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Abstract 

Background  Consider a setting where multiple parties holding sensitive data aim to collaboratively learn popula-
tion level statistics, but pooling the sensitive data sets is not possible due to privacy concerns and parties are unable 
to engage in centrally coordinated joint computation. We study the feasibility of combining privacy preserving syn-
thetic data sets in place of the original data for collaborative learning on real-world health data from the UK Biobank.

Methods  We perform an empirical evaluation based on an existing prospective cohort study from the literature. 
Multiple parties were simulated by splitting the UK Biobank cohort along assessment centers, for which we generate 
synthetic data using differentially private generative modelling techniques. We then apply the original study’s Poisson 
regression analysis on the combined synthetic data sets and evaluate the effects of 1) the size of local data set, 2) 
the number of participating parties, and 3) local shifts in distributions, on the obtained likelihood scores.

Results  We discover that parties engaging in the collaborative learning via shared synthetic data obtain more accu-
rate estimates of the regression parameters compared to using only their local data. This finding extends to the dif-
ficult case of small heterogeneous data sets. Furthermore, the more parties participate, the larger and more consistent 
the improvements become up to a certain limit. Finally, we find that data sharing can especially help parties whose 
data contain underrepresented groups to perform better-adjusted analysis for said groups.

Conclusions  Based on our results we conclude that sharing of synthetic data is a viable method for enabling learn-
ing from sensitive data without violating privacy constraints even if individual data sets are small or do not represent 
the overall population well. Lack of access to distributed sensitive data is often a bottleneck in biomedical research, 
which our study shows can be alleviated with privacy-preserving collaborative learning methods.

Keywords  Collaborative learning, Differential privacy, Health informatics, Synthetic data

Introduction
Often access to the data needed for the most crucial sta-
tistical inference tasks is strictly limited to protect the 
privacy of data subjects. One example where this is espe-
cially prevalent is the case of medical data. Due to this 
limitation, such data cannot be easily combined across 

different origins to make population level statistical dis-
coveries. This can be a severe problem during newly 
developing situations such as epidemics, in which data at 
each single origin is initially scarce and such discoveries 
are essential in making informed population level deci-
sions, for example regarding the measures to take to pre-
vent infectious diseases from spreading. Recent advances 
in generative models as well as privacy-preserving 
machine learning make sharing synthetic data an appeal-
ing solution to mitigate the privacy concerns of sharing 
sensitive data.

Releasing synthetic data generated from a model 
trained with differential privacy [1] has been proposed 
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previously as a way to enable privacy-preserving sharing 
of sensitive data sets [2–12]. These previous works have 
focused on methods for releasing a synthetic data set 
for a single sensitive data set. On the other hand, other 
recent work raised concerns that using such synthetic 
data from a single source as if it was original data may 
have detrimental effects [13]. However, the usefulness of 
combining several of such synthetic data sets released by 
multiple parties for collaborative analysis has not been 
studied before. This is particularly true for the case where 
data are not homogeneous amongst the parties and each 
party holds a relatively small sensitive data set. We bridge 
this gap in the present work by performing a case study 
on a real world data set.

Throughout this work we consider a setting in which 
there exist M ≥ 2 parties that are interested in perform-
ing statistical analyses over a population. Each party m 
has access to a local data set Dm that are disjoint and non-
uniformly sampled from the overall population: Every Dm 
may follow a distribution shifted away from that of the 
overall population (i.e., Pr[x|m] �= Pr[x] ). We assume that 
the parties cannot simply pool their data to perform the 

analysis due to the sensitive nature of the data, consisting, 
e.g., of electronic health records. Instead, we suggest that 
each party trains a generative model on their local data 
using privacy-preserving machine learning techniques 
and publishes synthetic data sampled from this model in 
place of the sensitive data. The party then obtains simi-
lar synthetic data from other parties, which it combines 
with its own local data before performing its analysis 
task. This process is depicted in Fig.  1. The distributed 
data setting we consider is similar to that of (cross-silo) 
federated learning (FL) [14, 15] but does not require the 
parties to engage in a centrally coordinated joint compu-
tation and is not limited to computing parameters for a 
single model. Instead, parties generate synthetic data 
completely locally, publishing the results. Each party then 
downloads the published synthetic data sets and locally 
combines those with its own data before to perform its 
analysis task over population (instead of only local) data. 
See Section Federated learning for further discussion on 
differences and relative merits to FL.

For training the generative model we adopt the formal 
framework of differential privacy (DP), which guarantees 

Fig. 1  Left: Schematic overview of our setup. Multiple parties create synthetic data replicas of their local data under privacy guarantees 
and make them publicly available. Any single party can then use the published synthetic data when performing a data analysis task (case A, 
blue) to improve results over only using their local data (case B, orange). The original data never crosses the (orange) privacy barriers. Right: 
Predictive log-likelihoods of the learned model (blue) are significantly improved over using only locally available data (orange) for most parties 
(centers). Uncertainty is also reduced. The dashed black line shows the log-likelihood for an impractical ideal setting where the analysis could 
be performed over the combined data of all parties. Log-likelihood is evaluated on a held-out test set of the whole population and normalised 
by dividing with the size of the test set. The box plots show the distributions of log-likelihood for parameters sampled from the distributions 
implied by maximum-likelihood solution and errors obtained from the analysis task and over 10 repeats of the experiment. Boxes extend 
from 25% to 75% quantiles of the obtained log-likelihood samples, with the median marked in the box. Whiskers extend to the furthest 
sample point within 1.5 inter-quartile range. Higher mean log-likelihoods of combined over local only are statistically highly significant 
( p < 0.001, nlocal only = 1 000, ncombined = 100 000 ) for all centers except Nottingham, Croydon and Leeds. Local data log-likelihood of outlier center 
Barts is cut off for improved readability (median: −3.65 ). The full figure can be found in Fig. S3
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that the obtained generative model would be essentially 
identical if any data subject were to be removed from a 
party’s local data set. Since the parties’ local data sets are 
disjoint, these privacy guarantees hold independently 
for all synthetic data sets. Consequently the framework 
we describe achieves DP in the billboard model [16], i.e., 
the outcome of the analysis task performed by each party 
is differentially private with respect to the data from all 
other parties. The formal privacy definition and genera-
tive model are detailed in Section Methods.

Summarising, in our setting we assume that 

1.	 the parties’ local data sets are disjoint,
2.	 the parties’ combined data accurately represent the 

overall population but any particular party’s local 
data may be arbitrarily skewed,

3.	 each party’s goal is to optimise their analysis on the 
population level (not only their local data),

4.	 the results of a party’s analysis are kept private,
5.	 a party that receives synthetic data will also share 

synthetic data of their own data, and,
6.	 parties are non-malicious, i.e., they do not actively 

try to negatively affect other parties’ performance.

This setting leads to an apparent dilemma: If the local 
data of a party m is not sufficient to learn the analysis 
model for the global population well, this suggests that it 
might not be possible to learn a good generative model 
from it either, especially under privacy constraints. 
Hence, we should expect that in the case where most par-
ties only have access to small data sets and would there-
fore be interested in obtaining additional data to improve 
their analysis, the synthetic data sets shared amongst the 
parties might not be of sufficient quality to actually help. 
Specifically, the question arises: Does incorporating (low-
fidelity) synthetic data generated from small data sets of 
other parties improve results of the analysis performed 
by party m over just using its own (small) local data set? 
We answer this question in the affirmative.

Concretely, in our setting and under the assumptions 
stated above, we empirically demonstrate on a real-world 
health data set from the UK Biobank [17] that: 

1.	 Complementing local data with synthetic data of 
similarly sized data sets consistently increases the 
utility in the analysis task, and this increase can be 
drastic.

2.	 This effect is more pronounced on smaller local data.
3.	 As the number of parties sharing data increases, the 

results from the analysis on combined data quickly 
approach those obtained from the overall population.

4.	 Parties suffering from local skew benefit from shar-
ing, even if their local data is comparatively larger 

than that of any other party. Such skew can, for 
example, arise from underrepresented minority 
groups in a party’s local data.

The remainder of the paper is organised as follows: We 
first present the data set and methods applied in our case 
study in  Section  Methods. We then present the results 
of our empirical study in Section  Results, followed by a 
discussion of the results and related literature  and con-
cluding remarks in  Section  Discussion  and Conclusions 
respectively.

Methods
Differential privacy
Our setting relies on generating synthetic data with 
quantifiable privacy guarantees provided by the frame-
work of differential privacy (DP) [1]. DP is considered a 
standard definition for privacy and is formally defined as 
the following property of an algorithm:

Definition 1  ((ε, δ) Differential Privacy [1]) For ε ≥ 0 
and δ ∈ [0, 1] , a randomised mechanism M satisfies (ε, δ) 
differential privacy if for any two data sets different in 
only one element, D,D′ ∈ D , and for all sets of outputs 
S ⊆ im(M) , the following constraint holds:

The above definition is also known as approximate DP. 
A stricter definition requiring δ = 0 is known as pure DP. 
In this work we focus on the former.

We consider the so-called add-remove neighbourhood 
relation (otherwise known as unbounded DP [18]), i.e., D′ 
can be obtained from D by adding or removing a single 
data sample at any party, which act as trusted aggregators 
towards the individual data subjects.

Intuitively, the effect that removal or addition of any 
individual data item in the inputs of a DP algorithm 
has on the output is limited by the privacy parameters ε 
and δ . Lower values for these parameters correspond to 
stricter privacy as they force the output distributions for 
different inputs to be more similar. In the extreme case of 
ε = 0 and δ = 0 , the output of M would need to be inde-
pendent of the inputs. We stress that DP is not a single 
specific technique applied to anonymise data but rather 
the formal property of an algorithm that provides meas-
urable privacy guarantees. Privacy guarantees provided 
by DP hold irrespective of auxiliary information avail-
able to an attacker. In contrast, it has been shown that 
straightforward anonymisation techniques on the data 
set, such as removing or masking certain attributes, in 
general do not satisfy DP and are vulnerable to re-identi-
fication attempts [19].

(1)Pr(M(D) ∈ S) ≤ eε Pr(M(D′
) ∈ S)+ δ.



Page 4 of 14Prediger et al. BMC Medical Informatics and Decision Making          (2024) 24:167 

An important property of differential privacy is com-
posability, which allows to split privacy parameter ε 
across multiple invocations of a DP mechanism while 
guaranteeing that the resulting combined algorithm (that 
combines all so obtained outputs) still satisfies ( ε, δ)-DP. 
In that sense ε is often thought of as a privacy budget that 
can be split over subsequent steps in a privacy-preserving 
analysis. Another important property is post-processing 
immunity, which guarantees that any processing of the 
outputs of a DP algorithm M with a function f is still pri-
vate in the DP sense, i.e., the composition f ◦M is also 
(ε, δ)-DP.

Under our assumptions stated in  the Introduction, it 
follows that our framework seen as a whole, which results 
in each party obtaining a local statistical model of the 
data of all parties, satisfies billboard differential privacy 
[16, 20]. This ensures that any party’s model is (ε, δ)-DP 
with respect to all other parties’ data.

Definition 2  ((ε, δ) Billboard DP [20]) Let 
M(D) = [fm(Dm, g(D))]m=1,...,M be the output of a ran-
domised mechanism M with input D = M

m=1 Dm ∈ D 
where fm : Dm ×Q → Rm and g : D → Q . For ε ≥ 0 
and δ ∈ [0, 1] , M satisfies (ε, δ) billboard differential 
privacy if for any m and any two sets Dm and D′

m , dif-
ferent in only one element, and for all sets of outputs 
S ⊆ R−m =

⋃
j∈{1,...,M}\{m}Rj , the following constraint 

holds:

where M(·)−m denotes the output vector of M with the 
m-th element removed.

Differentially private data sharing
Several methods for the technical implementation of 
DP data sharing via synthetic data were previously pro-
posed [2–12]. On a high-level, they all specify a (ε, δ)-DP 
algorithm TG for training a generative model G from the 
sensitive input data and then sample synthetic data from 
G. Due to the post-processing property of DP, the infor-
mation leakage through the synthetic data is then guar-
anteed to be bounded by the privacy parameters ε and δ , 
regardless of the number of samples drawn from G.

In this work we are not suggesting any new inference 
algorithms for DP data sharing. Instead we investigate 
a general approach for collaborative learning based on 
synthetic data, for which any of the aforementioned data 
generating methods can be used. This allows expert users 
to choose the most appropriate model and algorithm for 
describing their data in order to improve the quality of 
the shared synthetic data. The particular method and 

(2)Pr(M(D)−m ∈ S) ≤ eε Pr(M(D′
)−m ∈ S)+ δ,

model we used for our experiments are described in the 
following sections.

UK Biobank SARS‑CoV‑2 data set
To replicate a plausible application scenario for the 
analysis task, we follow a study performed by Nied-
zwiedz et  al. [21] and use a data set obtained from the 
UK Biobank [17] in our experiments. The data consists 
of five ethnic and socioeconomic factors, among them 
e.g. an individual’s ethnicity and education level, all of 
which can be considered sensitive information.1 All the 
features are categorical. They were surveyed during vol-
untary sign up for inclusion in the UK Biobank cohort in 
one of 22 assessment centers. We restricted the data set 
to individuals for which at least one SARS-CoV-2 test 
result was present (before 2021-03-15) for a remaining 
total of 58 253 records split over 16 assessment centers. 
These splits range in size from 1 867 to 5 922 records, 
with a median of 3 729.2 We use the assessment centers as 
parties with their respective split of the full UK Biobank 
cohort as local data sets Dm . For most of our experiments 
we additionally subsample each center’s data to 10% of its 
initial size to create data that is sufficiently small so that 
no single center can learn the regression task well.

Models for analysis task and synthetic data generation
Following [21], we formulate as our analysis task f a Pois-
son regression model which predicts the likelihood of a 
positive test for a SARS-CoV-2 infection based on the 
ethnic and socioeconomic factors (referred to as analysis 
model in the following). Formally we label the vector of 
regressors, i.e., the features used for prediction, as x , the 
SARS-CoV-2 test result as y and the regression param-
eters as w and obtain f as:

We use the statsmodels [22] Python package to 
obtain parameter and corresponding standard error 
estimates.

For synthetic data generation we consider a paramet-
ric probabilistic model consisting of two parts. One part 
exactly mirrors the Poisson regression of the analysis 
task and models the SARS-CoV-2 test results based on 
the regressors. The other part is a mixture model which 

(3)f (x;w) = arg max
y∈{0,1}

�
ye−�

y!
,

(4)� = ew
T
x .

1  The exact data fields we used from the UK Biobank repository are listed 
in Table S1.
2  A more detailed listing of center sizes can be found in Table S2.
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models the regressors following Jälkö et al. [11]. We use 
16 mixture components based on empirical tuning of the 
model’s hyperparameters. Formally, the generative model 
Gm for each party is:

Here p(xj | θ (r)j ) is the categorical distribution over 
values of the j-th feature of x in mixture component r 
with parameters θ (r)j  and π is a vector of mixture coeffi-
cients. In our experiments we consider d = 5 categorical 
features.

To infer an approximate posterior over the parameters 
of the statistical models for each party, we use the differ-
entially private variational inference algorithm (DPVI) 
[23, 24] (based on the implementation in d3p [25]) as 
TG with ε = 1 and δ = 10−6 in all experiments. Synthetic 
data sets (of the same size Nm as the party’s local data set) 
are sampled from the inferred model for each party.

DPVI is variational inference algorithm using DP sto-
chastic gradient descent [26–28]. It achieves privacy 
by clipping the gradients to a maximum norm (to limit 
the maximum effect of the update) and adding Gauss-
ian noise calibrated to the desired privacy parameters 
in each update step. It relies on the composition prop-
erty of DP to guarantee privacy over all iterations and 
we compute the total privacy budget over all iterations 
using the Fourier Accountant [29, 30].

Sharing multiple synthetic data sets
To quantify additional uncertainty introduced by sam-
pling a finite data set from the generative models we 
follow an approach suggested by Räisä [12]: Each party 
performs K repetitions of sampling, publishing and train-
ing with synthetic data. In each sampling repetition, the 
party draws a parameter vector from the learned poste-
rior and then samples data according to the generative 
model outlined above. Each of the M parties thereby 
receives (M − 1)K  synthetic data sets and combines them 
into K combined sets on which it performs the analysis 
task. After this, each party locally combines the resulting 
K analysis models, by either distilling a single combined 
model out of them or setting up a suitable ensemble 
[12, 31]. Following [12], we use Rubin’s rules to combine 
the obtained parameter and standard error estimates 
into a single model, analogous to the concept of multi-
ple imputation [32, 33], where missing data is repeatedly 
replaced with resampled available data. For each of the 

(5)p(x | θx ,π) =

16∑

r=1

π r

d∏

j=1

p(xj | θ
(r)
j )

(6)p(y | X ,w) =
�
y exp(−�)

y!
.

k ∈ [K ] synthetic data sets, we fit the downstream Pois-
son regression model and obtain the regression coeffi-
cients wk and corresponding variances vk . Rubin’s rules 
[34] estimate the posterior of the regression weights as a 
normal distribution with mean3 wK = 1

K

∑K
k=1 wk and 

variance v̂(−)

K = (1+ K−1
)b− v where

Note that v̂(−)

K  can be negative. When this occurs, we 
use a more conservative alternative of Rubin’s rules [33] 
and set variance to v̂(+)

K = (1+ K−1
)b+ v . We denote 

the resulting final variance estimate with v̂K  We set the 
number of synthetic data sets sampled by each party as 
K = 100.

Evaluation metrics
In order to assess the quality of the synthetic data, we 
evaluate the analysis model f learned by each party on a 
global test set Dall,test representing the full cohort. Dall,test 
is obtained by splitting each center’s local data into train-
ing and test sets with a 80/20 (training/test) ratio, then 
taking the union over the local test sets to obtain the 
global test set: Dall,test =

⋃
m Dm,test.4 We use the predic-

tive log-likelihood of f with learned parameters w as our 
measure for utility:

with � as defined in Eq. (4).
We use a Monte Carlo approach to sample a distribu-

tion of log-likelihoods: First we approximate the distribu-
tion of parameter estimates by a diagonal Gaussian fully 
described by the mean wK  and variance v̂K  from Rubin’s 
rules. We then sample parameter vector w from this dis-
tribution and compute the corresponding log-likelihood 
for w on Dall,test . We repeat this sampling 100 times. The 
sampled log-likelihood distribution then summarises the 
overall performance of the learned analysis model across 
all parameters as well as the estimated standard errors.

We further repeat all experiments 10 times with dif-
ferent seeds for internal randomness, beginning with the 
inference of the generative models for shared synthetic 

(7)b =
1

K − 1

K∑

k=1

(wk − wK )
2,

(8)v =
1

K

K∑

k=1

vk .

(9)u(f (·;w)) =
∑

(x,y)∈Dall,test

y ln �− �− ln(y!),

3  The mean is taken element-wise.
4  Test data is held-out, i.e., the local data Dm used by party m for training 
generative and analysis models (G, f) excludes Dm,test in the experiments.
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data. We additionally sample 100 random permutations 
of the order in which data from other parties becomes 
available. The plots shown throughout the Results section 
always show the distributions of log-likelihood results 
over all repetitions, for a total of 100 000 samples.

Whenever significance on differences between means 
of the obtained log-likelihood sample sets were reported, 
Welch’s t-test [35] was used after ranking the tested sam-
ples to account for unequal variances between, as well as 
non-uniformity within, each sample set, following [36]. 
One-sided tests were used in all cases except for Figs. 4 
and 5, which used two-sided tests.

Results
Data sharing consistently improves results over using local 
data only
We first show that a party m which incorporates syn-
thetic data shared by all other parties improves the per-
formance of its analysis.

The right side of Fig. 1 shows the log-likelihood of the 
Poisson regression analysis model on the global test set 
for each center fitting the model only on its locally avail-
able data (orange) compared to incorporating synthetic 
data shared by all other centers (blue). Across most cent-
ers (subsampled to 10% of the original size5) we observe 
a clear improvement in average predictive log-likelihood 
when pooling synthetic data, as well as a reduction in 
spread, with the exception of Nottingham, Croydon and 
Leeds. That is, we consistently obtain models that per-
form better and exhibit significantly less standard error 
in parameters. The log-likelihood distributions we obtain 
from including synthetic data are close to an ideal, pri-
vacy-agnostic baseline where we could simply pool all 
centers’ data before performing our regression (black 
dashed line); this situation is precluded in practice due to 
privacy constraints.

The results appear consistent across centers even 
though the statistical signal for the analysis model pre-
sent in the local data varies drastically across the centers. 
This is true despite some of the other participating cent-
ers contributing data which alone result in a very poor 
model for predictions on the global population (such as 
e.g. Barts and Oxford). Centers whose local data already 
allow fitting an analysis model that performs quite well 
on the population level test set, such as e.g., Nottingham, 
Croydon and Leeds, may not see all the same benefits if 
the privacy parameters are too strict, as is the case here. 
However, as we will see later, they may still benefit from 
incorporating only a portion of the synthetic data shared 

by other centers, so that participating might still be 
worthwhile for them.

Gains increase quickly with number of shared data sets
We have seen in the previous section that almost every 
center improves the performance of its analysis task by 
incorporating large amounts of synthetic data from dif-
ferent sources. Indeed, due to the large amount of syn-
thetic data available, the effect of the local data on the 
outcome of the analysis appears to be quite limited in that 
setting. It is now natural to ask how soon these improve-
ments manifest, i.e., how much synthetic data is required. 
We investigate this in the following experiment: We fix 
a center and add synthetic data from other centers one 
by one, then evaluate the log-likelihood at every step. We 
repeat this experiment 100 times for different sequences 
in which synthetic data from other centers is added.

Figure  2 shows box-plots of the log-likelihood distri-
butions as more and more other centers make synthetic 
data available, from the perspective of centers Barts, 
Sheffield and Leeds, representing respectively centers 
with bad, intermediate and good fit when using only local 
data (see Fig. 1, right). Results for the remaining centers 
are consistent with the ones shown here and can be seen 
in Fig. S4.

We see that for Barts and Sheffield the median log-
likelihood improves quickly from the first step of add-
ing synthetic data from a single source, but its spread 
may increase initially, as is the case for Sheffield. Spread 
then diminishes quickly as more synthetic data becomes 
available. After about five steps no further improvements 
occur. Leeds initially shows an improvement when incor-
porating only small amounts of additional synthetic data 
(from one or two other sources) but experiences a drop 
on utility as the lower quality synthetic data overwhelms 
it’s good local data signal.

Data sharing helps especially when local data sets are 
small
We now turn to investigating the effect of the size of the 
locally available data. Learning of many machine learn-
ing models becomes less reliable with smaller amounts of 
data and the data sharing approach requires each party 
to learn a generative model under privacy constraints, 
which poses additional limitations to learning. It is 
natural to ask whether the quality of the synthetic data 
released by the parties deteriorates more quickly than 
that of the analysis model trained only on local data as 
the number of data points decreases.

To investigate this, in addition to the 10% subsam-
pling used in the earlier experiments we subsample the 
training data to 20% , 50% , 100% (i.e., no subsampling) 

5  100 - 500 data points per center after sampling.
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of the original number of samples before running the 
data sharing procedure, which we again repeat ten 
times for each setting. Figure  3 shows the predictive 

log-likelihood distribution of training the analysis 
model only on local data (orange) and after including 
the shared data (blue) for the different amounts of data 

Fig. 2  The log-likelihood of the learned analysis model improves rapidly as synthetic data from other centers becomes available. Spread 
in log-likelihoods may initially increase when only a few synthetic data sets are incorporated, but then diminishes rapidly with the number 
of additional data sets. The dashed black line shows the log-likelihood for an ideal setting where the analysis could be performed 
over the combined data of all parties. 10 repeats of the experiment, each with 100 repeats with different orders in which synthetic data is added. 
The improvements in mean log-likelihood between subsequent steps for all centers except Bristol, Bury, Croydon, Hounslow, Leeds and Nottingham 
are highly significant ( p < 0.001, n = 100 000 ) up to five centers releasing synthetic data. Local results for outlier center Barts (median: −3.65 ) cut 
off for readability. See Table S4 for corresponding p-values, and Fig. S4 for the full figure

Fig. 3  Usefulness of sharing of data using synthetic data sets is retained in the small data regime: Performance of a model trained 
including shared synthetic data from other parties (blue), all with similarly small local data, decreases much less than that of a model 
trained only on locally available data (orange). Higher mean log-likelihoods of combined over local only are statistically highly significant 
( p < 0.001, nlocal only = 1 000, ncombined = 100 000 ) for all data set sizes
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(at all centers) for the Newcastle assessment center, for 
which the largest amount of local data is available.

We observe that, as the local data gets smaller, the per-
formance of the model trained on local data only dete-
riorates much faster than that obtained using the data 
sharing approach. This strongly suggests that the posi-
tive effect of getting additional data for the analysis task 
outpaces the negative effects smaller local data has on 
learning the generative models. This is most likely due 
to the negative effects of the latter being mitigated by a 
sufficient amount of parties sharing data: Even when the 
individual sets are small and of poor quality, in combi-
nation they still carry an overall strong enough signal to 
enable meaningful analysis. The results for other centers 
are consistent with this.

Parties can correct for skew in their local distribution
The final remaining question of interest is whether a large 
party (i.e., a party with a large amount of local training 
data) gains anything from engaging in the data sharing 
procedure. Intuitively, as the local data set of a party m 
grows, it will reach a point were additional (synthetic) 
data from other parties will not have a strong effect on 
the analysis party m performs. Why then should that 
party participate and share its own data?

To investigate, we isolate the largest assessment center 
of the UK Biobank data set, Newcastle, with 4 737 records 
in the full training set. Figure 4 shows that contrary to the 
argument made above, the log-likelihood of the analysis 

model on the global test set (blue box-plot) is higher than 
that for the model trained only using Newcastle’s local 
training data (orange).

Newcastle center is negatively affected by data skew
A plausible explanation for this is that the local data is not 
representative of the global population. It turns out that 
this particular center is much more ethnically homoge-
neous, consisting of 96.54 % records labelled White Brit-
ish compared to 88.28 % in the full UK Biobank cohort. 
This also manifests in a deviation of the local two-way 
marginal for the (ethnicity, SARS-CoV-2 test result) fea-
tures from the population distribution (cf. Table S3).

To determine whether it is this skew that results in the 
comparatively poor performance of Newcastle, we train 
the analysis model on the center’s local data without tak-
ing ethnicity into consideration as a predictor. This model 
achieves better predictive accuracy (higher log-likeli-
hood) on the global population (green box-plot of Fig. 4), 
indicating that this skew in the ethnic composition of the 
local data does result in an observable effect on global 
predictions. To learn a good analysis model, the center 
should therefore not adjust its model for ethnicity when 
training only on local data. However, this means that the 
model can no longer capture the statistical effect of eth-
nicity on the outcome. Incorporating shared data from 
other parties may be able to alleviate the skew in ethnic-
ity, meaning that a model trained on that data would be 
able to capture its statistical effect. Figure  4 shows that 

Fig. 4  Training the analysis model on only Newcastle’s local data (full data without subsampling) results in poor predictive performance 
on global data due to skew in the local distribution (orange). Not considering the ethnicity feature when training on local data improves 
predictive performance (green). Combining local data with synthetic data also improves model performance while still considering all 
features, i.e., without need to change the model (blue). The dashed line indicates the log-likelihood of a model trained on the full population. 
Ten independent repeats. Observed pairwise differences between the means of the distributions are statistically highly significant 
( p < 0.001, nlocal only = 1 000, ncombined = 100 000)
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the predictive accuracy of the analysis model trained 
using shared synthetic data also improves over just using 
the local data. In this case using combined data achieves 
a mean log-likelihood slightly worse than the model 
trained on local data only without considering ethnicity, 
but has the additional advantage that the model does not 
have to be modified.

Data sharing mitigates local distribution skew
To further assess the effect of different magnitudes of 
local skew, we introduce an artificial new party using half 
the data from the previously held-out test set. This party’s 
data therefore exactly matches the population distribu-
tion and consists of more data points ( 5 828 ) than any of 
the original parties. We then fix a category of the ethnicity 
feature, South Asian, and discard data points correspond-
ing to the (South Asian, positive SARS-CoV-2 test result) 
marginal until only a fraction of 10%, 25%, 50%, 75% 
remains, respectively, to introduce different amounts of 
skew.6 This experimental set-up corresponds to the effect 
of minority groups being potentially less likely to report 
infections, e.g., due to fear of disadvantageous treatment 
or cases where systematic biases affect the collected data. 

We evaluate the predictive log-likelihoods on the South 
Asian subgroup of the remaining half of the test set to 
assess the resulting performance of the analysis model for 
that particular subgroup.

Figure  5 shows the predictive log-likelihood distribu-
tion for the model using only the (skewed) local data 
(orange) compared to incorporating shared synthetic data 
(blue) for the different levels of local skew. We observe 
that the stronger the skew (i.e., the smaller the subsam-
pling ratio of the two-way marginal), the larger the cor-
rective effect from incorporating synthetic data. On the 
other hand, if only small or no skew is present, the party 
may not benefit from participating in the sharing. Both of 
these observations are in line with our expectations.

Discussion
In the above section we have empirically demonstrated 
on a real-world data set that data sharing using differ-
entially private synthetic data from multiple sources 
improves the performance of the analysis task in many 
cases. We have particularly shown that the benefits 
from data sharing diminish more slowly than the dete-
rioration of learning from only local data as the size 
of the local data set decreases. This is in contrast to 
the tentative argument made in the beginning that if 
the local data set is too small to solve the analysis task 
itself, it will also be too small to learn a good genera-
tive model, which would be required for synthetic data 
sharing to be useful. We believe the reasons for this 
apparent conflict are twofold: 1) The task faced by the 

Fig. 5  By participating in the data sharing, parties with large amounts of local data can correct for local skews in data distribution, with stronger 
corrective effects for stronger skews (corresponding to a smaller value on the x-axis). Observed differences in means are statistically highly 
significant ( p < 0.001, nlocal only = 1 000, ncombined = 100 000 ) for all skews

6  In mathematical terms, let DSouth Asian, positive ⊂ Dm denote the subset of 
data points with ethnicity as South Asian and a positive SARS-CoV-2 test 
result. DSouth Asian, negative ⊂ Dm is correspondingly the subset of those with 
negative test result. We introduce skew by subsampling DSouth Asian, positive 
with probability p ∈ {0.1, 0.25, 0.5, 0.75, 1} while leaving DSouth Asian, negative 
unchanged.
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generative model is to learn the local distribution of 
the data, which can be considerably easier, and 2) any 
remaining errors are sufficiently mitigated by combin-
ing synthetic data from multiple sources. This is good 
news, as it allows data sharing to be adopted in the low 
data regime, for example, to perform analyses early 
in an initial data collection phase when only few data 
points have yet been accumulated at any particular 
site. The onset period of the SARS-CoV-2 pandemic is 
an example of exactly such a situation.

We have further seen that the most drastic increase 
in performance is obtained already with only a small 
number of parties (5) participating. Additional data 
from more sources will likely not improve the results 
much further. This is encouraging as it suggests that 
no large consortium of parties is needed to benefit 
from the data sharing approach, and any party start-
ing to share their data can do so with the knowledge 
that only a few like-minded parties are required to 
reap benefits for all. However, if less than three syn-
thetic data sets are made available or if the local data is 
already a good representation of the global population 
statistics, there is a risk of low quality synthetic data 
having a negative impact on the analysis. We discuss 
this point further in the section entitled Synthetic data 
does not unconditionally improve analysis.

Finally, we have experimentally confirmed that par-
ties can successfully correct biases in their data that 
arise from a local skew of the data distribution, such as 
the misrepresentation of a minority group. This holds 
even for the case of parties that already have a large 
data set, incentivising them to participate and share 
their data as well.

In the following sections we discuss variations to 
the assumptions we made for our experiments (Sec-
tion  Validity of assumptions), previous results in the 
literature about potential harmful effects of using syn-
thetic data (Section  Synthetic data does not uncondi-
tionally improve analysis), and whether parties could 
assess whether their analysis improves (Section  Can 
parties evaluate whether shared data improves their 
analysis model?). We conclude with a brief discussion 
of the effect of the privacy parameters (Section Effect 
of the privacy parameter) and the Federated Learning 
methodology as a related popular approach for learn-
ing from distributed data (Section Federated learning).

Validity of assumptions
In this work we have made several assumptions that we 
stated in the introduction. We now briefly discuss some 
possible relaxations and how they would likely affect the 
results presented above.

We make the simplifying assumption that all parties 
aim to optimise their analysis on the population level 
rather than for their local data distribution. If a party 
instead prefers to optimise for the local distribution there 
is a high chance that incorporating shared data from 
other parties decreases this performance (by shifting the 
training data more towards the overall population dis-
tribution) - provided that the party’s local distribution 
deviates from the overall population. On the other hand, 
for very small local data, the overall population might 
still add valuable information to aid the learning of the 
local analysis model. The strength of either effect would 
likely depend on the amount of deviation and the relative 
amount of data obtained from other parties. However, 
the party could easily check whether shared data would 
improve their analysis by participating in the sharing and 
simply testing the result on a held-out portion of their 
data.

We have also assumed that the results of a party’s anal-
ysis are kept private, i.e., no potential privacy leakage can 
occur from performing the analysis. If the analysis result 
is intended to be published, additional measures have to 
be taken to ensure that the usage of the party’s local data 
does not leak additional data. This could be, e.g., achieved 
by employing differential privacy in the analysis task or 
substituting the party’s own synthetic data in place of its 
actual data. However, we consider this as an orthogonal 
problem.

Another assumption we made is that all parties recip-
rocate in sharing, i.e., if they want to use shared data from 
other parties, they will also share synthetic data derived 
from their own data. This seems essential for a fair distri-
bution of the burden of making data available and could 
be enforced by each party licensing their shared data 
under conditions that require other parties using it to 
share alike. However, it is not a strict requirement as long 
as there is a sufficient number of parties willing to share 
their data for any reason. Fortunately, as we have seen in 
the experiments, that number can be quite small and still 
allow for everyone to see drastic benefits.

We also assumed parties are non-malicious and will 
not publish data engineered to negatively affect the per-
formance of other parties. Following our procedure a 
malicious party could sample a large set of arbitrarily 
bad artificial data to poison the well for all other parties. 
However, given a sufficient number of non-malicious 
parties sharing, it is likely that the other parties could 
filter out such bad shared data sets by comparison with 
other shared data sets, resulting in some robustness of 
the overall approach. We consider this to be an interest-
ing future direction.
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Finally, we made the implicit assumption that the par-
ties are in agreement over the data features to share and 
how they are to be represented in digital tabular form. 
We consider this a minor obstacle: Since the approach we 
consider results in each party making a synthetic data set 
available, any other party can simply adopt the format of 
data sets already published, or convert those to its own 
representation in a preprocessing step, without the need 
for explicit coordination between parties. Furthermore, 
parties are not bound to all include the same exact set of 
features in the synthetic data they publish; but a down-
stream analysis that requires a certain set of predictors 
would then have to exclude data from parties that are 
missing relevant features. For our case study, we con-
sider this problem as orthogonal, but recognise it as an 
interesting avenue for future work with potential links to 
existing literature on data integration and learning from 
incomplete data.

Synthetic data does not unconditionally improve analysis
Strong privacy protection comes with a trade-off in the 
usability of the synthetic data. The more privacy we 
require, the less details we can learn from the data. This 
trade-off is more severe when data sets are small, because 
then each individual record has larger effects on the sta-
tistics learned from the data, forcing privacy-preserving 
methods to put stronger restrictions on the learned sig-
nals. Hence, statistical signals of the original data tend to 
become weaker in the synthetic data. Additionally, learn-
ing a generative model often involves approximations, 
which can also limit the statistical signal captured in the 
synthetic data. Sampling a finite synthetic data set fur-
ther introduces uncertainty about the learned parameters 
of the generative model.

As a final further complication particular to our setting, 
the local data contributed by another party could follow a 
distribution skewed away from that of the overall popu-
lation - this skew then transfers to the synthetic data. 
Summarising, there are three main factors that can cause 
synthetic data to be of low quality: 1) the underlying data 
set was too small to learn a good generative model under 
differential privacy, 2) the data was skewed away from the 
population distribution, and, 3) the chosen generative 
model results in loss of information or skew. Hence, par-
ties interested in the underlying sensitive data might be 
reluctant to use synthetic data for fear of obtaining bad 
data.

Wilde et al. [13] showed that combining data with a sin-
gle synthetic data set may lead to worse utility in statisti-
cal analysis. Our experiments corroborate their findings 
and show a large spread in log-likelihood distribution 
for the analysis task when using data shared by only one 
or two sources (cf.  Section  Gains increase quickly with 

number of shared data sets): In this case there is a rela-
tively high chance of falling victim to a skewed synthetic 
data set which harms performance of the analysis task 
compared to only using local data. However, as synthetic 
data from more and more other centers is combined, the 
impact of any single bad data set is reduced and we see 
consistent improvements up to a certain limit prescribed 
by the privacy constraints. This is likely because the data 
underlying the synthetic data becomes a more accurate 
representation of the population, which eliminates error 
caused by shift of the local distribution at different cent-
ers (Error Source 2). Additional reduction of error may 
result from averaging out the (largely) independent errors 
from sources 1) and 3) across multiple synthetic data sets 
and a general increase in size of available data, although 
further work is required to confirm this.

As detailed in Section Sharing multiple synthetic data 
sets we additionally rely on repeated sampling of syn-
thetic data and application of Rubin’s rules [32, 33] to 
quantify the additional uncertainty introduced by sam-
pling finite (small) data sets from the learned generative 
models at no additional privacy cost.

However, as pointed out by Wilde et al. [13], for strict 
levels of privacy, relying on large amounts of synthetic 
data may still lead to worse results if the local data was 
already a representative sample of the overall population. 
However, for practical levels of privacy parameter ε , this 
error appears to be small in our experiments.

Can parties evaluate whether shared data improves their 
analysis model?
One of our assumptions in this paper is that all parties 
aim to optimise the performance of their analysis on the 
global population. To evaluate this we have used a test set 
corresponding to the population distribution that we sep-
arated from the data prior to running our experiments. 
However, in practice, parties generally do not have access 
to an unbiased sample from the population but only their 
local data. This means it is not trivial for a party to test 
whether using shared data actually improves their analy-
sis. Testing with a held-out portion of the local data can 
mislead the party if the local data is skewed away from 
the population, which the party cannot know a-priori.

As a potential solution to this, parties could establish 
a joint testing protocol which informs a party of the test 
performance of their analysis model on population data. 
This may be based on techniques from the literature on 
secure multi-party computation [37, 38] and differential 
privacy to safeguard learned models and data in the pro-
cess. Alternatively, an approach using parts of the shared 
data as a proxy for the population data in testing could be 
feasible as well. We consider solutions for this an impor-
tant aspect for future work; here we did not take a stance 
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on what of the alternative solutions is used, and report 
results assuming it had been solved.

Effect of the privacy parameter
The amount of privacy protection afforded by differential 
privacy is controlled by a privacy parameter ε (cf. Sec-
tion  Differentially private data sharing). All the results 
shown above were achieved for a fixed amount of ε = 1 
to achieve comparable results across the different experi-
ments. A stronger level of privacy ( ε < 1 ) results in a 
reduction of the information captured in the synthetic 
data and vice-versa. While this decreases analysis perfor-
mance achieved by the data sharing approach compared 
to the impractical full pooling of data, a gradual change 
in ε does not fundamentally change the overall outcomes 
and trends we have observed in this paper.

Figure  6 demonstrates this for four different values 
of ε (0.5, 1, 2, 4) for the same three representative cent-
ers as in Section Gains increase quickly with number of 
shared data sets. It shows the predictive log-likelihood 
after combining local data with shared synthetic data 
from all other centers, as in Fig. 1. Results for perform-
ing the analysis on only the locally available data are also 
included for comparison, but we stress that in this case 
no data is being shared amongst the parties (giving an 
effective ε of 0). Notably, we see that a modest increase in 
ε to 2 improves the result even for Leeds over using local 
data. We include variants of Figs. 1 and 2 for this privacy 
level in the supplement as Figs. S1 and S2, which demon-
strate that in this case all parties consistently benefit from 
participating in the data sharing approach.

Federated learning
Federated learning (FL) [14] is another collaborative 
learning framework where the aim is to learn from dis-
tributed data without explicitly combining the data of the 
parties (typically named clients in FL). The clients col-
laboratively learn a model by locally computing model 
updates using their own data and sending the updates 
to an aggregation server which then updates the mod-
el’s parameters and shares the updated model with the 
clients. While standard FL does not provide any formal 
privacy guarantees, there are works merging FL with DP 
[39–41]. Although FL (or its DP variants) can provide 
good performance for specific, predetermined tasks, 
it still lacks the generality that synthetic data sharing 
provides: The data can be used in arbitrary future tasks 
without any further computational effort or additional 
expenditure of privacy budget by the parties. FL also 
requires non-trivial infrastructure: It typically needs a 
central coordinating party as well as secure real-time 
two-way communication between that coordinator and 
all other parties for iterative updates. Our data sharing 
procedure requires no explicit coordination with other 
parties, i.e., each party can prepare their synthetic data 
in a completely offline fashion. We only assume that each 
party has a way of making their synthetic data avail-
able to other parties and obtaining synthetic data previ-
ously published by the other parties, asynchronously. An 
important benefit of this is that a party joining late does 
not necessitate actions from the other parties: These may 
retrain their local analysis model based on the added syn-
thetic data if they wish to, but they do not need to retrain 

Fig. 6  Tighter privacy parameter ε gradually decreases the information captured in the shared synthetic data. Shown is the log-likelihood 
of the analysis model when combining local data with shared synthetic data from all other centers for different values of privacy parameter ε . 
For ε = 1 , the results are the same as in as in Fig. 1. For comparison results for performing the analysis exclusively on local data (“local only”) are 
also included (in that case no data is shared). Local only result for Barts cut off for readability
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their generative model or publish new data. In contrast, 
FL approaches would require to either restart the whole 
procedure or employ some federated model updating 
procedure.

However, in cases where combined data is only ever 
used in a single, well-defined task, an FL approach will 
likely result in a better privacy–utility trade-off as it 
can expend all of the available privacy budget on learn-
ing that task well. In contrast, our data-sharing-based 
approach requires each party to learn a generative model 
that captures the complete (local) data distribution. FL 
is also likely preferable for very small local data sets, for 
which learning a generative model is infeasible.

There have also been proposals for federated learning 
that generate data points akin to coresets [42] as part of 
the iterative updating process, notably [43]. While [43] 
refer to these data points as synthetic data, they typically 
do not resemble the original data and have no meaning-
ful semantic interpretation. This is because they are only 
intended for internal use in their FL algorithm, which 
outputs parameters for a particular model and not a syn-
thetic data set. These methods also have the same over-
all structure as prior FL algorithms and hence the same 
coordination requirements.

Conclusions
In this work we have empirically investigated the prac-
tical feasibility of collaborative learning under privacy 
constraints from shared synthetic data prepared by non-
coordinated parties. We observe that given a sufficient 
amount of available synthetic data sets, almost all involved 
parties in general obtain better results in their analysis task 
compared to using only their locally available data. This is 
true even if individual synthetic data sets are based on small 
amounts of local data and may be of poor quality. While 
our experiments also corroborate earlier findings that rely-
ing too much on a single synthetic data set can negatively 
impact the analysis, we find our overall results encouraging: 
They suggest that making synthetic data widely available 
can help overcoming data scarcity issues for privacy sensi-
tive domains as well as the aforementioned quality impacts 
of relying on single synthetic data sets, while posing only 
weak assumptions on an individuals party’s ability or will-
ingness to coordinate with other parties. This is in con-
trast to federated learning approaches, which may be able 
to achieve better utility on case-by-case basis but require a 
great deal of coordination between parties.

While in our study we considered only a single data set 
as well as method for DP synthetic data generation, we 
stress that the overall setting of collaboration by means 
of publishing synthetic data sets is not restricted to this 
particular context. We expect our results to generalise 

for other combinations of data sets and synthetic data 
generation approaches. An interesting case that we did 
not explore in this paper is the setting when the parties 
are interested in applying different analysis tasks and 
each might tailor their synthetic data to their particular 
task. We consider this for future work as a natural exten-
sion of our present study, in addition to those avenues 
already pointed in the Discussion.
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