
then important to split all data available into a train set 
that may be used for further analysis and a validation 
set reserved to assess the final models (and not used for 
any selection). The train set can undergo variable selec-
tion. Variable selection should be undertaken applying 
methods such as bootstrapping or N-fold cross-valida-
tion stages to limit the influence of particular samples’ 
variance (for example, patient heterogeneity) in iden-
tifying consensus variables to detect the outcome of 
interest. This step involves creating different data slices 
from the train data (train/test) to assess variable selec-
tion results. The most relevant discriminatory variables 

will be consistently selected in all data slices, producing 
a candidate consensus signature. Different variable selec-
tion methods are advised to ensure that only robust and 
consistent signatures are taken forward. Some examples 
of variable selection methods are shown in this project; 
for example, implicit methods such as LASSO logistic 
regression penalises highly correlated variables; explicit 
methods such as varselRF, which is good at identifying 
non-linear relationships; and Boruta which finds relevant 
features by comparing original attributes and its per-
muted copies (shadows) [37]. 

It is also common to face class imbalance issues in 
clinical data. Different techniques can be used to deal 
with this issue; the Synthetic Minority Over-sampling 
Technique (SMOTE) [66] is one such method that bal-
ances the dataset by creating synthetic instances of the 
minority class. Another technique, Resampling Over-
sampled Examples (ROSE) [67], also focuses on oversam-
pling but uses a distinct algorithm to generate synthetic 
samples. The Adaptive Synthetic Sampling (ADASYN) 
[68] method addresses class imbalance by prioritising 
the generation of synthetic instances in areas where the 
imbalance is most severe. These strategies are instru-
mental in boosting the performance of machine learning 
models when dealing with imbalanced datasets in clini-
cal settings. It is important to use these techniques only 
on the train data and ensure variables are not duplicated 

Fig. 3  The complex and multifaceted interplay between immune response, extracellular matrix remodelling, metabolic reprogramming, 
and angiogenesis in cancer metastasis including PDAC (Biomarker candidates involved in biological processes are highlighted in yellow)
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by using these techniques. Finally, the model type selec-
tion should be suitable to the research question with dif-
ferent choices for classification or regression. Random 
forest is particularly useful as it is versatile (both classi-
fication and regression models possible). It is robust with 
limited overfitting thanks to the combination of multiple 
decision trees in different data folds, and it is interpret-
able, providing insights into which variables are most 
important for the model. Random forest has been used in 
several studies to solve biological and medical problems, 
including biomarker identification in cancer, particularly 
in analysing cancer gene expression data [69]. In Fig. 4 we 
summarise the key aspects to consider when undertaken 
in-silico biomarker discovery.

Discussion
Our study proposes a robust pipeline for identifying 
biomarker candidates using ML and legacy data. The 
workflow was applied to PDAC data to find metastatic 
biomarker candidates. We collected and curated data 
from major repositories. Data were integrated and run 
through our workflow, giving fifteen genes consistently 
found in different data slices and via three variable selec-
tion algorithms, performing very well in classification 
models.

We have solved issues in data analysis using ML and 
proposed an in-silico biomarker discovery workflow 
that can be applied to other contexts. Our analysis work-
flow was designed with the best practices suggested by 
Kapoor and Narayananm 2023 in mind. Our approach 
emphasises the importance of addressing leakage issues 
and ensuring the reproducibility of the machine learn-
ing-based model [4]. It also addresses challenges that 
are particularly difficult to overcome when exploiting 
omics data, which are inherently variable due to technical 

differences. Such leakage can cause the model to over-
estimate its accuracy and irreproducible results. While 
this study has limitations regarding the step of data 
integration, as much as was possible, we implemented 
a clean separation of training and validation datasets in 
our study. Importantly, variable selection and resam-
pling techniques were applied in only the train set. Our 
machine learning workflow faced challenges in data inte-
gration due to the need to apply batch effect corrections 
to all data. While the most purist way of addressing these 
technical disparities while mitigating data leakage would 
have been to correct these effects separately in the train 
and validation sets, this was insufficient to bring all data 
on the same geometrical space to aid the integration and 
testing of predictive power. Cross-study of medical data 
uses train data to build models and external data to test 
them, and often leads to poor prediction performance 
due to a lack of comparability (39). We acknowledge this 
is a limitation of our study but something we cannot 
overcome if we aim to retain data and power. We miti-
gated this data integration and batch correction step by 
using methods that removed variance about technical 
platform/experiment batch only and ensured all batches 
represented both groups of interest (metastasis and non-
metastasis). Our model demonstrated robust perfor-
mance, with an MCC of around 0.7, indicating its strong 
predictive performance and potential as a reliable com-
posite biomarker candidate for patient classification in 
metastasis.

In this study, we collected data from major repositories 
to reuse and improve power for our research question. 
Using these repositories has several benefits: it promotes 
research sustainability by reusing valuable data, confirms 
previous findings when there is agreement, increases 
patient profile diversity, makes biomarker results more 

Fig. 4  Proposed in-silico biomarker discovery workflow and checkpoints to consider (implemented methods in GitHub pipeline are bolded 
and underlined)
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credible, and enhances the statistical power of the ML 
model through data integration. We acknowledge a 
major limitation of studying pancreatic primary tumour 
samples is the high heterogeneity of tumour cellularity 
(which, unfortunately, is not consistently reported across 
repositories and a limitation to accept as it currently 
stands for legacy data). We created a workflow tailored 
for end-users. Consequently, we provide comprehensive 
data and R code on GitHub, adhering to the FAIR Guid-
ing Principles [70], allowing free use, modification, and 
sharing. With support from the scientific community, we 
ensure the accessibility and robustness of the developed 
workflow. Following a thorough review of ML-based data 
analysis, we designed an in-silico biomarker discovery 
workflow with checkpoints for beginners. We developed 
step-by-step guide to help with user accessibility and help 
them navigate common ML pitfalls and presented them 
as part of our results. This versatile workflow guides han-
dling various data types, particularly omics data, and is 
not limited to PDAC metastasis analysis. It can be applied 
to diverse contexts, and this team has applied it to other 
problems such as identification of biomarker candidates 
of pancreatic cancer-related diabetes using proteom-
ics data [71], biomarker discovery in adverse pregnancy 
outcomes [72, 73] or gene signature prediction in human 
breast cancer subtypes. The workflow presented here 
integrates algorithms for data integration, variable selec-
tion, resampling techniques, and modelling to enhance 
its overall robustness.

We assessed the model performance using a total of 12 
metrics, including class-specific metrics, macro-average, 
AUC, and MCC. Our chosen metrics, such as precision, 
recall, F1, PR_AUC, and MCC, are particularly effective 
for evaluating models trained on imbalanced datasets 
[46, 74]. Interestingly, a biomarker study in lung cancer 
[75] and stress detection [76] employed similar metrics to 
ours, such as accuracy, precision, recall, F1 score, and PR 
AUC for model evaluation. However, they did not incor-
porate the MCC metric into their evaluation process. 
This highlights the thoroughness of our approach in con-
sidering a wide range of metrics for model evaluation.

One of the key components of our workflow is the 
variable selection process. In a novel use of selection 
techniques, we propose a new paradigm for compos-
ite biomarker selection, bringing forward only consist-
ently and robustly selected signatures across different 
data folds and variable selection methods. This approach 
ensured the selection of the most relevant features for our 
biological question, and it aligns with current best prac-
tice in the biomarker discovery field [5]. We overcame 
the class imbalance problem using, ADASYN, a resam-
pling technique that improved the learning of the ran-
dom forest model, balanced sample proportion, reduced 

the sample distribution bias (25). The algorithm created 
newly synthesised elements without data duplication. 
Resampling techniques in imbalanced data typically con-
sist of oversampling and undersampling. Oversampling is 
preferred in the context of medical data as it can produce 
a more diverse set of examples from the less represented 
class, thereby improving the model’s capacity to general-
ise [77]. The techniques used to address the imbalanced 
class problem directly contributed to the success of the 
RF model in classifying patients.

In this case study, we showed how our workflow could 
deal with a complex biological task. PDAC is a very 
aggressive cancer type with high metastatic potential and 
fast progression, therefore capturing the change of bio-
logical phenomena from non-metastasis and metastasis 
is challenging. Many biomarker studies using ML in data 
analysis mainly classify normal and cancer as biologically 
distinct due to the numerous changes that occur during 
tumour development [78]. Detecting metastasis in a fast 
progression disease as PDAC (T1 to T4 stage in just 1 
year [79]), is challenging. We used primary tumour gene 
expression data, stratifying patients using cancer patho-
logical staging and N (regional lymph node involvement) 
as we tried to capture metastatic events; stage IIA and 
IIB are closely staged but are biologically distinct. PDAC 
stage IIA has no regional lymph node invasion, while 
stage IIB has. Therefore, we used this change as our cri-
terion to classify the patient samples, which differs from 
other previous works (22,23) that use cancer and normal 
samples instead. Human PDAC tumours are highly het-
erogenous and contain a host of cancer cell clones with 
varying metastatic fitness. Developing a technique sen-
sitive enough to detect highly metastatic clones within 
the multiclonal population is challenging. It is expected 
to see groups of patients with very similar biological fac-
tors since they both have PDAC but with changes in bio-
logical processes caused by slight differential expression 
of some genes [80]. Thus, the observed small effect sizes 
in each variable are not of concern given the predictive 
power of the multivariate signature.

We further assessed the feasibility of the 15-gene com-
posite biomarker candidate by biologically contextualis-
ing their role in PDAC progression. The data from the 
15-gene composite marker (Set1) and secretome studies 
shed light on the underlying biological processes. Set1 
linked to genes involved in immune responses, while the 
secretome data from the mouse experiment revealed pro-
teins involved in extracellular matrix remodelling, meta-
bolic reprogramming (set 2), and angiogenesis (set3).

The relationship between cancers, such as PDAC and 
other biological processes is complex, as presented in 
Fig. 3. Cancer cells undergo metabolic reprogramming 
to alter their metabolism, thereby gaining more energy 
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for rapid proliferation. For instance, CAPN5 plays a sig-
nificant role in glycolysis in pancreatic cancer [81] and 
endometrial cancer [82]. Cancer cells frequently exhibit 
an increased rate of glycolysis thus favouring the pro-
duction of lactate, even in the presence of oxygen, in a 
process known as the Warburg effect [83]. Moreover, 
loss of ELMO3 is implicated in lymphatic metastasis 
in colorectal cancer [84], and in metastatic capacity 
in PDAC [85]. Additionally, TTYH2 and AP1M2 are 
implicated in cancer progression through regulation 
of the JNK/ERK Signalling Pathway in Hepatocellular 
Carcinoma. Furthermore, AP1M2 is linked to immu-
nosuppression in the TME in various cancers [86, 87]. 
TTYH2 has also been described to promote cancer cell 
colony formation, thereby supporting tumour growth 
and metastasis in colon adenocarcinoma [88].

TMPRSS4 and ZFP82, have been shown to induce 
Epithelial-to-Mesenchymal transition (EMT) in pan-
creatic cancer [89, 90]. EMT is a biological process that 
plays a crucial role in cancer progression and metas-
tasis, transforming otherwise immotile epithelial cells 
into migratory invasive mesenchymal cells. Several of 
our identified genes are related to the immune response 
in various cancer types, including PDAC. For exam-
ple, both CD37 and RCSD1 are linked to recruitment 
of anti-tumour immune cells and improved prognoses 
[91, 92]. ITK is implicated in immune checkpoint pro-
cess [93], C1R is an immunosuppressive complement 
effectors protein [94] and IL7R regulates in lympho-
cyte development [95]. In an in  vitro study conducted 
by Tetzlaff et  al., it was revealed that the protein 
MPDZ plays a role in promoting angiogenesis, a well-
established process in metastasis, which is facilitated 
through the amplification of Notch signalling [96]. 
Finally, CELF2 promotes pancreatic cancer tumorigen-
esis and metastasis via Endoplasmic-reticulum-asso-
ciated protein degradation (ERAD) [97]. While these 
observations are promising, we acknowledge that they 
require further validation to test their clinical transla-
tion potential. In PDAC, the early dissemination of 
primary tumour and clonal diversity of EMT at the 
metastatic sites need to be considered [6] as well as the 
links between resident immune and stromal cells and 
their role on the formation of a hospitable pre-meta-
static niche (PMN) [98]. The tumour cellularity of sam-
ples also needs to be explored more. Single-cell RNA 
sequencing (scRNA-seq) analysis was reported to be a 
tool for studying PDAC heterogeneity and understand-
ing in-depth molecular profiles [99]. Further studies 
exploiting scRNA-seq to understand metastasis mecha-
nisms may aid the refinement of candidate markers and 
increase our understanding of the disease.

Conclusions
Our study offers a machine-learning approach that iden-
tifies a robust and consistent composite biomarker can-
didate using PDAC metastasis as a case study. To ensure 
the reproducibility of our results, we applied various 
variable selection methods and resampling techniques 
to overcome the potential problems of machine learning 
in omics data. The general workflow and checkpoints in 
biomarker discovery using multiple data were designed 
to be a guideline for beginners. Our approach identified 
fifteen genes consistently present in all five datasets from 
different countries and performed well in classification 
models on both train and validation data. These genes 
have all been shown to potentially play a role in PDAC 
metastasis. Future studies are required to validate our 
composite biomarker candidate experimentally, with per-
haps potential to refine it further. While our study has 
some limitations concerning joint data integration and 
limited sample size for validation, we believe we provide 
a robust candidate set to pursue further experiments and 
clinical work. We offer a thorough example of applying 
best practices in ML-based approaches for biomarker 
discovery in systems biology, and we tackle a challenging 
data integration problem. Although these findings need 
validation experimentally and in clinical studies, our 
study demonstrates how to identify effective biomarker 
candidates for the early detection and treatment of meta-
static PDAC patients, accelerating translation potential.
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