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hemiplegia, and more than 60% of patients can’t regain 
functional independence [3]. In China, there are 0.6–
0.8% of people suffering from ICH every year, and the 
mortality in the acute stage is between 30 and 40% [3]. 
Moreover, it is believed that the gravity of the situation 
will worsen in the future [4] due to the growth of aging 
population in China. Although medical technology has 
achieved significant advancements, an effective and safe 
treatment for ICH has not been performed. Hematoma 
expansion (HE) is one of the common and significant 
phenomena of ICH, which is closely associated with the 
deterioration of early neurological function, and is also 
an independent predictive factor for poor prognosis and 
increased mortality.

Introduction
Spontaneous intracerebral hemorrhage (ICH) is defined 
as sudden bleeding from the brain parenchyma that may 
extend to the ventricles or subarachnoid space [1]. It has 
been recognized as an important health issue, contribut-
ing to 7.1 million cases and 3.1 million deaths in 2021 [2]. 
Besides the high mortality rate, ICH may lead to various 
disabilities, such as epilepsy, psychosis, mood disorders, 
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Abstract
Hematoma expansion (HE) is a high risky symptom with high rate of occurrence for patients who have undergone 
spontaneous intracerebral hemorrhage (ICH) after a major accident or illness. Correct prediction of the occurrence 
of HE in advance is critical to help the doctors to determine the next step medical treatment. Most existing studies 
focus only on the occurrence of HE within 6 h after the occurrence of ICH, while in reality a considerable number 
of patients have HE after the first 6 h but within 24 h. In this study, based on the medical doctors recommendation, 
we focus on prediction of the occurrence of HE within 24 h, as well as the occurrence of HE every 6 h within 24 h. 
Based on the demographics and computer tomography (CT) image extraction information, we used the XGBoost 
method to predict the occurrence of HE within 24 h. In this study, to solve the issue of highly imbalanced data set, 
which is a frequent case in medical data analysis, we used the SMOTE algorithm for data augmentation. To evaluate 
our method, we used a data set consisting of 582 patients records, and compared the results of proposed method 
as well as few machine learning methods. Our experiments show that XGBoost achieved the best prediction 
performance on the balanced dataset processed by the SMOTE algorithm with an accuracy of 0.82 and F1-score 
of 0.82. Moreover, our proposed method predicts the occurrence of HE within 6, 12, 18 and 24 h at the accuracy 
of 0.89, 0.82, 0.87 and 0.94, indicating that the HE occurrence within 24 h can be predicted accurately by the 
proposed method.
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Sato et al. [5] believe that HE has important prognos-
tic value for adverse outcomes and mortality in patients. 
In clinical practice, it is crucial to predict whether there 
is expansion of a cerebral hematoma, and then select the 
appropriate clinical treatment plan. The hematoma vol-
ume is recognized as a focus for the 30-day mortality, 
and preventing the hematoma from expanding is essen-
tial for ICH treatments, such as INTERACT, ATACHII 
and STOP-AUST [1]. In addition, it is known that early 
treatments on preventing HE can decrease the death 
rate of ICH. For example, in 2009, Anderson et al. found 
that early intensive blood pressure-lowing treatment can 
limit hematoma growth over 72 h in ICH [6]. However, 
the optimal time for treatment may slip away because the 
diagnosis of coagulopathy, such as Prothrombin Time 
(PT), International Normalized Ratio (INR), Activated 
Partial Thromboplastin Time (APTT), requires 1 to 2 h to 
be confirmed after blood sample collection and therefore, 
it is necessary to develop efficient methods to predict HE.

It was considered that HE tends to occur within 6  h 
after ICH [7], but in clinical, a considerable number of 
patients experience HE within the first 24 h after onset. 
Non-contrast computer tomography (CT) is the pre-
ferred initial examination in emergency after onset due 
to its speed and convenience. Several studies have found 
that some CT image markers, such as shape and hetero-
geneity of hematoma, island sign, satellite sign, blend 
sign, black hole sign and swirl sign, have a significant 
impact on the prediction of HE within 6  h after onset 
of ICH [8–10]. These CT image markers were generally 
considered to be associated with HE within 6 h. The value 
of these markers in the first 24 h after onset is still uncer-
tain. Therefore, it is necessary to explore whether these 
markers remain predictive within 24 h of ICH onset.

In recent years, the volume of medical data has 
exploded, and the development of artificial intelligence 
has made it possible to analyze and interpret different 
types of medical information [11]. The use of large mod-
els to analyze medical images and electronic medical 
records to assist doctors in diagnosis and decision-mak-
ing is becoming increasingly popular. In the healthcare 
domain, machine learning (ML) algorithms play a major 
role in accurately classifying and predicting various dis-
eases. With ML, experts can analyze and evaluate datas-
ets containing diagnostic information, electronic medical 
records, and image information to help them de- velop 
effective treatment strategies [12, 13]. In this study, we 
aim to predict HE occurrence within 24  h, establish an 
effective ML-based prediction method, and verify if the 
factors used for predicting HE occurrence within 6 h are 
still applicable for predicting HE occurrence within 24 h. 
In the following, we will list the main contributions of 
our work:

 	• We use the Extreme Gradient Boosting (XGBoost) 
algorithm to predict the HE occurrence within 24 h, 
as well within 6, 12, 18 and 24 h.

 	• We use the Synthetic Minority Oversampling 
Technique (SMOTE) to process and to cope with the 
imbalanced dataset.

 	• We identify the key indicators that contribute to 
the occurrence of HE based on SHapley Additive 
exPlanations (SHAP) values.

 	• Through comparison of results with few state of the 
art methods, including Support Vector Machine 
(SVM) [1], Random Forest (RF) [2], Logistic 
Regression (LR) [14] and k-nearest neighbors 
(KNN) [15], XGBoost showed better predictive 
performance, verified that XGBoost can be used for 
HE occurrence prediction.

 	• We prove that HE can be accurately predicted within 
24 h based on indica-tors.

The rest of the paper is designed as follows: In Sect.  2, 
we present a literature review of the different methods 
and results of HE prediction. Section 3 includes dataset 
description and principle of the methodology. Section 4 
and Sect. 5 provide results and discussions respectively, 
while the last section gives the conclusion.

Related work
Extensive prognostic scoring systems have been proposed 
in multiple literature for prediction of HE in ICH, such as 
A 9-point prediction score which selects warfarin medi-
cation history, point signs, time from symptom onset to 
first head CT, and baseline hematoma volume as evalua-
tion criteria [16], 24-point BRAIN score [17], Hematoma 
Expansion Prediction (HEP) score  [18], 7-point predic-
tion score choosing baseline hematoma volume, mixed 
sign, island sign, whirlpool sign, anticoagulant therapy, 
ICH, time from symptom onset to first head CT, and 
baseline hematoma volume as evaluation indicators [19], 
HEAVN score [20], NAG scale [21]. In terms of indicator 
selection, Nawabi [22] employed Cohen’s kappa coeffi-
cient for confirming the reliability of CT features on CTA 
in patients with ICH.

The logistic regression model, as a basic model for pre-
dicting dichotomies in statistics, has been widely used 
in the medical field especially for predicting HE in ICH. 
Chan et al. [14] used univariate feature selection meth-
ods for feature selection, Fisher’s exact test and the Krus-
kal-Wallis test for each feature to determine the optimal 
subset of features and multivariate logistic regression to 
establish an automatic prediction model for HE. In study-
ing 118 patients with ICH, Sakuta et al. [21] utilized uni-
variate feature selection methods such as cardinality test, 
Fisher exact test, T-test and Mann-Whitney U-test for 
feature selection. After determining the optimal subset 



Page 3 of 12Li et al. BMC Medical Informatics and Decision Making          (2024) 24:172 

of features, a prediction model was developed using mul-
tivariate logistic regression and a scale was created. 
Besides, Yang et al. [23] performed univariate and binary 
logistic regression analysis, screened out independent 
pre- dictors significantly related to HE, and established 
a new SICH-HE model. This model offers a theoretical 
foundation for clinicians to promptly identify high-risk 
HE patients and validate the early surgical decision-mak-
ing process.

ML has been widely applied in medicine [24] and espe-
cially, SVM, RF, DT, KNN and Adaboost all present good 
performance in predicting HE using routinely available 
variables [25]. Liu et al. [1] established a SVM model to 
predict HE, but in comparison to SVM, the model based 
on the RF algorithm demonstrated higher accuracy [2]. 
Furthermore, A multi-task deep learning approach that 
allows simultaneous tumor segmentation and response 
prediction has two Siamese sub-networks joined at mul-
tiple layers, which enables integration of multi-scale 
feature representations and in-depth comparison of pre-
treatment and post-treatment images [26]. Ma et al. [27] 
compared the prediction effects of ResNet-18, ResNet-34 
and VGG- 16 neural networks. ResNet-34 achieves the 
most robust generalization capability in HE prediction 
and is superior to other mainstream models, which will 
facilitate accurate, efficient, and automated HE predic-
tion. It addresses the limitations of neural networks in 
predicting HE through quantitative volume and texture 
analysis  (CTTA) of CT images [28]. A fuzzy C-means 
(FCM) intelligent segmentation algorithm was estab-
lished by Xu et al. [29] for intelligent segmentation of 
patients’ brain CT images, which holds high clinical value 
for the early prediction of HE in patients with ICH.

XGBoost, a gradient boosting learning model, has been 
widely used for analyzing medical data for classifica-
tion and prediction in healthcare. It has achieved accu-
rate prediction in hypertension outcomes [30], diabetes 
[31], cardiovascular [32] and coronary heart diseases 
[33]. Compared with deep learning models, the biggest 
advantage is that it has faster speed and stronger robust-
ness when processing large-scale datasets [34]. How-
ever, the literature on the prediction of HE by XGBoost 
is scarce. One possible explanation is that the prediction 
of HE is usually typically reliant CT images. Unless the 
corresponding indicators are extracted from the images, 
deep learning models are often more applicable for image 
data based prediction. Once the image information is 
extracted and converted into tabular data, XGBoost 
could also achieve excellent prediction results in HE pre-
diction [35].

SMOTE, a Synthetic Minority Oversampling Tech-
nique, is an enhanced method based on the random 
oversampling, which simply duplicates samples to 
increase minority samples. SMOTE addresses the issue 

of model overfitting, this occurs when the model learns 
overly specific information that lacks generalization 
[36]. In clinical data analysis, there is often a bias in the 
data obtained, which means that the ratio of positive 
data to negative data is not balanced [37]. Therefore, 
SMOTE has a wide range of applications in the medical 
field. For instance, Alghamdi et al. [38] used SMOTE to 
address the negative impact of imbalanced categories in 
the constructed model when they carried out the proj-
ect of predicting diabetes. Pandey and Janghel [39] used 
SMOTE technique to address the issue of class imbalance 
in the MIT-BIH database for their study on arrhythmia 
detection. Besides, Wang et al. [40], Francis, Prasad and 
Zahoor-Ul-Huq [41] and Xu et al. [42] all used SMOTE 
to solve the problem of uneven data distribution and 
compared it with other methods, further showcasing the 
viability and effectiveness of this approach in medical 
applications.

Materials and methods
Population
In this study, we investigated a database of brain hemor-
rhage cases collected by the emergency department and 
neurosurgery department of a local hospital in Xuzhou, 
China. A total of 892 patients diagnosed with ICH from 
2014 to 2019 were extracted from the database. All per-
sonal information about the patients was erased.

The studied population should met revised diagnos-
tic criteria raised in the 4th National Conference on 
Cerebrovascular Disease: (1) ICH diagnosed by CT 
images;  (2) Previous history of hypertension; (3) Age 
no less than 18 years old; (4) First cranial CT within 6 h 
of onset, and follow-up cranial CT within 24  h of first 
cranial CT. After applying these criteria, a total of 582 
records were retained and used in the study.

Data extraction
The patient’s cranial imaging findings were interpreted by 
the imaging physician to determine the site of the cere-
bral hemorrhage, the volume of the hematoma, whether 
the hematoma was regular, and whether the hematoma 
had broken into the ventricles. If the absolute value 
of the hematoma volume increased by 6  ml or the per-
centage of increase in the hematoma volume was above 
33% between the first and second CT examinations, the 
hematoma was considered enlarged. The hematoma was 
divided into two groups: the HE group (case group) and 
the non-HE group (control group).

The demographics and CT image extraction infor-
mation we used as indicators in this study included 
age, gender, diabetes mellitus, alcohol use, ICH posi-
tion,  adimission GCS score, baseline hematoma volume 
and hematoma expansion, as well as admission SBP, and 
admission DBP, left or right, hematoma shape score, 
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hematoma heterogeneity, island sign, satellite sign, black 
hole sign, blend sign, swirl sign, IVH, SAH and MLS. 
Among those indicators, hematoma expansion is our tar-
get predictive variable. Table  1 lists and describes these 
indicators.

Statistics
Of these 582 patients studied, 114 (19.6%) of them were 
diagnosed with an HE. The composition for the differ-
ent variables are shown in Table  2. Univariate analysis 
shows the differences between the two groups are statis-
tically significant in terms of admission SBP, admission 
DBP admission GCS score and baseline hematoma vol-
ume (p < 0.05). While the other indicators are not statisti-
cally significant (p > 0.05).

Data pre-processing
Classification variables, such as gender and various signs, 
were transformed into binary variables by label encod-
ing. In terms of gender, male was encoded as 1 and 
female was encoded as 0. In terms of various signs, those 
that appear were encoded as 1, while those that did not 
appear are coded as 0. A special variable is the ICH posi-
tion. Given that almost 50% of ICH occurs in the basal 
ganglia, we group the basal ganglia into one category, and 
uniformly assign the remaining positions to another cate-
gory for coding. After the feature standardization is com-
plete, we fill in the missing values with the average value 
of the column. This step is specific to machine learning 
models except XGBoost, which has its own processing 
for missing values. For all continuous variables, we kept 
the values and applied Z-score normalization to the data.

Implementation process
After obtaining the preprocessed data, we first randomly 
split the dataset into a training set and a test set in the 
ratio of 8:2. We then applied a variety of machine learn-
ing algorithms to train on the training set and validate 
on the test set, and compared the accuracy, precision, 
recall and F1-score obtained by different algorithms. 
Meanwhile, the parameters of the algorithms were deter-
mined by the Grid Search in Sklearn. Afterward, we used 
SMOTE to augment the data for the case group, ensur-
ing that its sample size was the same as the control group. 
The same process was used to train the augmented data, 
and the predicted performance was combined and dis-
cussed with the results previously obtained. After train-
ing the models, we analyzed the indicator importance 
using SHAP value.

In addition, we divided the augmented data into four 
groups according to the time interval between the first 
and subsequent CT examinations. We demonstrated 
that HE can be accurately predicted within 24  h based 
on indicators by com- paring the predictive performance 
among the four groups. The complete steps of our pro-
posed model are presented in Fig. 1.

XGBoost prediction
Extreme Gradient Boosting (XGBoost) is a reliable and 
open-source gradient tree boosting model. It started 
as a research project by Tianqi Chen in 2014 [43]. As a 
supervised learning algorithm, it combines an ensem-
ble of estimates from a set of trees. Compared to tradi-
tional gradient boosting decision trees, XGBoost has the 
advantage of column sampling and can also continue tree 
construction with missing values by transforming the 
missing values into a sparse matrix, which can effectively 
helps avoid some overfitting problems.

Given a dataset of form:
D = {(xi, yi) : i = 1...n, xi ∈ Rm, yi ∈ R} ,

Table 1  List of abbreviations
Abbreviations Full Name
SBP Systolic blood pressure
DBP Diastolic blood pressure
IVH Intraventricular hemorrhage
SAH Subarachnoid haemorrhage
MLS Medical laboratory science
GCS Glasgow coma scale
Left/Right Site of ICH

Table 2  Variable description
Characteristics Case group Control group P value
Age 59.28±13.51 60.12±12.41 0.03
Gender (Male) 53(46.5%) 221(49.5%) 0.58
Diabetes mellitus 9(7.9%) 64(15.1%) 0.19
Alcohol use 12(10.5%) 43(9.4%) 0.19
Admission SBP 173.63±20.57 168.63±19.24 0.02
Admission DBP 101.25±14.39 98.56±12.31 0.04
ICH position 79(46.8%) 196(41.8%) 0.56
Left/Right 62(47.7%) 182(38.9%) 0.45
Shape score 2.81±1.63 2.80±1.61 0.34
Heterogeneity 3.72±1.68 3.64±1.59 0.43
Island sign 45(39.5%) 112(23.9%) 0.28
Satellite sign 10(8.8%) 45(9.6%) 0.24
Black hole sign 15(13.2%) 47(15.2%) 0.17
Blend sign 60(52.6%) 192(46.8%) 0.12
Swirl sign 13(11.4%) 52(12.8%) 0.61
IVH 39(34.2%) 107(39.7%) 0.54
SAH 7(6.1%) 22(7.2%) 0.77
MLS 34(29.8%) 102(28.8%) 0.89
Admission GCS score 10.49±2.99 10.27±2.21 0.19
Hematoma volume 15.73±15.26 14.78±12.37 0.01
The first column corresponds to the name of the indicators used, and the 
second and third columns correspond to the statistics of each indicator in 
the case group and the control group, respectively. The statistic of numerical 
indicators such as age is expressed by means variance, and the statistic of binary 
indicators such as alcohol use is expressed by number and ratio. P values in the 
last column are used to determine whether various indicators are significant
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we get n observations with m features each and with 
a corresponding variable y. Let ŷi  be defined as a result 
given by an ensemble represented by the generalised 
model as follows:

	
Ŷi =

K∑

k=1

fk (xi) � (1)

In the above formula, fk  is a regression tree, and fk (xi) 
represents the score given by the k-th to the i-th observa-
tion in data.

Then the objective function to be minimized in step t is 
expressed as:

	
L(t) =

n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + ω (ft)� (2)

where ŷ(t−1)
i

 denotes the prediction result of the previ-
ous t− 1  trees for sample xi , ft  stands for the t tree, l  
is loss function and ω  is the canonical term used for the 
t-th tree [44].

Smote
An imbalanced dataset is one in which the number of 
examples in one class is significantly different from the 
number of examples in other classes. To deal with the 
over-fitting problems that often occur when facing an 
imbalanced datasets, a Synthetic Minority Oversampling 
Technique called “SMOTE” was proposed by Chawla 
et al. [36]. The fundamental concept of this method is 
to generate new samples for the minority class in the 
data set by means of a linear interpolation algorithm. 

Compared with random over-sampling techniques, this 
algorithm can increase the variety of training samples 
instead of repeating the original training samples, thus 
effectively solving the over-fitting problem. The steps for 
this technique are described as follows [45]:

a) For each sample point xi  in the minority class set A, 
calculate its Euclidean distance with every other points in 
set A, and obtain the k-nearest neighbours of xi .

b) For k-nearest neighbours of xi, arbitrarily choose the 
appropriate number of samples N (i.e. x1,…,xN) to form 
a new sample set A1. Here the sampling multiplier N is 
based on the proportion of sample imbalance.

c) For every xj ∈ A1 (j = 1, 2, ..., N ), A new sample 
point xi  is synthesized by the following linear interpola-
tion formula:

	 x′i = xi + rand (0,1) · |xi − xj| � (3)

d) The newly generated minority samples are combined 
with the original sample A to form a new sample A′ for 
training.

In this study, the number of patients with HE was 
much lower than the number of patients without HE. The 
imbalance in the data samples significantly affects the 
performance of the prediction model, therefore, before 
constructing the prediction model [46], we propose bal-
ancing the dataset using the SMOTE algorithm, which 
can generate new minority class samples to achieve a bal-
anced data sample between classes. The distribution of 
the data before and after SMOTE can be seen in Table 3.

Table 3  Samples before and after using SMOTE
Class 1–6 h 7–12 h 13–18 h 19–24 h

Before After Before After Before After Before After
Class 0 Non Hematoma Expansion 117 117 103 103 117 117 155 155
Class 1 Hematoma Expansion 29 117 27 103 28 117 28 155

Fig. 1  Steps of the proposed model
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SHAP values
One of the major problems with machine learning 
models is that the models themselves are not interpre-
table, and SHAP (SHapley Additive exPlanations) is one 
approach to tackle this problem. SHAP is based on the 
Shapley value, a game-theoretic concept introduced by 
economist Lloyd Shapley, which is interpreted by SHAP 
as an additive feature attribution method that determines 
the importance of an individual by calculating the con-
tribution of that individual in cooperation. The model 
explains the predicted values through a linear function of 
binary variables [47]:

	
g (z) = ϕ0 +

M∑

i=1

ϕzi � (4)

Here ϕ0  stands for the the typical prediction, M  is 
the number of features of the simplified input and the 
SHAP value ϕzi  represents its direct effect on the model 
prediction.

We calculate the SHAP value for each of the covariates 
on the test set. After that, a summary plot was drawn to 
present the SHAP values of each feature, and by colour 
we can see the relationship between the size of the fea-
ture and the predicted impact, as well as showing its 
eigenvalue distribution. Meanwhile, the dependence plot 
clearly shows how individual features affect the predic-
tion results of the model.

Results
Predicted performance
Overall, the five models produced better results in terms 
of precision, recall and F1- score with the balanced data-
sets (see Table  4). However, the accuracy of the mod-
els with the balanced datasets was lower than with the 
imbalanced dataset, which indicates that the classifica-
tion of HE was towards the majority samples of non-HE. 
These results clearly show that designing models using 
imbalanced datasets will lead to significant inaccuracies, 

which cannot identify HE and non-HE precisely and this 
verifies the necessity of using a balancing algorithm to 
balance datasets in the first step of the classification pro-
cess. In contrast, the F1-score is more convincing when 
evaluating a model’s predictive performance on unbal-
anced data.

In addition, the ensemble models outperformed the 
single classifiers, as determined by the performance indi-
cators, among which, the Area Under Curve and preci-
sion values of XGBoost with SMOTE exceeded those of 
SVM, RF and LR with SMOTE algorithm. Particularly, 
XGBoost with SMOTE produced the highest results 
among all classifier models with an accuracy of 0.82 and 
a F1-score of 0.82 on a balanced dataset. Especially, the 
F1-score value indicates that the XGBoost model can dis-
tinguish between HE and non-HE precisely.

The first five rows correspond to the predictions of 
the five machine learning algorithms on the imbalanced 
dataset, and the last five rows correspond to their respec-
tive predictions on the balanced dataset.

Feature importance
Figure  2 shows the list of the top 10 features among all 
that are used in the XGBoost model, following the order 
of contribution for each evaluation metric. Of all, the 
most influential covariate for predicting whether a hema-
toma will enlarge is the initial hematoma volume. Admis-
sion SBP, age and admission DBP also play an important 
role in forecasting.

SHAP value analysis
We analyzed the relative effect of the top 10 features on 
the model at each data point in the test set according to 
the mean absolute SHAP value (Fig.  3). The summary 
plot was applied to identify influential covariates. Each 
point in the summary plot indicated the Shapley value 
and observation value for the characteristic, with the 
color indicating the value of the characteristic. Accord-
ing to these results, baseline hematoma volume, admis-
sion DBP, age, admission SBP and GCS carried model’s 
forecasting power.

To further investigate the impact of each variable, 
we analyzed the SHAP values of the selected 4 impor-
tant covariates separately in Fig.  4. The admission DBP, 
except for the range of 85 to 100, positively contributes 
to the HE (Fig. 4(a)). For age, we saw a relationship with 
HE before and after 65 (Fig.  4(b)). In terms of admis-
sion SBP, the relationship with HE is “W” shaped and the 
peak of SHAP value occurring when the admission SBP 
is 180 (Fig. 4(c)). As for the baseline hematoma volume, 
the overall trend is relatively stable, with the lowest point 
occurring when the baseline hematoma volume equals 18 
(Fig. 4(d)).

Table 4  Predictive performance of different models on balanced 
and imbalanced datasets
Dataset Methods Accuracy Precision Recall F1-score
IBT XGBoost 0.90 0.51 0.62 0.60
IBT SVM [1] 0.87 0.44 0.50 0.47
IBT RF [2] 0.85 0.43 0.46 0.49
IBT LR [14] 0.86 0.44 0.50 0.46
IBT KNN [15] 0.87 0.44 0.51 0.48
BT XGBoost 0.82 0.82 0.82 0.82
BT SVM [1] 0.78 0.81 0.77 0.77
BT RF [2] 0.80 0.79 0.77 0.80
BT LR [14] 0.69 0.69 0.69 0.69
BT KNN [15] 0.80 0.78 0.77 0.78
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Predicted performance of different time groups
In previous studies [8, 48–50], CT imaging markers such 
as shape and heterogeneity of hematoma, island sign, 
satellite sign, blend sign, black hole sign, and swirl sign 
had good effects on the prediction of HE within 6 h after 
the onset of ICH. Studies have found that more than 
one third of ICH patients who underwent CT scanning 
within a few hours after onset had HE [43]. But there 
were still a number of patients who could have HE within 
the first 24 h after 6 h. Thus, we further investigated the 
predictive ability of these markers to HE within 24 h after 
ICH. We have evenly divided 24 h into four parts, that is, 
T1 = (0, 6], T2 = (6, 12], T3 = (12, 18] and T4 = (18, 24].

Table  5 summarizes the performances of the algo-
rithms in particular time periods T1, T2, T3 and T4 and it 
is obvious that the disaggregated results are better than 
that presented in Table 4. At the same time, XGBoost has 
also achieved the best prediction performance on differ-
ent time groups among all machine learning algorithms, 
whereas LR presented the worst predictive ability in the 
dataset.

By comparing the predictions between groups, the 
highest accuracy and F-score was achieved in time group 
T4 and the two values were 0.94 and 0.93, respectively. It 
is worth noting that, except for the first time group, the 
predictive performances of the models all improve long 
with time implying that although the area under the 
curve of ROC curves decreased with time, it still main-
tained a high accuracy. Therefore, these CT image mark-
ers have high predictive power and could be regarded as 
reliable indicators for predicting HE in the first 24 h after 
ICH. Besides, our model also validates that HE occurring 
within 24  h can be predicted with the help of machine 
learning models.

Discussion
This study has developed classification models to forecast 
HE based on different machine learning models com-
bining the SMOTE algorithm. By analysing real cases of 
cerebral hemorrhage in hypertensive patients over the 
past six years, we have confirmed the feasibility of such 
hematoma prediction and summarized the main features 
for prediction results.

Risk factor
Many risk factors for HE have been clinically proven. As 
did previous studies, we found that elevated SBP is a risk 
factor. Also, age, initial hematoma volume and DBP dif-
fered between expanders and non-expanders. In addi-
tion, HE can also be induced by an increase in SBP, but in 
our study, we found that SBP at admission did not show 
a linear relationship with HE. A higher SBP did not cor-
respond to a higher probability of HE. As this is a ret-
rospective exercise, the data set itself may be subject to 
selection bias, and therefore, a prospective double-blind 
study is required. Furthermore, many studies have illus-
trated that GCS score is the most important risk factor 
for determining ICH patients. However, in this study, 
the GCS was not particularly important for the outcome. 
This argument is also consistent with Rangaraj’s [51] 
findings.

The current treatment for ICH is mainly in the man-
agement approach in reducing SBP value since early anti-
hypertensive treatment can effectively reduce the risk of 
HE [52, 53]. Studies [54, 55] have shown that intensive 
blood pressure lowering within 24  h of admission can 
reduce the risk of HE and thus reduce the risk in patients. 
The specific criteria for lowering blood pressure are to 
lower SBP to below 180. As we have discussed regard-
ing Fig. 4(c), the peak of the SHAP value occurs when the 

Fig. 2  Contributions of features from XGBoost for the whole dataset
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admission SBP equals 180. Our findings also validate pre-
vious studies.

Imbalanced data sets
As Dong et al. [56], and Liu [57] pointed out, a com-
mon issue in current research in the medical field is how 
to handle imbalanced datasets. The low prevalence of 
many diseases results in a small proportion of the data 
set being labeled with this type of disease. Unfortunately, 
most machine learning algorithms typically make poor 
predictions for the minority class. Thus, being able to 
make accurate predictions for these few occurrences of 
disease is valuable. When facing such a dataset, resam-
pling the training data is a practical method to address 
the issue of imbalance. Down-sampling majority classes, 
over-sampling minority classes, or some combinations 

are commonly applied [44, 47]. For example, the ratio of 
the sample size of the experimental and control groups 
was adjusted from 5:1 to 1:1 by the SMOTE algorithm. 
The original over-accuracy and under-performance of 
the F1-score were iterated to obtain a more convincing 
result and provides a reliable basis for clin- ical clinical 
applications. Another approach is cost-sensitive learning, 
which reformulates existing learning algorithms by giving 
more weight to the minority classes [58, 59].

Ensemble boosting learning methods
A comparison among different methods in this study 
clearly demonstrates that machine learning algorithms 
can achieve more accurate prediction performance than 
logistic regression algorithms for such multivariate data-
sets. In particular, ensemble boosting learning methods 

Fig. 3  SHAP value (effect on model output)
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such as XGBoost, tend to be favored. More studies are 
experimenting with various ensemble boosting learning 
methods to predict ICH patients instead of the traditional 
extensive prognostic scoring system. Ensemble boosting 
learning algorithms integrate several weak classifiers to 
reduce the poten- tial bias of individual model, obtaining 
significantly superior generalization performance com-
pared to a single learner and avoiding the production of 
biased and unstable results [60, 61].

With the continuous optimization of deep learning, it 
has proven to be a powerful predictive tool in the field of 
healthcare prediction. However, in the classification and 
prediction of tabular data, XGBoost demonstrates a large 
advantage over deep learning models in terms of both 
accuracy and time, as evidenced in many literature  [34, 
62]. In addition, deep learning models are often challeng-
ing to interpret, which can lead to doctors distrusting 
the predictive performance of these models if their pre-
dictions contradict their intuitive judgment. In contrast, 
the classical ML model can depict the effects of different 

variables on the prediction results through SHAP value, 
which provides interpretability of the prediction results 
of the XGBoost model, making it more acceptable to 
physicians.

Limitations
First of all, most of our data is derived from CT image 
findings and lacks clinical testing indicators like rou-
tine blood test results. However, these results have also 
proven to be important in correctly predicting ICH 
patients [51]. In addition, our training and test sets are 
unified from a single system and the results are only for 
this batch of data sets, it would be more ideal to include 
some external data sets to validate the reliability and 
robustness of our model.

Conclusion
HE is a high risky symptom happening frequently on 
patients who have undergone spontaneous ICH. Cor-
rect prediction of the occurrence of HE yields great value 

Fig. 4  Four examples of dependence plots showing the effect on the HE with respect to the feature value. Points represents the SHAP values, while lines 
indicate the LOESS fitted smooth representation of the relationship
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towards determination of critical medical treatment. This 
study developed a prediction model based on XGBoost 
to forecast the occurrence of HE. In the comparison of 
the prediction results obtained by our proposed method 
and few other machine learning methods, our proposed 
method achieved the best prediction performance with a 
prediction accuracy of 0.82 on the balanced dataset pro-
cessed by the SMOTE algorithm. On the predictions of 
HE occurrence within 6, 12, 18 and 24 h, the accuracy of 
the predictions with the proposed method all exceeded 
0.8. We have confirmed that HE can be accurately pre-
dicted within 24 h based on indicators in a retrospective 
study. Through our study we can conclude that hema-
toma volume, admission SBP and admission DBP con-
tribute greatly to the occurrence of HE.

It has been presented that machine learning algorithms 
can effectively integrate diverse medical data to accu-
rately and efficiently predict targets. Future research is 
directed towards exploring the generalisability of our 
proposed predictive model and exploring more advanced 
data generation algorithms. AI techniques, such as gen-
erative AI, could be used to create possible training data, 
without which, some latest AI methods, such as deep 
learning based methods, cannot be employed due to its 
need of large training data set. However, accuracy and 

closeness of the generated data to the real data need to 
be researched before generative AI generated data can be 
used for model training.
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