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Abstract 

Background  Compared with the time-consuming and labor-intensive for biological validation in vitro or in vivo, 
the computational models can provide high-quality and purposeful candidates in an instant. Existing computational 
models face limitations in effectively utilizing sparse local structural information for accurate predictions in circRNA-
disease associations. This study addresses this challenge with a proposed method, CDA-DGRL (Prediction of CircRNA-
Disease Association based on Double-line Graph Representation Learning), which employs a deep learning frame-
work leveraging graph networks and a dual-line representation model integrating graph node features.

Method  CDA-DGRL comprises several key steps: initially, the integration of diverse biological information to com-
pute integrated similarities among circRNAs and diseases, leading to the construction of a heterogeneous network 
specific to circRNA-disease associations. Subsequently, circRNA and disease node features are derived using sparse 
autoencoders. Thirdly, a graph convolutional neural network is employed to capture the local graph network structure 
by inputting the circRNA-disease heterogeneous network alongside node features. Fourthly, the utilization of node-
2vec facilitates depth-first sampling of the circRNA-disease heterogeneous network to grasp the global graph net-
work structure, addressing issues associated with sparse raw data. Finally, the fusion of local and global graph network 
structures is inputted into an extra trees classifier to identify potential circRNA-disease associations.

Results  The results, obtained through a rigorous five-fold cross-validation on the circR2Disease dataset, demonstrate 
the superiority of CDA-DGRL with an AUC value of 0.9866 and an AUPR value of 0.9897 compared to existing state-
of-the-art models. Notably, the hyper-random tree classifier employed in this model outperforms other machine 
learning classifiers.

Conclusion  Thus, CDA-DGRL stands as a promising methodology for reliably identifying circRNA-disease associa-
tions, offering potential avenues to alleviate the necessity for extensive traditional biological experiments. The source 
code and data for this study are available at https://​github.​com/​zywait/​CDA-​DGRL.
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Introduction
Circular RNAs (circRNAs) are a new type of non-
coding RNAs involved in the development of certain 
diseases, which plays an important role in gene expres-
sion and signaling pathways [1]. Compared with other 
non-coding RNAs, circRNAs as a biomarker of disease 
has demonstrated with better stability and integrity, 
thus offering great potential in tumor diagnosis [2, 3]. 
Gene expression and protein synthesis in cancer cells 
are also regulated by circRNAs [4]. Traditional works 
in biological validation for identifying the association 
between circRNA and disease are time-consuming and 
usually lack specificity, although with high prediction 
accuracy [5]. Meanwhile, biological databases coming 
from traditional biological experiments and related lit-
erature increasingly provide the convenience and basis 
for computational methods to identify circRNA-disease 
associations more efficiently and economically [6]. Cur-
rently, existing computational methods for predicting 
circRNA-disease associations are classified into two 
major categories broadly: network computing-based 
models and machine learning-based models.

Network computing‑based models
These models leverage circRNA (disease) similarity 
network and known circRNA-disease associations to 
construct the heterogeneity network. Subsequently, 
algorithms tailored for this network are employed to 
forecast potential associations. Lei et  al. [7] proposed 
a method named RWRKNN, which integrated the ran-
dom walk with restart (RWR) and k-nearest neighbors 
(KNN) to predict circRNA-disease associations. How-
ever, RWRKNN highly relies on priori information 
of circRNAs and diseases, it is slightly inadequate in 
revealing the relationship between isolated diseases and 
new circRNAs. Li et  al. [8] proposed a novel method 
named DWNCPCDA based on DeepWalk and Net-
work Consistency Projection. An important innovation 
of DWNCPCDA was adopted DeepWalk, an embed-
ded method of network, to learn embedding of nodes 
in the network of known circRNA-disease associations. 
Zhang et  al. [9] proposed a linear neighborhood label 
propagation method, named CD-LNLP, to predict cir-
cRNA-disease associations. CD-LNLP resulted in good 
performance mainly attributing to the following fac-
tors: the application of linear neighbor similarity (LNS) 
guaranteeing the basic effectiveness, and only using the 
known and reliable circRNA-disease associations as 
prior information. CD-LNLP also could not be applied 
in prediction of associations involving new circRNAs 
or isolated diseases.

Machine learning‑based models
These models utilize circRNA (disease) similarity net-
work and known circRNA-disease associations to train 
supervised or unsupervised learning algorithms. These 
algorithms iteratively optimize their internal parameters 
to extract latent features from the circRNA and dis-
ease data. Lan et al. [10] proposed a new computational 
method (KGANCDA) to predict circRNA-disease asso-
ciations based on knowledge graph attention network. 
CircRNA-disease knowledge graphs were constructed 
by collecting multiple relationship data between differ-
ent types of nodes (circRNAs, diseases, miRNAs and 
lncRNAs). Embeddings of each entity in circRNA-disease 
knowledge graphs were obtained with attention network 
by distinguishing the importance of information from 
neighbors. Besides the low-order neighbor information, 
KGANCDA could also capture high-order neighbor 
information from multi-source associations to alleviate 
the problem of raw-data sparsity. Ma et al. [11] proposed 
a novel algorithm CRPGCN to predict circRNA-disease 
associations based on Graph Convolutional Network 
(GCN) constructed with Random Walk with Restart 
(RWR) and Principal Component Analysis (PCA). RWR 
was used to calculate similarity between nodes. After 
that, PCA that was used to reduce dimensions and extract 
features intensified the association of circRNAs with dis-
eases. However, CRPGCN produced the biased results 
due to some data were isolated in the process of data 
fusion. Zheng et al. [12] introduced iCDA-CGR, a novel 
approach aimed at identifying circRNA-disease associa-
tions by leveraging Chaos Game Representation (CGR). 
By incorporating sequence information and quantifying 
nonlinear relationships, iCDA-CGR addressed the limi-
tation of model coverage. Nevertheless, there remains 
a scope for enhancing the predictive accuracy of iCDA-
CGR. Li et  al. [13] proposed SIMCCDA, a method that 
leverages inductive matrix completion techniques to 
impute the missing values within the known circRNA-
disease association matrix. This approach reformulates 
the association prediction task as a recommendation sys-
tem problem, achieving good performance with reduced 
memory requirements and training time. However, SIM-
CCDA cannot be applied to the prediction of new dis-
eases without any associations or isolated circRNAs. Zuo 
et al. [14] proposed DMCCDA, an association prediction 
method based on double matrix completion. DMCCDA 
employs matrix completion methods to reconstruct the 
known association matrix. Subsequently, it utilizes the 
reconstructed matrix alongside a corresponding Gauss-
ian similarity matrix to create a combined matrix, which 
is again reconstructed using matrix completion. The final 
prediction score integrates the results from these steps. 
Despite its methodological novelty, DMCCDA exhibits 
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limitations in performance compared to alternative 
methods.

In recent years, deep learning-based models have 
emerged as a powerful tool in bioinformatics [5]. These 
models represent biological systems as graphs, where 
nodes represent biological entities and edges represent 
interactions between them [15]. Graph representation 
learning, a technique within deep learning, extracts fea-
tures from graph networks and learns low-dimensional 
representations of nodes, links, and subgraphs, pre-
serving the graph’s topology and intrinsic properties 
[16]. Several studies have employed graph representa-
tion learning for various biological association predic-
tion tasks: Zhang et  al. [17] proposed a computational 
model based on graph representation learning that was 
composed of GCN and graph factorization (GF), named 
iGRLCDA, to identify circRNA–disease associations. 
Peng et al. [18] proposed a novel end-to-end heterogene-
ous graph representation learning-based model, called 
EEG-DTI, to identify drug–target interactions. Zhao 
et  al. [19] proposed a novel model, namely HINGRL, 
to predict drug-disease associations with graph repre-
sentation learning on heterogeneous information net-
work. Jiang et  al. [20] presented a novel computational 
model combining sparse auto-encoder and rotation for-
est (SAEROF) to predict drug-disease association. Ha 
et  al. [21] proposed a node2vec-based neural collabo-
rative filter, named NCMD, to predict miRNA-disease 
associations. Zhao et  al. [22] proposed a novel method 
to predict drug-target interactions based on large-scale 
graph representation learning. Zhao et al. [23] proposed 
MotifMDA, a novel motif-aware model that integrates 
high and low-order structural information for miRNA-
disease association prediction.

Extra-tree classifiers have also proven effective in bio-
informatics tasks due to their ability to introduce rand-
omization and achieve good flexibility and accuracy [24, 
25]. Extra-tree classifiers have been successfully applied 
in leukocyte classification [26], lncRNA-protein interac-
tions identification [27], and cardiovascular disease pre-
diction [28].

While several computational methods have been pro-
posed, they exhibit shortcomings such as reliance on 
prior information, inability to accommodate new cir-
cRNAs or isolated diseases, biased results, and limited 
prediction accuracy [7, 9–12, 15]. Furthermore, the 
inherent complexity of extracting relevant features from 
heterogeneous graphs poses a substantial challenge to 
the development of robust models for circRNA-disease 
association prediction [20–22, 24, 25, 29, 30]. To over-
come these challenges, we propose a novel approach 
termed CDA-DGRL (CircRNA-Disease Association Pre-
diction via Double-Line Graph Representation Learning). 

This innovative model integrates diverse biological data 
sources, employs advanced feature extraction tech-
niques, and comprehensively analyzes both local and 
global graph structures to enhance the identification of 
circRNA-disease associations. By addressing these chal-
lenges, CDA-DGRL aims to provide a more accurate and 
efficient means of predicting circRNA-disease associa-
tions, thereby facilitating advancements in disease diag-
nosis and treatment.

Step 1, diverse biological information encompassing 
circRNA functional similarity, disease semantic simi-
larity, circRNA (disease) Gaussian interaction profile 
kernel similarity, and circRNA-disease known asso-
ciations were integrated to form integrated circRNA 
(disease) similarity. These integrated similarities were 
then utilized to construct the circRNA-disease het-
erogeneous network (CDHN).
Step 2, the integrated circRNA (disease) similarity 
metric from step 1 was then fed into a sparse auto-
encoder to extract node features for both circRNAs 
and diseases within the CDHN.
Step 3, local graph networks were built by inputting 
the node features of CDHN into a GCN, enabling the 
capture of local graph structures.
Step 4, global graph networks were constructed using 
node2vec, employing depth-first sampling within 
CDHN to comprehend the broader network struc-
ture comprehensively.
Step 5, the combination of local and global graph 
networks was inputted into an extra-tree classifier to 
identify potential circRNA-disease associations.

CDA-DGRL represents a novel approach that leverages 
the strengths of both local and global graph structures. 
By integrating diverse biological data sources, employing 
a sparse auto-encoder for feature extraction, and com-
prehensively analyzing both the fine-grained relation-
ships (local structures) and the broader network context 
(global structures) within the circRNA-disease hetero-
geneous network, CDA-DGRL effectively identifies cir-
cRNA-disease associations.

Results
Experiment dataset
From the circR2Disease database [31], we assembled a 
dataset comprising 739 experimentally validated associa-
tions, involving 661 circRNAs and 100 diseases. Follow-
ing the removal of redundant entries, our focus narrowed 
to 650 non-repetitive associations linked specifically to 
human complex diseases as the known circRNA-disease 
associations. This refined benchmark dataset involved 
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585 distinct circRNAs and encompassed 88 unique com-
plex diseases.

Evaluation metric and method
When evaluating circRNA-disease node pairs, whose 
prediction scores surpassing a predefined threshold are 
classified as positive samples; otherwise, those falling 
below the threshold are labeled as negative samples. True 
positive rate (TPR) and false positive rate (FPR) were 
computed at various threshold values, generating multi-
ple TPR and FPR groups. These data points were utilized 
to construct receiver operating characteristic (ROC) 
curves plotting TPR against FPR. Common evaluation 
metrics including area under the ROC curve (AUROC), 
area under the precision-recall (PR) curve (AUPR), accu-
racy, sensitivity, precision, specificity, and Matthews’s 
correlation coefficient (MCC) were employed to evlu-
ate the predictive performance of the compared models 
under comparison. To mitigate the impact of result vari-
ance, a fivefold cross-validation method was iterated 10 
times to ensure robustness. The average values derived 
from these repetitions were calculated to yield final eval-
uation results.

Evaluation result and analyzation
Five‑fold‑cross‑validation
After implementing fivefold cross-validation, the results 
for each evaluation metric obtained from CDA-DGRL 
are presented in Table 1.

Based on the outcomes detailed in Table  1 for each 
metric, CDA-DGRL exhibited notable predictive per-
formance across all folds within the fivefold cross-val-
idation. The consistent results observed across different 

folds underscore the model’s proficiency and stability, 
affirming CDA-DGRL’s capability for both excellent per-
formance and consistent reliability.

Ablation experiment
To better assess the impact and significance of incorpo-
rating different network structures on addressing data 
sparsity within the biological network, we conducted 
ablation experiments employing three distinct experi-
mental schemes: ① local graph structure only; ② global 
graph structure only; ③ both local and global graph 
structures. Subsequent to performing fivefold cross-vali-
dation, the detailed experimental outcomes are presented 
in Table 2.

The outcomes in Table 2 illustrate that the third experi-
mental scheme (ours) achieved the best predictive per-
formance across all evaluation metrics. The first scheme 
only utilizes the local network structure, focusing on the 
immediate relationships between circRNAs and diseases. 
While this approach can capture fine-grained details 
about these relationships, it may miss broader network 
context that could be informative for prediction. The 
second scheme solely leverages the global network struc-
ture, analyzing the overall connectivity patterns within 
the network. This can capture the broader context of cir-
cRNA and disease interactions but may lack the specific-
ity of local relationships. For instance, it might identify 
circRNAs with similar disease associations even if they 
lack direct functional similarity. The third experimental 
scheme (ours) integrates both local and global network 
structures. This allows the model to capture both fine-
grained relationships between circRNAs and diseases and 
the broader network context. The superior performance 

Table 1  Evaluation Results on Each Fold

fold accuracy sensitivity specificity precision MCC AUROC AUPR

0 0.9577 0.9462 0.9692 0.9685 0.9156 0.9848 0.9897

1 0.9577 0.9385 0.9769 0.9760 0.9161 0.9872 0.9900

2 0.9538 0.9538 0.9538 0.9538 0.9077 0.9878 0.9905

3 0.9577 0.9308 0.9846 0.9837 0.9167 0.9852 0.9882

4 0.9577 0.9615 0.9538 0.9542 0.9154 0.9904 0.9923

mean 0.9569 ± 0.0017 0.9462 ± 0.0121 0.9677 ± 0.0138 0.9672 ± 0.1323 0.9143 ± 0.0037 0.9866 ± 0.0022 0.9897 ± 0.0014

Table 2  Results of Different Scheme Settings

sheme accuracy sensitivity specificity precision MCC AUROC AUPR

① 0.8708 ± 0.0140 0.8585 ± 0.0359 0.8831 ± 0.0138 0.8803 ± 0.0096 0.7424 ± 0.0271 0.9275 ± 0.0165 0.9434 ± 0.0056

② 0.9370 ± 0.0064 0.9339 ± 0.0117 0.9400 ± 0.0064 0.9397 ± 0.0061 0.8739 ± 0.0128 0.9768 ± 0.0038 0.9822 ± 0.0026

③(ours) 0.9569 ± 0.0017 0.9462 ± 0.0121 0.9677 ± 0.0138 0.9672 ± 0.1323 0.9143 ± 0.0037 0.9866 ± 0.0022 0.9897 ± 0.0014
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of our scheme supports the theoretical notion that com-
bining local and global network structures allows the 
model to extract more comprehensive features, leading to 
more accurate circRNA-disease association prediction.

Classifier comparison
To comprehensively validate our model, we employed 
various classifiers, such as random forest (RF) [17], logis-
tic regression (LR) [32], K-nearest neighbor classifier 
(KNN) [7], Gaussian Parsimonious Bayes (Gaussian NB) 
[17], and extra-tree classifier (ET). Each classifier was 
individually incorporated into our model to assess their 
respective contributions toward achieving optimal pre-
dictive performance. Employing fivefold cross-validation 
with default parameters, we meticulously evaluated the 
performance of each classifier. Detailed evaluation results 
are presented in Table  3, outlining their respective pre-
dictive capacities.

The analysis of Table  3 reveals that the integration of 
the extra-tree classifier (ET) resulted in superior per-
formance metrics compared to other classifiers. Specifi-
cally, the ET implementation facilitated an improvement 
of 0.65%, 22.49%, 5.97%, and 24.07% in AUROC values 
over alternative classifiers. Furthermore, the utilization 
of ET within our model led to the achievement of the 
highest AUPR value, showcasing enhancements of 0.55%, 
27.43%, 5.98%, and 22.87% compared to other classifiers, 
respectively.

Model comparison
To assess the effectiveness of our CDA-DGRL model, we 
conducted a comparative analysis against three related 
state-of-the-art models, SIMCCDA [13], CRPGCN 

[11] and DMCCDA [14]. This comparison was con-
ducted using the refined benchmark dataset outlined in 
Sect.  "Experiment Dataset". Hyperparameter selection 
for all involved models was guided by relevant lectures to 
ensure optimal configuration. Following a rigorous five-
fold cross-validation process, comprehensive evaluation 
results are visually presented in Table 4 and Fig. 1.

As the results shown in Table 4, our CDA-DGRL per-
forms excellently across most key metrics, showing a bal-
anced performance advantage. While it may not be the 
best in some individual metrics, its overall performance 
is very strong. Notably, it excels in accuracy, sensitivity, 
MCC, and AUC. While CDA-DGRL is slightly inferior 
in certain individual metrics compared to DMCCDA 
and CRPGCN, its overall performance is more bal-
anced. For example, CDA-DGRL performs exception-
ally well in sensitivity, precision, AUROC, and AUPR, 
indicating its potential advantage in handling imbal-
anced datasets and practical applications. As depicted in 
Fig.  1, CDA-DGRL demonstrates superior performance 
in both AUROC and AUPR values, especially on imbal-
anced datasets. Although DMCCDA achieves a margin-
ally higher AUROC value (0.25%) than our CDA-DGRL, 
its AUPR value is notably lower by 10.97% in compari-
son. While SIMCCDA solely relies on network similarity 
for prediction, CDA-DGRL integrates diverse biological 
data sources and leverages both local and global network 
structures. This comprehensive approach likely contrib-
utes to CDA-DGRL’s advantage in capturing complex 
relationships between circRNAs and diseases. Compared 
to CRPGCN, which utilizes GCNs to learn features from 
the local network structure, CDA-DGRL additionally 
analyzes the broader network context. This theoretically 

Table 3  Performance of Different Classifiers

classifier accuracy sensitivity specificity precision MCC AUROC AUPR

RF 0.9354 ± 0.0069 0.9400 ± 0.0126 0.9308 ± 0.0109 0.9315 ± 0.0099 0.8710 ± 0.0138 0.9801 ± 0.0044 0.9842 ± 0.0033

LR 0.7231 ± 0.0380 0.7538 ± 0.0696 0.6923 ± 0.02495 0.7095 ± 0.0263 0.4483 ± 0.0787 0.7617 ± 0.0330 0.7154 ± 0.0390

KNN 0.8300 ± 0.1260 0.9539 ± 0.0196 0.7062 ± 0.0263 0.7648 ± 0.0151 0.6817 ± 0.0250 0.9269 ± 0.0068 0.9299 ± 0.0073

Guassian NB 0.6785 ± 0.0307 0.6523 ± 0.0503 0.7046 ± 0.0409 0.6886 ± 0.0319 0.3580 ± 0.0610 0.7459 ± 0.0351 0.7610 ± 0.0337

ET(ours) 0.9569 ± 0.0017 0.9462 ± 0.0121 0.9677 ± 0.0138 0.9672 ± 0.1323 0.9143 ± 0.0037 0.9866 ± 0.0022 0.9897 ± 0.0014

Table 4  Performance of Model for Comparison

model accuracy sensitivity specificity precision MCC AUROC AUPR

SIMCCDAA 0.8317 0.7708 0.9965 0.0556 0.1772 0.8802 0.0885

CRPGCN 0.9696 0.6077 0.9988 0.9634 0.7567 0.9387 0.8748

DMCCDA 0.9224 0.0948 0.9993 0.1346 0.3412 0.9881 0.8800

CDA-DGRL (ours) 0.9569 ± 0.0017 0.9462 ± 0.0121 0.9677 ± 0.0138 0.9672 ± 0.1323 0.9143 ± 0.0037 0.9866 ± 0.0022 0.9897 ± 0.0014
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allows CDA-DGRL to capture more informative fea-
tures, leading to its superior performance. Interestingly, 
DMCCDA achieves a marginally higher AUROC value 
than CDA-DGRL. However, its AUPR value is notably 
lower. DMCCDA incorporates multi-source information 
but may not explicitly capture fine-grained relationships 
between circRNAs and diseases, potentially explaining 
the lower AUPR. Conversely, CDA-DGRL’s focus on both 
local and global structures likely contributes to its strong 
performance in both metrics. Consequently, CDA-DGRL 
exhibits the most comprehensive and superior perfor-
mance across both evaluation metrics, highlighting the 
effectiveness of our proposed double-line graph repre-
sentation learning approach for circRNA-disease associa-
tion prediction.

Robustness verification
Additional experiments were conducted to verify the 
robustness of our model across various domains: cir-
cRNA-disease association prediction, miRNA-disease 
association prediction, and drug-target interaction 
prediction. The dataset concerning circRNA-disease 
association was sourced from the previously described 
benchmark dataset. Subsequently, datasets for miRNA-
disease association and drug-target interaction were 
acquired and processed in accordance with method-
ologies outlined in literature [33] and literature [22], 
respectively. The miRNA-disease association dataset 
encompasses 5430 established associations involving 495 
distinct miRNAs and 383 diseases. On the other hand, 
the drug-target interaction dataset consists of 11,396 
known associations involving 984 drugs and 635 pro-
teins. Employing a rigorous five-fold cross-validation 
process, ROC plots and PR plots were generated for the 
three datasets, as depicted in Fig.  2. These experiments 
were conducted with the objective of assessing our mod-
el’s predictive performance and robustness across diverse 

molecular interaction domains. They serve to demon-
strate the efficacy of our model in predicting circRNA-
disease associations, miRNA-disease associations, and 
drug-target interactions, showcasing its versatility and 
effectiveness.

As depicted in Fig. 2, CDA-DGRL attained AUC values 
of 0.9437, 0.9668, and 0.9866, along with AUPR values 
of 0.9429, 0.9658, and 0.9897 for circRNA-disease asso-
ciation data, miRNA-disease association data, and drug-
target interaction data, respectively. These experimental 
outcomes substantiate the model’s applicability across 
datasets characterized by distinct scales and content 
compositions. Furthermore, the results underscore its 
robustness and notable generalization capacity.

Case study
Many researchers are trying hard to minimize the inci-
dence of cancers. Global cancer statistics [34] reported 
that breast cancer is the most prevalent type of can-
cer in women worldwide and ranks second in terms of 
death tolls. For gastric cancer, the five-year survival rate 
is generally 5–25%. Among the cancers, gastric cancer is 
more deadly [35].  To validate the predictive capabilities 
of CDA-DGRL in real-world scenarios, this study con-
ducted case studies focusing on breast cancer and gas-
tric cancer. Through computational analyses, the model 
identified circRNAs associated with these two cancers. 
After sorting the resultant association prediction scores 
in descending order, the top 10 ranked circRNAs related 
to each case were selected to be validated with cross-
referencing relevant literature and reports available in 
the PMID database. The detailed results are presented in 
Tables 5 and 6 as follows.

In Tables  5 and 6, both only two out of ten circR-
NAs predicted haven’t been found to have any evidence 
described in the literature of PubMed database. Alrough 
there is no direct description of the association between 

Fig. 1  AUROC and AUPR curves for models engaged in comparison
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Fig. 2  Results for robustness verification. a ROC curves across various datasets. b PR curves across various datasets

Table 5  Top 10 breast cancer-related candidate circRNAs

rank circRNA PMID

1 circHIPK3(also known as hsa_circRNA_100782 and hsa_circ_0000284) 34,135,597

2 ciRS-7(also known as CDR1as and hsa_circ_0001946) 31,245,927

3 circPVT1(also known as hsa_circ_0001821) 33,223,849

4 cir-ITCH (also known as hsa_circ_0001141 and hsa_circ_001763) 33,544,410

5 circCCDC66(also known as hsa_circ_00013130) 8,249,903

6 circPRKCI(also known as hsa_circ_0067934) 35,236,829

7 circ-Foxo3(also known as hsa_circ_0006404) 28,278,047

8 hsa_circRNA_103110(also known as hsa_circ_103110 and hsa_circ_0004771) 30,979,827

9 hsa_circ_0001649 unconfirmed

10 hsa_circ_0000064 unconfirmed

Table 6  Top 10 gastric cancer-related candidate circRNAs

rank circRNA PMID

1 hsa_circ_0001649 28,167,847

2 ciRS-7(also known as CDR1as and hsa_circ_0001946) 34,221,006

3 cir-ITCH(also known as hsa_circ_0001141 and hsa_circ_001763) 33,060,778

4 circCCDC66(also known as hsa_circ_0001313) 32,253,030

5 hsa_circ_0007534 unconfirmed

6 circPRKCI(also known as hsa_circ_0067934) 35,113,408

7 hsa_circ_0014717 28,544,609

8 circ-MCTP1(also known as hsa_circ_0005540) unconfirmed

9 circHIPK3(also known as hsa_circRNA_100782 and hsa_circ_0000284) 33,680,975

10 circSMARCA5(also known as hsa_circ_0001445) 30,956,729
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“hsa_circ_0001649” and breast cancer in the literature so 
far, literatue [36] studied the relationship between hsa_
circ_0001649 and miR-20a and the underlying molecular 
mechanisms, and literature [37] demostrated the role for 
miR-20a in the regulation of breast cancer angiogenesis. 
An accompanying file on the Royal Society of Chemis-
try’s website delineates the association between “hsa_
circ_0000064” and breast cancer, despite the absence of a 
direct explicit description of this association within avail-
able literature. In Table  5, there’s no direct description 
in any literature currently available that associates “hsa_
circ_0007534” with gastric cancer. However, numer-
ous pieces of literature demonstrate a direct association 
between "hsa_circ_0007534" and colorectal cancer as 
well as pancreatic cancer, both of which belong to can-
cers affecting parts of the digestive system [38–40]. We 
believe that forthcoming research will unveil evidence 
linking ’hsa_circ_0007534’ to gastric cancer, a digestive 
system-related cancer. As for “circ-MCTP1”, another cir-
cRNA lacking direct evidence, it has been demonstrated 
to be associated with multiple system atrophy (MSA) 
[41]. Furthermore, it’s noteworthy that all patients diag-
nosed with MSA exhibit gastrointestinal abnormalities 
[42]. The potential for discovering evidence linking "hsa_
circ_0007534" to gastric cancer remains open for future 
exploration.

Discussion
The precise identification of the association between cir-
cRNAs and diseases holds significant promise in expe-
diting drug development, personalized diagnostics, and 
the treatment landscape for a spectrum of human dis-
eases. In this study, we introduce a novel deep learning 
framework termed CDA-DGRL, which leverages a graph 
network structure and employs bilinear representation 
based on graph node features. This framework could cap-
ture both local and global structural information inherent 
in heterogeneous networks. By doing so, it mitigates the 
challenge of poor prediction accuracy stemming from the 
inherent sparsity of biological data. Notably, the model 
exhibits robustness and applicability across datasets 
with varying scales and contents. Our future endeavors 
involve the integration of diverse biological information, 
encompassing miRNA, lncRNA, and other pertinent 
elements, to construct an expansive circRNA-disease 
heterogeneity network. This holistic approach aims to 
enrich the pool of circRNA and disease-related informa-
tion, facilitating more precise predictions of the associa-
tion between circRNAs and diseases. With unraveling 
and interpreting the deep sea of circRNAs, it may serve 
as prognostic, diagnostic, and even therapeutic tools, 
or molecules to be targeted for biomedical research and 
clinical applications. While CDA-DGRL demonstrates 

promising performance, there is an opportunity to poten-
tially enhance the effectiveness of local network structure 
representation. Inspired by the work presented in [43], 
we will explore how alternative attribute graph network 
construction methods might improve the model’s capa-
bility to capture intricate rel.

Materials and methods
Network construction
CircRNA‑Disease Heterogeneous Network (CDHN)
Utilizing the previously referenced benchmark data-
set, a circRNA-disease association network was con-
structed and denoted as A ∈ R

n×m , where the variables 
n and m represent the number of circRNAs and diseases 
involved, respectively. In this network, if a circRNA ci has 
a known association with disease dj , the matrix element 
A(ci, dj) = 1 ; conversely, A(ci, dj) = 0 . Subsequently, a 
heterogeneous network CDHN, represented by an adja-
cent matrix X ∈ R

(n+m)×(n+m) , was constructed using the 
association information as follows:

where AT represents the corresponding transpose matrix 
of A . This construction results in a comprehensive heter-
ogeneous network capturing both circRNA-disease asso-
ciations and their interrelations.

Disease semantic similarity network
Semantic information regarding diseases was obtained 
from the U.S. National Library of Medicine database 
(https://​www.​nlm.​nih.​gov/​mesh/), with which semantic 
similarities for diseases were calculated by using directed 
acyclic graphs (DAG) [44]. Within this framework, a dis-
ease node d is represented by DAGd = (d,Td ,Ed) , where 
Td denotes the set encompassing all ancestors of disease 
d (including d itself ), and Ed signifies the set of edges 
connecting those diseases in the set. Consequently, the 
semantic contribution value of any disease d to disease di 
was defined with SCdi(d):

where γ represents the semantic contribution factor, 
empirically set to 0.5 in accordance with literature [44]. 
This formulation aims to quantify the semantic relation-
ship between diseases based on their shared ancestry 
within the DAG framework.

The semantic value of disease di is represented by 
SV (di) , with definition as:

(1)X =
0 A

AT 0

(2)Sdi (d) =

{

1, if d = di

max
{

γ × SCdi (d
′)|d′ ∈ child of d

}

, if d �= di

https://www.nlm.nih.gov/mesh/
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The matrix element within the disease semantic simi-
larity network (denoted as DS ∈ R

m×m ) that represent 
the semantic similarity between disease di and disease dj 
is denoted by DS

(

di, dj
)

 , with calculation as:

CircRNA functional similarity network
In accordance with the hypothesis suggesting that simi-
lar circRNAs tend to be associated with similar diseases 
and vice versa [45], circRNA functional similarity was 
calculated by integrating disease semantic similarity and 
experimentally validated circRNA-disease associations. 
The calculation involved determining the maximum 
semantic similarity value for any disease d within the dis-
ease set T =

{

d1, d2, · · · , dm
}

 was calculated as:

Matrix FS ∈ R
n×n denotes the circRNA functional sim-

ilarity network whose element FS
(

ci, cj
)

 represents the 
circRNA functional similarity between circRNA ci and 
circRNA cj:

where Ti represents the set of diseases associated with 
circRNA ci , Tj represents the set of diseases associated 
with circRNA cj , r and l denote the number of diseases in 
sets Ti and Tj , respectively.

Gaussian interaction profile kernel similarity network
The sparsity inherent in the original circRNA-disease 
association network significantly impacts prediciton 
accuracy. To address this limitation, we introduced the 
Gaussian interaction profiles kernel similarity to fill the 
missing values within the original circRNA-disease asso-
ciation network [45]. Matrix CK ∈ R

n×n represents the 
Gaussian interaction profile kernel similarity for circR-
NAs, where the matrix element CK

(

ci, cj
)

 denotes the 
Gaussian interaction profile kernel similarity between 
circRNA ci and circRNA cj:

where the parameter �c represents the control kernel 
bandwidth, employed to regulate the size of CK

(

ci, cj
)

:

(3)SV (di) =
∑

d∈Td

SCdi(d)

(4)

DS
(

di, dj
)

=

∑

dk∈Tdi
∩Tdj

(

SCdi(dk)+ SCdj (dk)
)

SV (di)+ SV
(

dj
)

(5)max (d,T ) = max
1≤i≤m

(DS(d, di))

(6)FS
(

ci , cj
)

=

∑

1≤p≤r max
(

dp ,Ti

)

+
∑

1≤q≤k max
(

dq ,Tj

)

r + l

(7)CK
(

ci, cj
)

= exp
(

−�c

∥

∥A
(

ci, dj
)

− A
(

cj , dj
)∥

∥

2
)

Similarly, the Gaussian interaction profile kernel similar-
ity for diseases ( DK ∈ R

m×m ), wherein the matrix element 
DK

(

di, dj
)

 undergoes a similar calcuation processes as 
above.

Integrated similarity network
To improve the relatively low accuracy caused by sparsity 
within the circRNA (disease) semantic similarity network, 
we combined circRNA (disease) Gaussian interaction pro-
file kernel similarity with circRNA functional similarity 
(disease semantic similarity). This combination resulted in 
the formation of the integrated circRNA similarity network 
( Xc ∈ R

n×n ) and the integrated disease similarity network 
( Xd ∈ R

m×m ), respectively:

Feature extraction
The relationships among nodes within HCDN are complex, 
and individual node features typically encompass multiple 
attributes. To precisely comprehend these relationships, 
node features necessitate extraction from various perspec-
tives and dimensions to comprehensively capture the net-
work’s complexity.

Dimensionality reduction
The sparse auto-encoder could not only fix the redundancy 
and sparsity problems existing in the original benchmark 
dataset, but also enhance the model’s generalization abil-
ity, mitigating overfitting during the training phase [20]. To 
reduce the dimensionality of the integrated circRNA (dis-
ease) similarity and obtain a more concise representation, 
a novel sparse auto-encoder based on a three-layer neural 
network structure was designed.

Integrated circRNA similarity network ( Xc ) as input was 
fed into the sparse auto-encoder. The optimal number of 
neurons in the hidden layer, minimizing data loss during 
the transformation from the original space (input layer) 
to the new feature space (output layer), was denoted by 
k , with a value set to 64 [22]. The input was compressed 
within the hidden layer, calculated as:

(8)
�c =

n
n
∑

i=1

∥

∥A
(

ci, dj
)∥

∥

2

(9)Xc

(

ci, cj
)

=

{

FS
(

ci, cj
)

,

CK
(

ci, cj
)

,

if FS
(

ci, cj
)

�= 0

if FS
(

ci, cj
)

= 0

(10)Xd

(

di, dj
)

=

{

DS
(

di, dj
)

,

DK
(

di, dj
)

,

if DS
(

di, dj
)

�= 0

if DS
(

di, dj
)

= 0

(11)�yc = σ

(

�xcW1 + �b1

)



Page 10 of 13Zhang et al. BMC Medical Informatics and Decision Making          (2024) 24:159 

where �yc ∈ R
1×k , a vector within matrix Yc ∈ R

n×k , 
represents the encoded mapping outcome derived from 
the output layer. Matrix W1 ∈ R

n×k denotes the weight 
matrix from the input layer to the hidden layer, while 
�xc ∈ R

1×n denotes a vector within matrix Xc . Vector 
�b1 ∈ R

1×k represents the bias, and σ(·) denotes the acti-
vation function of the neurons.

Subsequently, within the output layer, Yc was decom-
pressed to reconstruct circRNA integration similarity 
( Xc ), with calculation as:

where �zc ∈ R
1×k , a vector within matrix Zc ∈ R

n×k , rep-
resents the reconstructed outcome subsequent to the 
decompression. Matrix W2 ∈ R

k×k denotes the weight 
matrix from the hidden layer to the output layer, and vec-
tor �b2 ∈ R

1×k represents the bias.
Throughout the aforementioned calculation processes, 

the dimensionality of integrated circRNA similarity 
underwent reduction, potentially resulting in the loss of 
circRNA-related information. To mitigate this loss, the 
sparse auto-encoder was trained by iteratively minimiz-
ing the loss between W1 and W2 . Employing the gradient 
descent algorithm [19] to alternately optimize both the 
weight matrix and bias. Consequently, the loss function 
characterizing CDA-DGRL is defined as:

Similarly, the reconstruction of integrated disease 
similarity network Xd (denoted as Zd ∈ R

m×k ) followed 
a parallel calculation process as the aforementioned 
steps. Subsequently, by concatenating Zc ∈ R

n×k and 
Zd ∈ R

m×k together, the final circRNA-disease feature 
matrix Q = [Zc,Zd]

T ∈ R
(n+m)×k was derived.

Local graph network structure
GCN is a semi-supervised technique that translates the 
topological relationships within a graph into topologi-
cal graphs [22]. Through convolutional operations, GCN 
can acquire the embedding representation of nodes in 
the graph, enabling the direct extraction of structural 
information and node attributes. A spatial methodology 
employing a two-layer GCN configuration was used to 
capture the local structural details within the heterogene-
ous network HCDN:

(12)�zc = σ

(

�ycW2 + �b2

)

(13)Loss =
1

n

n
∑

i=1

∥

∥�yc − �zc
∥

∥

2

(14)Hl = ReLU

(

D̃− 1
2QXQD

− 1
2
WQ

)

where I ∈ R
(n + m)×(n + m) represents the identity matrix 

of matrix X ∈ R
(n+m)×(n+m) , D̃ signifies the metric matrix 

of X̃ , W ∈ R
(n+m)×(n+m) denotes the weight matrix ini-

tialized randomly for the network, ReLU(·) denotes the 
activation function utilized, and Hl ∈ R

(n+m)×k denotes 
the captured local graph network structure.

Global graph network structure
Node2vec is one type of graph representations that 
designs a flexible biased random walk technique. Node-
2vec generates traversal paths by integrating breadth-first 
(BF) sampling and depth-first (DF) sampling, introduc-
ing two hyperparameters p and q , to smoothly transi-
tion between these two sampling methodologies [15, 46]. 
The adaptable biased random walk technique employed 
in Node2vec aims to preserve the high-order node prox-
imities, thereby maximizing the network coverage while 
mapping nodes into a lower-dimensional feature space 
for learning node embeddings. For example, node v 
denotes the current node, and the probability of visiting 
the subsequent node x , could be calculated as:

where Z represents a normalizing constant, (v, x) ∈ E 
denotes the existence of an edge connecting node v and 
node x . When the current walk reaches node v through 
the edge connecting node t and node v , πvx denotes the 
unnormalized transition probability:

where wvx represents the weight of the edge connecting 
node v and node x , while dtx represents the shortest dis-
tance from node t to node x . Utilizing formula (18), the 
global graph network structure of the heterogeneous net-
work ( X ) was captured and is denoted by Hg ∈ R

(n+m)×k . 
Following multiple rounds of experimentation, the opti-
mal values for the hyperparameters p and q were set to 
1.0 and 0.25, respectively. 

Extra‑tree classifier prediction
The local graph network structure Hl ∈ R

(n+m)×k , and 
the global graph network structure Hg ∈ R

(n+m)×k , were 
contacted together to derive an integrated network struc-
ture H ∈ R

(n+m)×2k:

(15)X̃ = X + I

(16)P(ti+1 = x|ti = v) =

{

πvx
Z , if (v, x) ∈ E
0, otherwise

(17)πvx = αpq(t, x)wvx

(18)αpq(t, x) =











1
p , if dtx = 0

1, if dtx = 1
1
q , if dtx = 2
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Finally, matrix H was fed into the extra-tree classifier 
[24, 25] with utilizing default parameters for training 
purposes. This process yielded prediction scores rep-
resenting circRNA-disease associations as the outputs. 
Therefore, the comprehensive workflow of our model, 
CDA-DGRL, is concisely illustrated in Fig. 3.
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