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Abstract
Introduction The correlation between radiation exposure before pregnancy and abnormal birth weight has been 
previously proven. However, for large-for-gestational-age (LGA) babies in women exposed to radiation before 
becoming pregnant, there is no prediction model yet.

Material and methods The data were collected from the National Free Preconception Health Examination 
Project in China. A sum of 455 neonates (42 SGA births and 423 non-LGA births) were included. A training set 
(n = 319) and a test set (n = 136) were created from the dataset at random. To develop prediction models for LGA 
neonates, conventional logistic regression (LR) method and six machine learning methods were used in this study. 
Recursive feature elimination approach was performed by choosing 10 features which made a big contribution to 
the prediction models. And the Shapley Additive Explanation model was applied to interpret the most important 
characteristics that affected forecast outputs.

Results The random forest (RF) model had the highest average area under the receiver-operating-characteristic 
curve (AUC) for predicting LGA in the test set (0.843, 95% confidence interval [CI]: 0.714–0.974). Except for the logistic 
regression model (AUC: 0.603, 95%CI: 0.440–0.767), other models’ AUCs displayed well. Thereinto, the RF algorithm’s 
final prediction model using 10 characteristics achieved an average AUC of 0.821 (95% CI: 0.693–0.949).

Conclusion The prediction model based on machine learning might be a promising tool for the prenatal prediction 
of LGA births in women with radiation exposure before pregnancy.
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Introduction
Babies born large for gestational age (LGA) are defined as 
birth weight > 90th percentile according to gestational age 
and sex [1]. Previous studies found that LGA births were 
related to a higher risk of adverse pregnancy outcomes, 
including shoulder dystocia, postpartum hemorrhage, 
cesarean section, neonatal hypoglycemia and longer 
hospital stay [2, 3]. It is clear that LGA births improved 
the chance of stillbirth and perinatal death [4–6]. As the 
birth weight percentile rises, the above risks increase. 
Additionally, being LGA newborns is also associated with 
increased long-term risk of obesity, type 2 diabetes, child-
hood primary brain tumors and multiple adult cancers in 
their lives [7–12]. Recently, LGA births are also reported 
as a well-performed classifier for the risk of adverse peri-
natal outcomes [13]. If the LGA births can be recognized 
before delivery, early intervention, closer monitoring 
and targeted perinatal medical care can be performed to 
decrease adverse composite outcomes. Thus, a prenatal 
prediction of LGA births is of vital importance, especially 
in the susceptible populations of LGA pregnancies.

Numerous factors influence LGA births since birth 
weight is a composite result affected by different genetic 
and environmental factors. The maternal risk factors for 
abnormal birth weight include obesity, gestational diabe-
tes mellitus, older age and so on [14–16]. Besides, radia-
tion exposure before pregnancy may induce significant 
damage in ovary and uterus [17–19]. Many studies have 
proved the correlation between radiation before preg-
nancy and abnormal birth weight [20, 21]. However, there 
is still no model for LGA birth prediction in women who 
were exposed to radiation before becoming pregnant.

Prediction models on the basis of conventional statisti-
cal methods are not good at dealing with multiple vari-
ables in large datasets, for which ignore the potential 
relationships among multiple variables [22]. Machine 
learning (ML) had been widely used in prediction models 
in recent years, for its advantages of modelling complex 
interactions from multiple variables in large datasets and 
requiring no model specification [23, 24]. As for LGA 
births prediction, previous studies tried to develop pre-
diction models using ML based on maternal factors in 
the general population, but most of them perform poorly 
[25–28]. In recent years, many environmental factors 
and paternal factors were proven as risk factors for LGA 
births, including second-hand smoking exposure, preg-
nancy PM2.5 exposure, advanced paternal age, higher 
paternal height and so on [29–32], but they had not been 
included into the existing prediction models.

This study aims to develop and evaluate prediction 
models for LGA births in women with radiation exposure 
before pregnancy by using different ML algorithms. This 
study was the first study to develop prediction models 
in women with radiation exposure, being based on the 

National Free Preconception Health Examination Proj-
ect (NFPHEP) in China, a nationwide prospective cohort 
including maternal, paternal and environmental factors. 
Moreover,  the paternal and environmental factors were 
innovatively integrated into the LGA prediction models 
as predictive factors for the first time.

Materials and methods
Data source
This study was performed based on the data from the 
NFPHEP, a three-year nationwide project including more 
than 240,000 newborns from Jan. 2010 to Dec. 2012, 
which was initiated by the National Health Commission 
of the People’s Republic of China and carried out in over 
220 counties across 31 provinces/municipalities in China 
[33]. The study design and conducting of the NFPHEP 
had been previously reported in details [33–35]. In gen-
eral, the preconception health condition and risk factors 
for adverse pregnancy outputs were investigated in the 
NFPHEP, to increase the pregnant women’s overall health 
and neonates. All data in the NFPHEP had been uploaded 
to a nationwide electronic data collecting system, and the 
quality control was performed by The National Quality 
Inspection Center for Family Planning Techniques. The 
NFPHEP protocol (protocol code 2,017,101,702) was 
authorized by the Institutional Review Committee of the 
National Research Institute for Family Planning in Bei-
jing, China. All the participants and their legal guardians 
signed informed consent form.

Study participants and features
All singleton live neonates with gestational age of over 
24 weeks and complete birth records were selected from 
the NFPHEP, and then 985 cases whose mothers were 
radioactively contaminated in working or living environ-
ment before pregnancy were included in this study. After 
deleting the records with omitted values or extreme val-
ues of demographic features, the last analysis comprised 
455 cases, including 42 LGA births (9.23%) and 413 non-
LGA births (91.77%). Experiments were performed for 
free during pre-pregnancy, pregnancy and postpartum 
follow-up. A total of 153 features about the maternal/
paternal social demographic characteristics, lifestyle, 
social economic status, family history, pre-existing medi-
cal problems, physical and laboratory examinations, and 
neonatal birth information were obtained through face-
to-face questionnaires and experiments conducted by 
specific staffs who received standardized training. In this 
study, LGA was defined as neonates having a birth weight 
over the 90th percentile for their gender and gestational 
age [36].
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Study design
The study design and data processing flow were shown 
in the flow chart as Fig. 1. All analyses in this study were 
conducted in Python (version 3.8.5). The dataset (n = 455) 
was split into a training set (70%, n = 319) and a test set 
(30%, n = 136) for the development and evaluation of the 
ML prediction models for LGA. ML prediction mod-
els were developed and evaluated as described in our 
previous study [37]. In brief, 153 related characteristics 
(shown in Table S1) were contained as candidate predic-
tor variables in six algorithms, including logistic regres-
sion (LR), random forest (RF), gradient boosting decision 
tree (GBDT), extreme gradient boosting (XGBoost), light 
gradient boosting machine (LGBM), and category boost-
ing (CatBoost). The performances of these models were 
evaluated by area under the receiver operating charac-
teristic (ROC) curve (AUC, main evaluating index), sen-
sitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). The RF approach was 
selected to develop the final model because of its high-
est average AUC value in test set among all algorithms 
(shown in Results). To reduce the computational cost in 
developing the final model, the recursive feature elimi-
nation (RFE) method was performed to choose 10 char-
acteristics which made an important contribution to the 
LGA prediction output from the 153 candidate features, 
using a RF classifier as the estimator. For the ML algo-
rithm (RF) with the highest average AUC, the hyperpa-
rameters were set as n_estimators = 30, max_depth = 4, 

and min_samples_split = 0.15. The effectiveness of the 
RFE had been reported in many medical studies [38–
41]. Thus, the final model was developed, including the 
above 10 features using the RF algorithm. In addition, to 
explain the final model, the Shapley Additive Explanation 
(SHAP) approach was used to use the post hoc explain 
the ability of the final model, to interpret the impact of all 
contained characteristics. SHAP is a useful game theory 
method to assess the significance of the specific input 
attributes to the prediction outcome [42].

ML algorithms
A total of six algorithms were employed to improve the 
prediction models which had been described in our pre-
vious study, including LR, RF, GBDT, XGBoost, LGBM, 
and CatBoost [37, 43]. Overall, traditional LR approach 
and other five methods are the most prevalent and state-
of-the-art supervised machine learning approaches for 
categorization problems. In brief, the LR algorithm is 
commonly used in medical research, which can evalu-
ate the probability of a binary dependent variable [44]. 
The RF algorithm is an ensemble classification process, 
which can combine multiple decision trees by majority 
voting [45, 46]. The GBDT algorithm on the basis of the 
ensembles of decision trees is known due to its reliable, 
effectiveness, and comprehensibility. For each step, there 
is a novel determination being trained to match the resid-
ual between the ground truth and the current prediction 
[47]. The XGBoost algorithm can use the second-order 

Fig. 1  The flow chart of the methods in this study, including data extraction, training, and testing. A total of 455 participants were included in this study, 
which were divided into training dataset and testing dataset. Abbreviations NFPHEP = National Free Preconception Health Examination Project, LR = Lo-
gistic Regression, RF = Random Forest, GBDT = Gradient Boosting Decision Tree, XGBoost = Extreme Gradient Boosting, LGBM = Light Gradient Boosting 
Machine, CatBoost = Category Boosting, RFE = Recursive Feature Elimination, SHAP = Shapley Additive Explanation
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gradient to improve the approximation greedy search, 
the parallel learning, and the hyperparameters which can 
reduce the problems of overestimation and underesti-
mation [48]. The LGBM algorithm can greatly increases 
the training efficiency by using a histogram to aggregate 
gradient information [49]. And the CatBoost algorithm 
uses a novel approach to cope with categorical features 
that reduce the issue of gradient bias as well as prediction 
shift [50].

Statistical analysis
Categorical variables in this study were expressed by 
numbers (%) using either the Chi-square test or Fisher’s 
exact test. The Wilcoxon Mann-Whitney U test was uti-
lized to compare data that are constant but do not follow 
a normal distribution. Continuous variables that did fit a 
normal distribution were reported as median (interquar-
tile range [IQR]) and compared based on the two-tailed 
Student’s t-test. Additionally, each model’s AUC, sensi-
tivity, specificity, PPV, and NPV were assessed. The AUC 
in training and test sets was primarily used to assess the 
prediction abilities of the ML models. Statistical signifi-
cance was defined as a two-sided P-value of 0.05. Python 
was used to perform all statistical analyses.

Results
Demographic features
The NFPHEP database recorded 455 neonates whose 
mothers had radiation exposure from working and liv-
ing surroundings ahead of pregnancy from Jan. 2010 to 
Dec. 2012. They were divided into two groups, including 
42 LGA births (9.23%) and 413 non-LGA birth (91.77%). 
The demographic characteristics were shown in Table 1. 
Overall, the neonates possessed a median gestational 
age of 40.0 weeks (IQR: 39.0,40.0) and a birth weight of 
3.30 kg (IQR: 3.00,3.55). Expectedly, LGA newborns had 
a significantly higher birth weight than non-LGA neo-
nates (4.05 kg vs. 3.25 kg, P < 0.001). There were no dif-
ferences in maternal or paternal age, height, body mass 
index (BMI) and diastolic blood pressure (DBP) ahead 
of pregnancy between non-LGA group and LGA group. 
While those mothers of LGA neonates had a signifi-
cantly lower frequency of taking folacin regularly (64.29% 
vs. 79.66%, P = 0.02), compared to those of non-LGA. 
Besides, those fathers of LGA neonates had higher sys-
tolic blood pressure (120mmHg vs. 115mmHg, P = 0.035) 
and a significantly increased frequency of suffering from 
economic pressure (45.24% vs. 36.56%, P = 0.016) or life/
work pressure (57.14% vs. 35.35%, P = 0.009) ahead of 
pregnancy, compared to those of non-LGA. In addition, 
the results on comparing 153 variables for predictors 
were detailed displayed in Table S1 from Supplementary.

ML algorithms’ performance comparison
The training set (n = 319) was utilized for LGA birth based 
on LR, RF, GBDT, XGBoost, LGBM, and CatBoost. The 
test set (n = 136) was also utilized to assess the effective-
ness of their LGA prediction models. Figure 2 illustrates 
the comparison on the ROC curve for LGA prediction in 
the 6 improved models using the test set. Therefore, the 
RF model had the highest average AUC value (0.843, 95% 
confidence interval [CI]: 0.714–0.974) to predict LGA 
in the test set. And other models also showed a good 
average AUC in the test set: GBDT (AUC: 0.752, 95% 
CI:0.554–0.951), XGBoost (AUC:0.725, 95%CI: 0.521–
0.929), CatBoost (AUC: 0.768, 95%CI:0.575–0.961), 
except for LR (AUC:0.603, 95%CI:0.440–0.767) and 
LGBM (AUC:0.632, 95%CI:0.462–0.804). Besides, sen-
sitivity, specificity, PPV, and NPV in the above models 
ranged from 0.714 to 1.000, 0.500 to 0.800, 0.085 to 0.188, 
and 0.980 to 0.990, respectively. And more information 
was listed in Table  2, which included AUC values from 
both training set and the test set, sensitivity, specificity, 
PPV, and NPV in each model.

Characteristics choosing and model prediction
To lower the computational expense in developing mod-
els, the RFE method was performed to select 10 features 
which considerably influenced the outcome of the pre-
diction using the 153 candidate features. These features 
include paternal alanine aminotransferase (ALT) ahead 
of pregnancy, maternal creatinine (Cr) ahead of preg-
nancy, paternal work/life pressure ahead of pregnancy, 
paternal heartrate ahead of pregnancy, paternal Cr ahead 
of pregnancy, maternal meat/eggs diet ahead of preg-
nancy, maternal hepatitis B virus e antigen (HBeAg) 
ahead of pregnancy, maternal ALT ahead of pregnancy, 
maternal DBP ahead of pregnancy, physical examina-
tion for maternal thyroid ahead of pregnancy. Thus, these 
10 features were utilized to develop the final prediction 
model based on the RF algorithm which reached the 
top average AUC value in test set. And the result of final 
model’s ROC curve in the training and test set for LGA 
prediction were displayed in Fig.  3. Specifically, AUC 
values in both sets were 0.842 (95%CI:0.780–0.905) and 
0.821(95%CI: 0.693–0.949), and the sensitivity, specific-
ity, PPV, and NPV of the final model were 0.857, 0.708, 
0.136 and 0.989, separately.

Assessment of variable importance
To identify the features which greatly influence on the 
final prediction model, the SHAP summary diagram 
of the final model was drawn and shown in Fig. 4. Spe-
cifically, the 5 most important features for the final LGA 
prediction model were paternal ALT ahead of pregnancy, 
maternal Cr ahead of pregnancy, paternal work/life 
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pressure ahead of pregnancy, paternal heartrate ahead of 
pregnancy, and paternal Cr ahead of pregnancy.

Discussion
This study presents a potential clinical tool for a prena-
tal prediction of LGA births in women exposed to radia-
tion ahead of pregnancy. Six methods were utilized to 
develop prenatal prediction models with LGA for these 
women. Compared with conventional LR methods, ML 

algorithms have better performance in LGA prediction. 
Thereinto, the RF algorithm developed a more effec-
tive prediction model reaching an average AUC value of 
0.843 in the test set. The top 10 contributed features were 
chosen by the RFE method, and the concise prediction 
model based on the 10 features using the RF algorithm 
also achieved excellent performance with an average 
AUC of 0.821. The best that we can tell that we are the 
first to develop and evaluate ML prediction models for 

Table 1 Part of demographic characteristics of the subjects included in analysis
Characteristics Overall (n = 455) Non-LGA(n = 413) LGA(n = 42) P value
Male gender 246(54.07%) 227(54.96%) 19(45.24%) 0.297
Gestational at birth, week 40.0[39.0, 40.0] 40.0[39.0, 40.0] 39.0[39.0, 40.0] 0.065
Birth weight, kg 3.30[3.00, 3.55] 3.25[3.00, 3.50] 4.05[3.95, 4.33] < 0.001
Maternal age, year 24.0[23.0, 27.0] 24.0[23.0, 27.0] 24.5[23.0, 26.0] 0.273
Maternal height, cm
 < 150 cm 3(0.66%) 3(0.73%) 0(0.00%) 0.948
 150–159 cm 221(48.57%) 200(48.43%) 21(50.00%)
 160–169 cm 218(47.91%) 198(47.94%) 20(47.62%)
 ≥ 170 cm 13(2.86%) 12(2.91%) 1(2.38%)
Maternal BMI, kg/m2 20.2[18.78, 22.05] 20.2[18.82, 22.03] 20.115[18.38, 22.56] 0.393
Maternal SBP, mmHg 108.167 ± 10.655 108.034 ± 10.519 109.476 ± 11.97 0.404
Maternal DBP, mmHg 70.0[68.0, 75.0] 70.0[68.0, 75.0] 70.0[62.25, 79.0] 0.424
Maternal life/work pressure
 None 267(58.68%) 247(59.81%) 20(47.62%) 0.228
 Mild 172(37.8%) 151(36.56%) 21(50.00%)
 Severe 16(3.52%) 15(3.63%) 1(2.38%)
Maternal economic pressure
 None 315(69.23%) 289(69.98%) 26(61.90%) 0.402
 Mild 131(28.79%) 117(28.32%) 14(33.33%)
 Severe 9(1.98%) 7(1.69%) 2(4.76%)
Maternal taking folacin regularly
 Regularly 356(78.24%) 329(79.66%) 27(64.29%) 0.020
 Irregularly 32(7.03%) 25(6.05%) 7(16.67%)
 Not taking 67(14.73%) 59(14.29%) 8(19.05%)
Paternal age, year 26.0[24.0, 29.0] 26.0[24.0, 29.0] 26.0[24.0, 27.75] 0.088
Paternal height, cm
 <160 cm 3(0.66%) 3(0.73%) 0(0) 0.954
 160–169 cm 135(29.67%) 122(29.54%) 13(30.95%)
 170–179 cm 284(62.42%) 258(62.47%) 26(61.9%)
 ≥ 180 cm 33(7.25%) 30(7.26%) 3(7.14%)
Paternal BMI, kg/m2 22.04[20.28,24.49] 22.04[20.28,24.49] 22.12[19.92,24.48] 0.326
Paternal SBP, mmHg 117.0[110.0, 120.0] 115.0[110.0, 120.0] 120.0[110.0, 125.0] 0.035
Paternal DBP, mmHg 75.0[70.0, 80.0] 75.0[70.0, 80.0] 76.0[70.0, 80.0] 0.175
Paternal life/work pressure
 None 285(62.64%) 267(64.65%) 18(42.86%) 0.009
 Mild 152(33.41%) 132(31.96%) 20(47.62%)
 Severe 18(3.96%) 14(3.39%) 4(9.52%)
Paternal economic pressure
 None 285(62.64%) 262(63.44%) 23(54.76%) 0.016
 Mild 154(33.85%) 139(33.66%) 15(35.71%)
 Severe 16(3.52%) 12(2.90%) 4(9.52%)
Abbreviations LGA = Large for Gestational Age, BMI = Body Mass Index, SBP = Systolic Blood Pressure, DBP = Diastolic Blood Pressure. The above data were presented as 
number (%), median [interquartile range] or mean ± standard deviation. And Continuous variables are compared by the Student’s t-test or Wilcoxon Mann–Whitney 
U test. Categorical variables are compared by Chi-square or Fisher’s exact test
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LGA in women who are radiation-exposed ahead of preg-
nancy. A total of 153 features covering maternal, paternal 
and environmental factors were included in these predic-
tion models, and thereinto, the paternal and environmen-
tal factors were the first time to serve as predictors in ML 
prediction models for LGA.

Many previous studies have proved the relationship 
between maternal radiation exposure and fetal birth 
weight. Maternal radiation exposure ahead of preg-
nancy, such as diagnostic radiography, radiation therapy 
and environmental ionizing radiation exposure, may 
induce significant damage in ovary and uterus, causing 
an increased risk of fetal abnormal birth weight [20, 21, 
51, 52]. However, there are still no prediction models for 

LGA in women with radiation exposure ahead of preg-
nancy. In this study, we innovatively applied LR approach 
and five ML algorithms to prenatal prediction models 
for LGA in that women group. Among these models, the 
model based on RF methods displayed the most excel-
lent performance in LGA prediction, with an average 
AUC of 0.843 in the test set, and the models using GBDT, 
XGBoost and CatBoost had comparable average AUC 
values (0.725∼0.768). While the model based on tradi-
tional LR approach had the lowest average AUC of 0.603, 
which might be owing to its inherent constraints of not 
incorporating the potential interactions among multiple 
predictors. The ML algorithms can discover unknown 
correlations between features and LGA births from mul-
tidimensional and multivariate data, which might reveal 

Table 2 Performance of models by different algorithms in predicting large for gestational age (LGA) neonates
Model AUC

training
AUC
testing

Sensitivity Specificity PPV NPV

LR 0.965 0.603 0.857 0.500 0.085 0.985
RF 0.950 0.843 0.857 0.800 0.188 0.990
GBDT 0.980 0.752 0.714 0.754 0.135 0.980
XGBoost 0.999 0.725 0.714 0.754 0.135 0.980
LGBM 0.937 0.632 0.857 0.515 0.087 0.985
CatBoost 0.979 0.768 0.857 0.654 0.118 0.988
Abbreviations AUC = Area Under the Receiver-Operating-Characteristic Curve, PPV = Positive Predictive Value, NPV = Negative Predictive Value, LR = Logistic Regression, 
RF = Random Forest, GBDT = Gradient Boosting Decision Tree, XGBoost = Extreme Gradient Boosting, LGBM = Light Gradient Boosting Machine, CatBoost = Category 
Boosting

Fig. 3 ROC curves of the final machine learning model for predicting LGA 
in training set (AUC = 0.842, 95%CI:0.780–0.905), and test set (AUC = 0.821, 
95%CI:0.693–0.949). The final predicting model was based on the ran-
dom forest algorithm, and included top 10 contributed features chosen 
by RFE method. Abbreviations ROC = Receiver Operating Characteristic, 
LGA = Large for Gestational Age, AUC = The Receiver Operating Character-
istic Curve, RFE = Recursive Feature Elimination

 

Fig. 2 ROC curves of the above 6 machine learning models for predicting 
LGA in the test set. The RF model achieved the top average AUC value 
(AUC = 0.843, 95%CI: 0.714–0.974) among above models. Abbreviations 
ROC = Receiver Operating Characteristic, LGA = Large for Gestational Age, 
Area Under, LR = Logistic Regression, AUC = The Receiver Operating char-
acteristic Curve, RF = Random Forest, GBDT = Gradient Boosting Decision 
Tree, LGBM = Light Gradient Boosting Machine, XGBoost = Extreme Gradi-
ent Boosting, CatBoost = Category Boosting

 



Page 7 of 10Bai et al. BMC Medical Informatics and Decision Making          (2024) 24:174 

trends ignored by researchers using traditional methods 
[51]. Moreover, the LR approach is sensitive to outliers 
and requires a large dataset to work well. Thus, the small 
sample size and the imbalanced dataset in this study may 
affect the performance of the LR approach. Our finding 
showed that the ML algorithms showed great potential in 
LGA prediction ahead of pregnancy, better discrimina-
tion than the traditional LR method (average AUC: 0.843 
versus 0.603). The prediction models on the bias of ML 
algorithms might be potentially promising methods for 
LGA birth prediction in women with radiation exposure 
ahead of pregnancy.

In this study, REF method, a wrapper-based back-
ward elimination technique, was performed to rank the 
most contributed feature [53]. The top 10 contributed 
features include maternal risk factors (Cr levels, ALT 
levels, HBeAg, DBP, meat/eggs diet and thyroid exami-
nation) and paternal risk factors (Cr levels, ALT levels, 
heart rate, work/life pressure). The concise model based 
on these 10 simple features achieved excellent perfor-
mance with an average AUC of 0.821. In other words, ML 
algorithms can predict LGA births well using accessible 
parental physical examination and clinical test indexes. 
These features’ impact distribution on the output of the 
final model was represented as the SHAP values in Fig. 4. 
For example, parental Cr levels, parental ALT levels, 
paternal work/life pressure and paternal heart rate had 
positive effects on the LGA prediction outcome. On the 
contrary, maternal DBP levels had a negative effect on the 
birth weight of newborns. Specifically, the ALT levels and 

Cr levels are two commonly used clinical indicators for 
hepatic and renal function, and the relationships between 
hepatic/renal function and birth weight of newborns 
were reported previously [54–57]. Maternal chronic 
HBV infection also increased the risk of LGA births [58]. 
Moreover, maternal meat/egg diet means more protein 
intake. Many studies reported that maternal high pro-
tein diet increased birth weight, independently of mater-
nal age, BMI or energy intake, and 1  g protein intake 
increases the birth weight of newborns by 7.8–11.4  g 
[59–61]. Additionally, the negative correlation between 
maternal DBP levels and birth weight of newborns was 
also reported previously, which was consistent with our 
study [62, 63]. And the changes of the above features 
caused by radiation exposure have been reported previ-
ously [64–66].

Some previous studies had established prediction mod-
els in general population, using ML algorithms or LR 
approach [25–28]. These models included maternal risk 
factors, including maternal demographic characteristics, 
clinical test indexes and ultrasound biometrics measure-
ments. However, most of them performed in prediction 
for LGA poorly with an average AUC of 0.6∼0.8. In addi-
tion to the known maternal risk factors, it was found that 
birth weight was also associated with paternal risk factors 
[32, 67, 68]. This study innovatively included paternal 
risks factors and environmental factors into the predic-
tion models. The results showed that paternal work/life 
pressure, heart rate and some clinical test indexes were 
selected as the top 10 contributed features, which showed 

Fig. 4 The SHAP values for most important predictors of LGA in the final model. The Y-axis showed the importance of each feature from top to bottom, 
and the X-axis showed the mean SHAP values. Each line represented a feature, and each dot in the diagram represented a sample in the cohort. Hot color 
(red) indicates a high value for this feature, while cold color (blue) indicates a low value for this feature. Abbreviations SHAP = Shapley Additive Explana-
tion, LGA = Large for Gestational Age, ALT = Alanine Aminotransferase, Cr = Creatinine, HBeAg = Hepatitis B Virus e Antigen, DBP = Diastolic Blood Pressure
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the indispensable impact of paternal factors in LGA pre-
diction. Unfortunately, the influence of paternal factors 
on fetal birth weight had received little attention in the 
past, which might decrease accuracy and applicability of 
their models.

The current study has several limitations. The data were 
selected from the NFPHEP project, which were obtained 
nationally, representing the population with minimal 
selection bias. However, the small sample size (n = 455) 
and imbalanced (LGA 9.23% vs. non-LGA 91.77%) data-
set potentially introduced some other bias. Firstly, the 
small sample size and imbalanced dataset would cause 
a large variation in the 95% CI and the low AUC lower 
bound, which may influence the stability of ML predic-
tion models. Also, due to the limited number of real 
positive samples, relatively few of the predicted positive 
samples were actually positive, resulting in a high error 
rate and a decrease in the accuracy of the positive pre-
dictions, reflected as a low PPV. Besides, Bootstrap and 
Repeated cross-validation were not used in this study, 
because the number of positive outcomes in the dataset 
was too small to meet the statistical requirement. Fur-
thermore, training and testing results showed a discrep-
ancy in performance in these models, which indicated 
potential overfitting. Increasing the sample size was one 
of the effective ways to mitigate overfitting. In a word, 
increasing sample size and more balanced datasets would 
contribute to the development of more high-quality pre-
dictive models.

Additionally, for the women with radiation expo-
sure, small-for‐gestational‐age births are more com-
mon than LGA births in those offspring with abnormal 
birth weight. Both small‐for‐gestational‐age and LGA 
birth prediction are critical topics in obstetrics. How-
ever, no LGA prediction model was established before in 
women with radiation exposure, that’s why we develop 
and evaluate ML models for LGA prediction in these 
women. Moreover, as this is a secondary analysis based 
on NFPHEP project, there was no opportunity to collect 
additional characteristics. The type or average daily expo-
sure of maternal radiation exposure before pregnancy 
and ultrasound biometrics measurements during preg-
nancy were not collected in the dataset, and the above 
information might improve the performance of ML pre-
diction models. In future work, additional characteris-
tics such as ultrasound biometrics measurements can be 
included into the models to improve the models’ accu-
racy, and more validation and application in real world 
are still required.

In conclusion, six algorithms were utilized to develop 
the LGA prediction models in women exposed to radia-
tion ahead of pregnancy. After feature selection and opti-
mization approaches, the RF algorithm model based on 
the top 10 contributed features achieved an average AUC 

of 0.821, which demonstrates that ML algorithms have 
a good performance in LGA prediction using parental 
physical examination and clinical test indexes. Thus, the 
prediction model using ML algorithms could be a prom-
ising tool for prenatal prediction of LGA births in women 
with radiation exposure before pregnancy.
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