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Abstract
Background Because spontaneous remission is common in IMN, and there are adverse effects of 
immunosuppressive therapy, it is important to assess the risk of progressive loss of renal function before deciding 
whether and when to initiate immunosuppressive therapy. Therefore, this study aimed to establish a risk prediction 
model to predict patient prognosis and treatment response to help clinicians evaluate patient prognosis and decide 
on the best treatment regimen.

Methods From September 2019 to December 2020, a total of 232 newly diagnosed IMN patients from three 
hospitals in Liaoning Province were enrolled. Logistic regression analysis selected the risk factors affecting the 
prognosis, and a dynamic online nomogram prognostic model was constructed based on extreme gradient boost, 
random forest, logistic regression machine learning algorithms. Receiver operating characteristic and calibration 
curves and decision curve analysis were utilized to assess the performance and clinical utility of the developed model.

Results A total of 130 patients were in the training cohort and 102 patients in the validation cohort. Logistic 
regression analysis identified four risk factors: course ≥ 6 months, UTP, D-dimer and sPLA2R-Ab. The random 
forest algorithm showed the best performance with the highest AUROC (0.869). The nomogram had excellent 
discrimination ability, calibration ability and clinical practicability in both the training cohort and the validation cohort.

Conclusions The dynamic online nomogram model can effectively assess the prognosis and treatment response of 
IMN patients. This will help clinicians assess the patient’s prognosis more accurately, communicate with the patient in 
advance, and jointly select the most appropriate treatment plan.
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Background
Idiopathic membranous nephropathy (IMN) is the most 
common pathologic type of adult nephrotic syndrome 
(NS) [1]. IMN is common in the middle-aged and elderly, 
the incidence has gradually increased in China in recent 
years, and there is a trend of younger age [2]. IMN is 
the second or third primary glomerulonephritis leading 
cause of end-stage renal disease (ESRD) in the USA and 
Europe [3], and approximately one third of IMN patients 
have a progressive disease course. The most frightening 
long-term consequence of IMN is progressive loss of 
kidney function. And among 60% of untreated patients, 
there are about 35% patients eventually develop to ESRD 
within 10 years [4–7].

In recent decades, some clinical [8, 9], pathological [10, 
11], and genetic [12, 13] parameters have been identi-
fied as biomarkers for predicting the prognosis of IMN, 
and the Kidney Disease Improving Global Outcomes 
(KDIGO) 2021 clinical practice guideline have taken 
24  h urinary protein (UTP), estimate glomerular filtra-
tion rate(eGFR), serum anti-phospholipase A2 receptor 
antibody (sPLA2R-Ab), serum albumin (ALB) and oth-
ers as indicators that may be used to divide patients into 
categories of low, moderate, high, and very high risk of 
progressive loss of kidney function [14]. However, there 
are often inconsistencies in various indicators in clini-
cal practice, such as high level proteinuria in patients 
with low titer sPLA2R-Ab, or high level proteinuria with 
nomal serum ALB. And there is currently no model that 
combines all of these clinical considerations. Therefore, 
there is an urgent need to develop a model that takes into 
account clinical factors, and use the cut-off value of the 
model to identify high-risk patients with poor prognosis, 
which is conducive to clinical application. In addition, if a 
patient is initiated immunosuppressive therapy according 
to the KDIGO 2021 clinical practice guideline, but the 
outcome of treatment is unclear. If a model can be used 
to predict patient outcomes and response to treatment, 
the model may help clinicians assess patient prognosis 
in advance, and can fully discuss with patients to deter-
mine the best treatment options to maximize the benefit 
of patients.

The nomogram is a useful and accessible tool for phy-
sicians to predict the disease progression, to plan for 
individualized treatment, and to decide the interval for 
follow-up [15, 16]. Nomograms have been previously 
developed for IMN [17–20], but most of the nomograms 
lack of external validity [17, 19], and no dynamic online 
nomogram related to IMN prognosis is found at present 
to our knowledge. Machine learning has recently been 
used to produce a prediction model for practice. Machine 
learning can help model information based on statistics, 
potentially revealing hidden dependencies between pre-
dictors and diseases. Previous studies have shown that 

machine learning algorithms such as extreme gradient 
boost (XGBoost), random forest (RF) and logistic regres-
sion (LR) have been used to predict or identify kidney 
disease [21, 22]. The purpose of this study is to establish 
a dynamic online nomogram model based on machine 
learning model, in order to accurately identify the prog-
nosis and treatment response of IMN patients, and to 
help clinicians formulate personalized treatment plans.

Methods
Study cohorts
This was a retrospective analysis of multicenter study in 3 
hospitals in Liaoning Province, northeast of China, which 
included 232 cases from September 2019 to December 
2020. The training cohort included 130 patients from 
Shengjing Hospital of China Medical University, and the 
validation cohort was 102 patients from the First Affili-
ated Hospital of Jinzhou Medical University and the Gen-
eral Hospital of Angang Group (Fig.  1). The inclusion 
criteria for IMN were as follows: (i) patients with MN 
diagnosed by renal biopsy or a positive anti-PLA2R anti-
body test with NS. (ii) age 18 to 75 years. (iii) a follow-
up time ≥ 24 months and with complete data which was 
obtained in our institution. The exclusion criteria were as 
follows: (i) secondary membranous nephropathy (SMN), 
including those with autoimmune disease, infection, 
malignancy, drug and heavy metal poisoning related MN. 
(ii) corticosteroids or immunosuppressants were applied 
before the start of the study. (iii) follow-up periods less 
than 24 months, or with missing data. iiii. patients with 
serious mental illness that is difficult to cooperate with 
treatment, and pregnant or lactating women. This study 
had been approved by the Ethics Committee of Shengjing 
Hospital affiliated to China Medical University, and 
informed consent was waived because it was a retrospec-
tive study(the ethics number: 2023PS847K).

Clinical data collection
The baseline and follow-up data were extracted from 
patients’ records in hospital’s electronic medical system, 
including demographic characteristics, clinical vari-
ables, laboratory results. According to the manufactur-
er’s recommendation, detection of sPLA2R-Ab titer was 
performed using ELISA (E200908BU, Euroimmun, Ger-
many), and a value ≥ 20 RU/ml was considered as posi-
tive. Renal biopsy was performed, and the biopsy sample 
examined by light microscopy, immunofluorescence, and 
electron microscopy. Membranous lesions from IMN 
cases were classified into four stages based on the criteria 
of Ehrenreich and Churg [23].

Treatment options
The treatment strategy was based on the 
KDIGO 2021 clinical practice guideline [14]. 
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Renin-angiotensin-aldosterone system (RAAS) inhibi-
tors consist primarily of angiotensin-converting enzyme 
inhibitor (ACEi)/angiotensin-II receptor blocker (ARB). 
Immunosuppressant therapy includes cyclophosphamide 
(CTX) or calcineurin inhibitor (CNI). Targeted therapy 
refers to CD20 monoclonal antibody therapy, mainly 
including rituximab and obinutuzumab. Other immuno-
suppressant treatments include mycophenolate mofetil, 
leflunomide, tripterygium wilfordii and others.

Outcome
The clinical endpoint was non-remission of proteinuria 
at 24 months. Complete remission (CR) was defined as 
achieving a normal level of proteinuria excretion of no 
more than 0.3 g per 24 h and with a stable eGFR. Partial 
remission (PR) was defined as proteinuria between 0.3 g 
and 3.5 g per 24 h, or a reduction in proteinuria of at least 
50% compared with baseline and with a stable eGFR [24, 
25]. Patients who did not meet any of those criteria were 
categorized as non-remission (NR). A stable eGFR was 
defined as an eGFR that remained unchanged or declined 
less than 15% during the period of follow-up.

Model construction and performance evaluation
In the training cohort, we used univariate’ and multi-
variate’ logistic regression to screen for major risk factors 
with non-remission urine protein based on the patient’s 
baseline measurements, and constructed a nomogram 
based on XGBoost, RF, LR machine learning algorithms. 
Five key metrics are used to assess the effectiveness of the 
model: area under the receiver operating characteristic 
(AUROC), sensitivity, specificity, accuracy and F1-score.

Internal and external validation of the model
The nomogram was subjected to 1000 bootstrap resa-
mples for internal validation to assess its predictive 

accuracy, and was performed by a visual calibration 
plot. The discriminative ability of the model was deter-
mined by AUROC, which ranges from 0.5 to 1, and the 
AUROC was compared using Z test. Finally, to estimate 
the clinical utility of the model, the decision curve analy-
sis (DCA) was performed by calculating the net benefits 
for a range of threshold probability. The external validity 
of the model was evaluated by the AUROC, calibration 
and decision curve analysis in an independent cohort.

Statistical analysis
All the statistical analyses were done by SPSS26.0 and 
R 4.2.1. Normally distributed continuous variables 
were expressed with their means and standard devia-
tions whereas non-normal continuous variables were 
expressed by their medians and interquartile ranges 
(IQR). Categorical variables were expressed with fre-
quencies and percentages. The statistical significance 
between two cohorts was determined by T test or the 
Wilcoxon rank sum test for continuous variables and 
Chi-square test for categorical variables. Results with 
P<0.05 were considered statistically significant.

Results
Patient characteristics
232 IMN patients were enrolled in this study, and the 
characteristics were presented in Table  1. The train-
ing cohort included 85 males, and with the median age 
being 48 years and the median proteinuria was 7.0  g/d. 
The characteristics were compared between the train-
ing and validation cohorts, and it showed that there 
were significant differences in age, uric red blood cell 
(URBC), ALB, serum creatinine (Scr), blood urea nitro-
gen (BUN), and total cholesterol (TCHO). In the train-
ing cohort, 26 patients did not undergo renal biopsy due 
to personal willingness or physical condition, while the 

Fig. 1 Flowchart of inclusion and exclusion in the training and validation cohort. A: In the training cohort; B: In the validation cohort
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majority of patients with renal biopsy presented in stages 
2 and 3. The patient’s treatment plan was based on the 
KDIGO 2021 clinical practice guideline, more than 60% 
of patients received RAAS inhibitors or immunosup-
pressant therapy in the training or validation cohort, and 
there were no significant differences in treatment regi-
mens between the two groups. The follow-up time was 

24 months, and the incidence of the endpoint of the IMN 
progression was 31.5% and 31.4% in the training and 
validation cohorts. In addition, we retrospectively ana-
lyzed the adjustment of the treatment regimen during 
the follow-up of the patients in the training cohort, it was 
found that 30 patients did not achieve remission even 
after changing the immunosuppressant regimen, and 7 
of them made two adjustments to the treatment regimen 
and still had persistent urine protein.

Feature selection
As shown in Table  2, after the multivariable’ analysis, 
we identified four major risk factors: course ≥ 6 months, 
UTP, D-dimer, and sPLA2R-Ab. These four variables 
were used to construct XGBoost, RF and LR machine 
learning models to predict the prognosis of IMN patients. 
The performance evaluation results of the three models 
were shown in Table 3, and the ROC curve and confusion 
matrix were used to evaluate the model discrimination 
ability, as shown in Fig.  2. The performance difference 
between the models were significant, and the RF model 
had the best performance, with the highest AUROC 

Table 1 Characteristics of the overall population in the training 
and validation cohorts
Characteristic Training cohort

(n = 130)
Validation 
cohort
(n = 102)

P Value

Man(%) 85(65.4) 75(73.5) 0.183
Age(year) 48.0 (39.0-56.3) 52.5 (45.0–60.0) 0.003
Weight(/kg) 73.0 (63.0-83.5) 75.0 (65.8–84.0) 0.871
Course ≥ 6 
months(%)

38(29.2) 27(26.5) 0.642

History of 
hypertension(%)

35(26.9) 30(29.4) 0.675

URBC(/Hp) 7.3(2.8–16.0) 11.7(5.0-24.3) 0.001
UWBC(/Hp) 2.4(1.2–5.4) 3.1(1.6–5.2) 0.251
UTP(g/24 h) 7.0(4.5–10.7) 6.1(3.5–10.5) 0.132
HGB(g/L) 140.5(128.0-149.3) 143.5(132.0-155.3) 0.101
ALB(g/L) 23.2(19.9–27.9) 26.0(21.3–30.4) 0.007
BUN(mmol/L) 4.6(3.7–5.4) 5.3(4.0-6.7) 0.001
Scr(μmol/L) 66.7(54.5–78.8) 72.9(63.7–84.1) 0.027
UA(μmol/L) 360.0(300.5-420.5) 367.6(295.8-451.1) 0.541
CysC(mg/L) 1.1(0.94–1.3) 1.1(0.9–1.4) 0.409
eGFR(mL/
min/1.73m2)

95.9(80.2-109.6) 100.2(90.6-108.6) 0.164

TG(mmol/L) 2.2(1.6–3.7) 2.4(1.6–3.8) 0.568
TCHO(mmol/L) 7.4(6.1–8.9) 8.2(6.3–10.2) 0.012
D-dimer(μg/L) 242.0(149.0-505.8) 240.0(150.0-542.0) 0.840
sPLA2R-Ab(RU/mL) 58.0(10.0-142.2) 59.4(27.8-121.2) 0.564
Pathologic 
stage(%)

0.882

Stage I 10(9.6) 7(6.9)
Stage II 73(70.2) 73(71.6)
Stage III 19(18.3) 21(20.6)
Stage IV 2(1.9) 1(1.0)
Treatment 
options(%)
RAAS inhibitors 82(63.8) 72(70.6) 0.229
CTX 51(39.2) 48(47.1) 0.632
CNI 37(28.5) 24(23.5) 0.397
CD20 monoclonal 
antibody

2(1.5) 1(0.1) 1.000

Other immunosup-
pressant

1(0.8) 0(0) 1.000

Remission(%)
CR 45(34.6) 25(24.5) 0.096
PR 44(33.8) 45(44.1) 0.110
Progression(%)
NR 41(31.5) 32(31.4) 0.978
UWBC, uric white blood cell; HGB, hemoglobin; UA, uric acid; CysC, cystatin C; 
TG, triglycerides; TCHO, total cholesterol

Table 2 Variables associated with treatment response of IMN in 
the univariable’ and multivariable’ analyses
Variable Univariable’ logistics 

regression
Multivariable’ logistics 
regression

OR (95% CI) P Value OR (95% CI) P Value
Gender 2.009(0.876,4.608) 0.099
Age 0.996(0.976,1.027) 0.805
Weight 1.030(1.003,1.058) 0.028 1.035(1.000,1.072) 0.051
Course ≥ 6 0.370(0.168,0.818) 0.014 0.225(0.081,0.628) 0.004
History of 
hypertension

1.796(0.734,4.396) 0.200

URBC 1.026(1.004,1.048) 0.019 1.031(1.000,1.063) 0.053
UWBC 1.011(0.979,1.045) 0.494
UTP 1.172(1.083,1.268) <0.001 1.140(1.029,1.262) 0.012
HGB 1.014(0.992,1.037) 0.213
ALB 0.937(0.871,1.008) 0.083
BUN 1.205(0.917,1.583) 0.182
Scr 1.008(0.989,1.027) 0.414
UA 1.002(0.998,1.006) 0.227
CysC 1.376(0.328,5.773) 0.662
eGFR 1.004(0.989,1.019) 0.628
TG 1.209(1.017,1.438) 0.031 1.001(0.778,1.242) 0.886
TCHO 0.951(0.810,1.117) 0.543
D-dimer 1.001(1.000,1.002) 0.006 1.001(1.000,1.002) 0.009
sPLA2R-Ab 1.005(1.002,1.009) 0.002 1.005(1.001,1.008) 0.006
RAAS 
inhibitors

0.515(0.229,1.158) 0.108

Immunosup-
pressant 
therapy

0.774(0.347,1.726) 0.532

CD20 
monoclonal 
antibody

0.455(0.028,7.452) 0.581
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(0.869), sensitivity (0.700), specificity (0.897), precision 
(0.700), accuracy (0.769) and F1-score (0.700).

Model construction and comparison
To make the model more practical and easier to visual-
ize, we developed a nomogram using the four predic-
tors (course ≥ 6 months, UTP, D-dimer, and sPLA2R-Ab) 
(Fig. 3). For each predictive factor in the nomogram, the 
point was read out by drawing a line straight upward 
from each predictor to the point axis. The total point was 
calculated by summing up each point located in the total 
point axis, which was further converted to probability. 

Furthermore, a dynamic online nomogram was available 
via an internet interface at https://progression.shinyapps.
io/DynNomapp/ (Fig. 4).

The internal validation of the model
In the training cohort, the C-index for the nomogram was 
0.835 (95% CI 0.762–0.908) and the ROC curve displayed 
in Fig.  5A. Z test showed that the discriminative abil-
ity of the nomogram prediction was significantly higher 
than that of individual predictions (course ≥ 6 months, 
UTP and D-dimer, Table  4). The calibration plot of the 
nomogram was plotted in Fig.  6A and demonstrated a 

Table 3 Performance of the prediction models generated by the three machine learning models
Models AUC Sensitivity Specificity Precision Accuracy F1-score
LR 0.710 0.200 0.966 0.667 0.769 0.308
XGBoost 0.734 0.400 0.897 0.571 0.769 0.471
RF 0.869 0.700 0.897 0.700 0.846 0.700

Fig. 3 A constructed nomogram for predicting urine protein non-remission at 2 years in patients with IMN

 

Fig. 2 Evaluation of the predictive models. A: The ROC curves from three models. B: The confusion matrix from three models

 

https://progression.shinyapps.io/DynNomapp/
https://progression.shinyapps.io/DynNomapp/
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good correlation between observed and predicted pro-
gression with a mean absolute error of 0.047. The DCA of 
the nomogram was presented in Fig. 7A, and showed that 
if the threshold probability of was between 10 and 88% 
or greater than 90%, using the nomogram to predict the 
IMN progression added more net benefit.

Table 4 Z test in the training cohort and validation cohort
Variable Training cohort Validation cohort

Z Value P Value Z Value P Value
nomogram-course ≥ 6 4.491 <0.001 5.650 <0.001
nomogram-UTP 3.281 0.001 1.664 0.096
nomogram-D-dimer 3.163 0.002 3.690 <0.001
nomogram-sPLA2R-Ab 0.748 0.454 2.761 0.006

Fig. 5 The ROC curves of the nomogram. The ability of the nomogram was measured and compared according to area under the curve values for the 
training (A) and the validation (B) cohorts

 

Fig. 4 A dynamic online nomogram for predicting prognosis and response to treatment in patients with IMN. In this simulated case: the patient had 
a course less than 6 months, UTP 8 g/d, D-dimer 446 μg/L and sPLA2R-ab 106RU/ML, the probability of proteinuria non-remission at 2 years was 20.4%
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The external validation of the nomogram
In the validation cohort, the C-index was 0.874 (95% CI 
0.801–0.946, Fig. 5B) and z test showed that the nomo-
gram discrimination was better than the individual indi-
cator (course ≥ 6 months, D-dimer, and sPLA2R-Ab). In 

addition, in order to evaluate the good calibration abil-
ity of the nomogram, we also calculated other evaluation 
metrics beyond the AUROC based on the cut-off value 
and the threshold of 0.5, including the sensitivity, speci-
ficity, precision, and F1-score, and the results showed 

Fig. 7 The DCA curves analysis for IMN prognosis nomogram in (A) the training and (B) the validation cohorts. The y-axis tested the net benefit. The thin 
gray line indicates that all patients with IMN are assumed to have non-remission of urine protein at 2 years, while the thick black line indicates that all 
patients with IMN are assumed to have a remission of proteinuria. The thick red line represented the risk nomogram. In training group, the decision curve 
showed that if the threshold probability of a patient is between 0.01 to 0.88 or greater than 0.9, using the nomogram in the present study to predict IMN 
prognosis adds more benefit

 

Fig. 6 The calibration curves for the nomogram. A completely accurate prediction model will generate a plot where the probability of the actual ob-
served and predicted corresponding completely and fall along the 45°line. The apparent calibration curve represents the calibration of the model in the 
development data set, while the bias-corrected curve is the calibration result after correcting the optimism with the 1000 bootstrap-resampling. The 
closer the apparent calibration curve is to the bias-corrected curve, the more accurately the model predicts prognosis. A: In the training cohort; B: In the 
validation cohort
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that it may be better to assess the patient’s ability to 
calibrate the mode based on cut-off values (Table  5). A 
calibration curve (Fig. 6B) also showed high consistency 
between predicted prognosis probability and actual prog-
nosis proportion. The DCA curve showed that the use of 
the nomogram increased the net benefit and had a strong 
clinical utility in predicting IMN prognosis (Fig. 7B).

Discussion
As a quantitative tool for risk and benefit assessment, 
clinical prediction model can provide more intuitive and 
rational information for doctors, patients and medical 
policy makers. In recent years, a number of nomograms 
with IMN had been established [17–20], which were 
used to predict progression or relapse of patients with 
IMN, and to distinguish malignancy-associated mem-
branous nephropathy from IMN. Compared to the above 
researches, the endpoint of this study was the non-remis-
sion of proteinuria at 2-year follow-up, in order to evalu-
ate the patient’s response to treatment. Furthermore, we 
constructed a dynamic online nomogram model, which 
was multi-indexed, simple and operable, without cum-
bersome formulas and calculations, and the external vali-
dation also showed the universality and applicability of 
the model. We only needed to slide and select the value 
of each variable to obtain the probability of non-remis-
sion of proteinuria in the patient. The most important 
thing was that there was no manual intervention in the 
whole process, which avoided accidental errors.

According to current reports, this is the first dynamic 
online nomogram based on baseline parameters to pre-
dict treatment response in patients with IMN. The nomo-
gram has been validated internally and externally to show 
that it has good discrimination, calibration ability and 
clinical net benefit. And based on the nomogram, the cli-
nician can preliminarily judge the patient’s prognosis and 
response to treatment after 2 years, fully communicate 
with the patient, and choose the most suitable personal-
ized treatment plan for the patient.

The results of the retrospective study indicated that 
course ≥ 6 months, UTP, D-dimer, and sPLA2R-Ab were 
significant independent predictors of poor response in 
patients with IMN. What makes our study unique is that 
it links D-dimer, a marker of thromboembolic complica-
tions in IMN, to prognosis and confirms that D-dimer is 

an independent risk factor for urine protein remission in 
IMN. D-dimer is a specific product of cross-linked fibrin 
under the action of plasmin [26], which can be used as 
an important molecular marker to reflect the plasma 
hypercoagulability state and the activation of the fibrino-
lytic system in vivo [27, 28]. IMN is an immune-mediated 
inflammatory disease with a high risk of thromboembolic 
complications due to damage to vascular endothelial 
cells, activation of the coagulation system, and weaken-
ing of the fibrinolytic system [29, 30]. Persistent pro-
teinuria in patients with IMN presenting with nephrotic 
syndrome may lead to secondary venous thrombosis, 
increasing the risk of infection and acute kidney injury, 
and thus leading to poor prognosis in patients with IMN 
[29, 31]. Therefore, the IMN patients with high levels of 
D-dimer may indicate a high risk of thrombotic events 
and critical condition in IMN patients, and need to ini-
tiate anticoagulation and immunosuppressive therapy as 
soon as possible [32, 33].

IMN is a slowly progressive immune and inflam-
mation-associated renal disease [34]. We also found 
that patients with a long course of disease had a poor 
response to treatment, which may be due to the persis-
tence of chronic inflammation, resulting in increased 
deposition of immune complexes on the outside of the 
glomerular basement membrane, massive formation of 
basement membrane “spike” and thickening of the base-
ment membrane, thereby aggravating renal injury and 
leading to poor prognosis [35, 36]. Moreover, studies had 
shown that immune-inflammation index and monocyte-
lymphocyte ratio were reliable markers which might be 
used to predict prognosis for IMN patients [37, 38].

Previous studies and well-known researchers agree that 
the prognosis of IMN patients is closely related to UTP 
and sPLA2R-Ab levels. The heavier UTP and the higher 
sPLA2R-Ab level, the worse the prognosis for patients 
with IMN. Higher proteinuria level is significantly associ-
ated with a higher risk of reduction in renal function [39, 
40]. Persistent proteinuria is an independent risk factor 
for progression of IMN to ESRD. The results of the pres-
ent study cohort indicated that the 24-h proteinuria level 
was an independent predictor for a poor renal outcome, 
which was consistent with the present reports.

It is well documented that PLA2R and its autoantibod-
ies are closely related to the prognosis of IMN [41–43]. 
Compared with glomerular PLA2R deposition, serum 
anti-PLA2R antibody levels are more closely correlated 
with renal outcome [44]. The KDIGO 2021 glomerular 
disease management guidelines recommend longitudi-
nal monitoring of sPLA2R-Ab levels at 6 months after 
start of treatment may be useful for evaluating treatment 
response in patients with MN, and can be used to adjust 
the treatment strategy [14]. Consistent with current find-
ings, we also confirmed a significant association between 

Table 5 The other evaluation metrics beyond the AUROC
Metrics Training cohort Validation cohort

Cut-off 
0.296

0.5 as the 
threshold

Cut-off 
0.330

0.5 as the 
threshold

sensitivity 0.780 0.512 0.781 0.438
specificity 0.787 0.921 0.886 0.914
precision 0.627 0.750 0.758 0.700
F1-score 0.695 0.609 0.769 0.539
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baseline sPLA2R-Ab levels and renal outcome in IMN 
patients.

Unfortunately, we did not find satisfactory results for 
common prognostic markers of IMN, such as serum 
albumin [14, 45]. First, the nomogram predicts that most 
patients with non-remission will have refractory MN 
and will endpoint with the time outcome, while previ-
ous studies have mostly ended with event outcomes, 
which may lead us to different results. And secondly, we 
suspect that this may be due to the liver’s strong ability 
to synthesize albumin, and of course there is some cor-
relation with our small sample size, and we hope to con-
duct further studies on large sample sizes to illustrate the 
association between them. Furthermore, our findings 
did not find that treatment regimens had a significant 
effect on urine protein outcomes. However, RAAS inhibi-
tors, immunosuppressant, and CD20 monoclonal anti-
body therapy all showed low odds ratios in univariable’ 
logistics regression, implying that certain patients might 
benefit from these treatments. Therefore, based on our 
model, we recommend that when assessing the outcome 
of patients with urine protein, if the probability of non-
remission of urine protein is high and the likelihood of 
disease progression is high, we should actively commu-
nicate with the patient and take intervention to achieve a 
good prognosis.

The present study developed a dynamic online nomo-
gram model for the early prediction of poor treatment 
response in IMN patients, and we can formulate individ-
ualized treatment and management plans, and determine 
whether it is appropriate to initiate immunosuppressive 
therapy to reduce the risk of progression to ESRD. But, 
there are several limitations to the present study. First, 
this study covered data from three study centers, the fail-
ure to establish a unified testing platform resulted in dif-
ferences in validation and training cohorts baseline data. 
Conversely, it also verified the universality and appli-
cability of the prognostic model. Second, recent studies 
showed that chronic tubulointerstitial inflammation was 
considered as a risk factor for poor renal prognosis in 
patients with IMN [19, 46]. This retrospective study had 
a small sample size, and the urinary α1/β2-microglobulin 
were not been included the association between chronic 
tubulointerstitial inflammation and poor prognosis of 
IMN had not been studied. Therefore, there is a need for 
a prospective, multicenter, large- scale cohort to explore 
this correlation.

Conclusions
In conclusion, we developed a dynamic online model for 
assessing patient prognosis and treatment response in 
patients with IMN and validated the model using inde-
pendent patient cohorts. The nomogram is easy to use 
and can identify patients with IMN who are at high risk 

of poor response to treatment and a poor prognosis, and 
may help clinicians formulate an individualized treat-
ment plan for patients and discuss when to start immu-
nosuppressive therapy for a good prognosis.
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