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Abstract
Background Allogeneic Blood transfusion is common in hip surgery but is associated with increased morbidity. 
Accurate prediction of transfusion risk is necessary for minimizing blood product waste and preoperative decision-
making. The study aimed to develop machine learning models for predicting perioperative blood transfusion in hip 
surgery and identify significant risk factors.

Methods Data of patients undergoing hip surgery between January 2013 and October 2021 in the Peking Union 
Medical College Hospital were collected to train and test predictive models. The primary outcome was perioperative 
red blood cell (RBC) transfusion within 72 h of surgery. Fourteen machine learning algorithms were established to 
predict blood transfusion risk incorporating patient demographic characteristics, preoperative laboratory tests, and 
surgical information. Discrimination, calibration, and decision curve analysis were used to evaluate machine learning 
models. SHapley Additive exPlanations (SHAP) was performed to interpret models.

Results In this study, 2431 hip surgeries were included. The Ridge Classifier performed the best with an AUC = 0.85 
(95% CI, 0.81 to 0.88) and a Brier score = 0.21. Patient-related risk factors included lower preoperative hemoglobin, 
American Society of Anesthesiologists (ASA) Physical Status > 2, anemia, lower preoperative fibrinogen, and lower 
preoperative albumin. Surgery-related risk factors included longer operation time, total hip arthroplasty, and 
autotransfusion.

Conclusions The machine learning model developed in this study achieved high predictive performance using 
available variables for perioperative blood transfusion in hip surgery. The predictors identified could be helpful for risk 
stratification, preoperative optimization, and outcomes improvement.

Keywords Perioperative blood transfusion, Prediction models, Machine learning, Hip surgery, Risk stratification

Development of machine learning models 
to predict perioperative blood transfusion 
in hip surgery
Han Zang1, Ai Hu1, Xuanqi Xu2,3, He Ren4 and Li Xu1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02555-7&domain=pdf&date_stamp=2024-6-1


Page 2 of 12Zang et al. BMC Medical Informatics and Decision Making          (2024) 24:158 

Background
Hip surgery has been considered as an effective way 
for patients with hip diseases to relieve pain, improve 
function and enhance the quality of life. As the geriat-
ric population grows, there has been an increase in the 
prevalence of degenerative arthritis and hip fracture. The 
demand for primary total hip arthroplasty is expected to 
increase to 572,000 procedures by 2030 and the demand 
for hip revision surgeries is estimated to double by 2026 
in the United States [1]. Perioperative blood loss is com-
mon in surgical procedures, particularly in orthopedic 
cases [2]. Previous findings have shown that hip replace-
ment was the most common procedure associated with 
blood product transfusion [3, 4]. Some recent studies 
have revealed the correlation between blood product 
transfusion and adverse outcomes such as postoperative 
infection, disease transmission, prolonged duration of 
hospitalization, and increased morbidity [5–11].

Previous transfusion strategies that rely on clinical 
experience are widely used in hip surgery, which often 
lead to the overuse of blood products and unnecessary 
healthcare costs. Optimizing the assessment and man-
agement of blood transfusion has become an urgent 
medical problem. The new guidelines and strategies for 
perioperative blood transfusion management continue 
to develop, however, it has remained a challenge for sur-
geons and anesthesiologists [12, 13]. Although lower pre-
operative hemoglobin or anemia have been recognized as 
major predictors, the requirement for transfusion is still 
not predicted accurately [14–16].

Given the rapid development of artificial intelligence, 
machine learning has also expanded in medicine, such 
as clinical prediction [17–21]. Machine learning refers to 
algorithms that learn to perform tasks from data, explore 
combinations, and predict outcomes [22]. It has a better 
performance in handling enormous data with complex 
and nonlinear relationships than statistical methods [23]. 
Recently, there are several studies conducted to predict 
blood transfusion in craniofacial surgery, liver transplan-
tation surgery, and orthopedic surgery by developing 
predictive models based on machine learning [24–26]. 
The above studies generally agree that machine learn-
ing algorithms have advantages in predicting the risk of 
blood transfusion.

To date, few studies have existed that evaluate the 
application of machine learning prediction models in hip 
surgery. Our study aimed to develop machine learning 
models and identify risk factors for perioperative blood 
transfusion in hip surgery.

Methods
Patients
This retrospective cohort study has been approved by the 
Institutional Review Board of the Peking Union Medical 

College Hospital (Ethics Approval Number: S-K1757) 
and informed consent was waived because of retrospec-
tive analysis. The study was conducted following the 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) 
[27]. The subjects were patients undergoing hip surgery, 
from January 2013 to October 2021 in the Peking Union 
Medical College Hospital. In total, 2431 hip surgeries 
were included in this study. The flowchart with inclusion 
and exclusion details was displayed (Fig. 1).

Data collection
All variables were selected based on previous studies, 
clinical experience, and data availability through system 
extraction and manual collection. Data were sourced 
from the electronic medical record system, the anesthe-
sia information system, the clinical data repository, and 
the transfusion medicine system including demographic 
characteristics, preoperative laboratory tests, and surgi-
cal information (Table  1). Patient demographic charac-
teristics included age, body mass index (BMI), sex, ASA 
Physical Status, hypertension, diabetes, coronary heart 
disease, anemia, and medications. ASA Physical Sta-
tus was assessed by an anesthesiologist before surgery. 
Anemia was defined for men and women: preoperative 
hemoglobin < 120 and < 110  g/L, respectively. Medi-
cations included anticoagulant or antiplatelet history 
defined as receiving heparin, warfarin, factor Xa inhibi-
tor, aspirin, or platelet P2Y12 receptor blocker within one 
week before surgery. Preoperative laboratory tests rep-
resented the most recent values before surgery includ-
ing preoperative hemoglobin, platelet, activated partial 
thromboplastin time (APTT), prothrombin time (PT), 
D-dimer, fibrinogen, alanine aminotransferase (ALT), 
total bilirubin, direct bilirubin, albumin, creatinine, and 
urea. Surgical information included anesthesia approach, 
diagnosis, emergency or elective surgery, surgery type, 
autotransfusion, tranexamic acid use, and operation time. 
Autotransfusion represented intraoperative cell salvage. 
Osteoarthritis included primary osteoarthritis and sec-
ondary osteoarthritis. The primary outcome was periop-
erative RBC transfusion that referred to allogeneic RBC 
transfusion intraoperatively or within 72  h postopera-
tively. In accordance with the restrictive strategy recom-
mended in guidelines, the transfusion threshold in our 
institution are: (1) hemoglobin concentration < 80 g/L; (2) 
hemoglobin concentration < 100  g/L for those with pre-
existing cardiovascular disease or obvious clinical symp-
toms [28].

Data preprocessing
Patients with missing data were eliminated. Missing data 
were defined as any unknown details for demographic 
characteristics, preoperative laboratory tests, surgical 



Page 3 of 12Zang et al. BMC Medical Informatics and Decision Making          (2024) 24:158 

information, or perioperative blood transfusion. Stan-
dardization was performed using the StandardScaler in 
the continuous variables. Categorical variables were con-
verted to 0 and 1 as input for machine learning models.

Model training
The first 70% of the data were divided for model train-
ing and the latter 30% were divided for model testing 
based on the time of surgery. The training set was used to 
construct models, and the testing set was used to evalu-
ate model performances. A univariate analysis was per-
formed in the training set. Only those positive variables 
that were with a P value < 0.05 were considered in the 
prediction models. Fourteen machine learning models 
were developed using preoperative variables to predict 
perioperative blood transfusion, including logistic regres-
sion, Ridge Classifier, Random Forest Classifier, Gradi-
ent Boosting Classifier, CatBoost Classifier, Ada Boost 
Classifier, Naive Bayes, SVM-Linear Kernel, Extra Trees 
Classifier, Light Gradient Boosting Machine, Linear Dis-
criminant Analysis, K Neighbors Classifier, Extreme Gra-
dient Boosting, and Decision Tree Classifier.

For the logistic regression analysis, the step-forward 
selection was used to identify the most important vari-
ables for predicting the outcome. The goal of step-
forward selection is to iteratively add variables to the 

model, starting from an empty model, based on their 
performances in improving the model’s fit. For machine 
learning models, all models were developed with hyper-
parameter tuning through tenfold cross-validation on the 
training set to optimize performances.

Model evaluation and explanation
After training in the training set, all the models were 
evaluated in the testing set. Model performance was 
compared using metrics of discrimination and calibra-
tion. Discrimination was assessed by the area under the 
receiver operating characteristic curve (AUC). Addition-
ally, the accuracy, recall, precision, and F1 score of mod-
els were also assessed. Calibration was measured by the 
Brier score [29]. The best-performing machine learn-
ing model was decided based on the combination of the 
highest AUC and the lowest Brier score. Decision curve 
analysis was developed to evaluate the clinical utility of 
the best-performing model by calculating the net benefit 
at different threshold probabilities [30].

We used the SHAP values to perform global variables 
importance analysis, which has been widely used for 
machine learning model interpretation [31]. The inter-
pretation was based on the SHAP value of each variable, 
indicating the impact of variables on the prediction. The 
SHAP summary plot provided the associations between 

Fig. 1 The flowchart of the study
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variables and model predictions. We could visualize the 
relative contribution of each variable and understand 
how they affected the model output. The contribution of 
variables was quantified by SHAP values and displayed 
from high to low values. A positive SHAP value was asso-
ciated with higher risk of transfusion and a negative one 
was related to decreased risk of transfusion.

Statistical analysis
All analyses were performed through Python 3.7 with 
sklearn, pycaret, statsmodels, numpy, pandas, seaborn, 
matplotlib, and shap packages. Continuous variables 
were described as median with interquartile range and 
compared by the Mann-Whitney U test. Categorical vari-
ables were represented as frequency with percentage and 
compared by the chi-square test. A value of P < 0.05 was 
considered significant.

Results
Patient characteristics
Overall, a total of 2431 hip surgeries were enrolled for 
analysis (Table  1). 614 (25.3%) hip surgeries received 
perioperative blood transfusion, including 303 (12.5%) 
hip surgeries received intraoperative blood transfu-
sion, and 224 (9.2%) hip surgeries received blood trans-
fusion within 72 h after surgery. 87 (3.6%) hip surgeries 
received intraoperative and postoperative blood transfu-
sion within 72 h after surgery. The average intraoperative 
blood loss was 1044.7 ± 705.1  ml. All data was divided 
into training (n = 1701) and test (n = 730) sets. Periop-
erative blood transfusion was observed in 458 (26.9%) 
hip surgeries of the training set and 156 (21.4%) hip 
surgeries of the testing set. The average intraoperative 
blood loss was 1114.1 ± 737.6  ml in the training set and 
882.9 ± 592.5 ml in the testing set.

Univariate analysis
In the univariate analysis of the training set, the transfu-
sion group and non-transfusion group differed in BMI, 
ASA Physical Status > 2, anemia, femoral head necrosis, 
developmental dysplasia of the hip, osteoarthritis, rheu-
matoid arthritis, hemophilic arthritis, ankylosing spon-
dylitis, osteoporosis, hip stiffness, total hip arthroplasty, 
artificial femoral head replacement, revision surgery, 
debridement, autotransfusion, operation time, hemoglo-
bin, PT, APTT, D-dimer, fibrinogen, ALT, total bilirubin, 
albumin and creatinine (Table 2).

Multivariate logistic regression analysis
Multivariate logistic regression analysis demonstrated 
that the following variables were independent risk fac-
tors for perioperative blood transfusion: ASA Physical 
Status > 2 (OR, 1.91; 95%CI, 1.32 to 2.77), autotransfusion 
(OR, 1.45; 95%CI, 1.02 to 2.06) and longer operation time 

Table 1 Patient characteristics of all the data
Variables Hip surgery (n = 2431)
Demographic characteristics
Age (years) 57 (43, 67)
BMI (kg/m2) 24.0 (21.5, 26.6)
Sex (female, %) 1376 (56.6)
ASA Physical status > 2 (%) 372 (15.3)
Hypertension (%) 765 (31.5)
Diabetes (%) 242 (10.0)
Coronary heart disease (%) 145 (6.0)
Anemia (%) 345 (14.2)
Anticoagulant history (%) 389 (16.0)
Antiplatelet history (%) 30 (1.2)
Surgical information
General anesthesia (%) 2246 (92.4)
Femoral head necrosis (%) 1040 (42.8)
Hip fracture (%) 394 (16.2)
Developmental dysplasia of the hip (%) 303 (12.5)
Osteoarthritis (%) 929 (38.2)
Rheumatoid arthritis (%) 109 (4.5)
Hemophilic arthritis (%) 36 (1.5)
Ankylosing spondylitis (%) 125 (5.1)
Bone tumor (%) 59 (2.4)
Osteoporosis (%) 636 (26.2)
Hip stiffness (%) 45 (1.9)
Systemic lupus erythematosus (%) 170 (7.0)
Sjogren syndrome (%) 36 (1.5)
Emergency surgery (%) 128 (5.3)
Total hip arthroplasty (%) 2010 (82.7)
Artificial femoral head replacement (%) 209 (8.6)
Revision surgery (%) 71 (2.9)
Debridement (%) 35 (1.4)
Lesion excision (%) 39 (1.6)
Autotransfusion (%) 386 (15.9)
Tranexamic acid use (%) 2082 (85.6)
Operation time (min) 112.0 (86.0, 168.0)
Preoperative laboratory tests
Hemoglobin (g/L) 131(119, 143)
Platelet (109/L) 223 (183, 266)
APTT (s) 27.5 (25.5, 30.1)
PT (s) 11.8 (11.3, 12.3)
D-dimer (mg/L FEU) 0.5 (0.3, 1.3)
Fibrinogen (g/L) 3.1 (2.6, 3.8)
ALT (U/L) 17 (12, 25)
Total bilirubin (µmol/L) 10.0 (7.7, 13.3)
Direct bilirubin (µmol/L) 3.1 (2.4, 4.1)
Albumin (g/L) 40 (37, 43)
Creatinine (µmol/L) 64 (55, 76)
Urea (mmol/L) 5.1 (4.2, 6.3)
Continuous variables were shown by median (interquartile range) and 
categorical variables were shown by frequency (percentage). Abbreviations: 
BMI, body mass index; ASA, American Society of Anesthesiologists; APTT, 
activated partial thromboplastin time; PT, prothrombin time; ALT, alanine 
aminotransferase; min, minutes



Page 5 of 12Zang et al. BMC Medical Informatics and Decision Making          (2024) 24:158 

Table 2 Univariate analysis of variables in the training set
Variables Transfusion

(n = 458)
No-transfusion
(n = 1243)

P value

Demographic characteristics
Age (years) 58 (43, 69) 57 (44, 67) 0.631
BMI (kg/m2) 23.7 (20.8, 26.5) 24.2 (21.7, 26.7) 0.009*
Sex (female, %) 274 (59.8) 681 (54.8) 0.063
ASA Physical status > 2 (%) 100 (21.8) 147 (11.8) < 0.001*
Hypertension (%) 150 (32.8) 400 (32.2) 0.823
Diabetes (%) 50 (10.9) 123 (9.9) 0.536
Coronary heart disease (%) 34 (7.4) 69 (5.6) 0.151
Anemia (%) 123 (26.9) 109 (8.8) < 0.001*
Anticoagulant history (%) 85 (18.6) 191 (15.4) 0.113
Antiplatelet history (%) 7 (1.5) 14 (1.1) 0.505
Surgical information
General anesthesia (%) 419 (91.5) 1146 (92.2) 0.631
Femoral head necrosis (%) 137 (29.9) 551 (44.3) < 0.001*
Hip fracture (%) 85 (18.6) 196 (15.8) 0.169
Developmental dysplasia of the hip (%) 48 (10.5) 176 (14.2) 0.047*
Osteoarthritis (%) 124 (27.1) 513 (41.3) < 0.001*
Rheumatoid arthritis (%) 31 (6.8) 48 (3.9) 0.012*
Hemophilic arthritis (%) 13 (2.8) 17 (1.4) 0.041*
Ankylosing spondylitis (%) 43 (9.4) 45 (3.6) < 0.001*
Bone tumor (%) 12 (2.6) 33 (2.7) 0.968
Osteoporosis (%) 136 (29.7) 285 (22.9) < 0.004*
Hip stiffness (%) 17 (3.7) 11 (0.9) < 0.001*
Sjogren syndrome (%) 9 (2.0) 16 (1.3) 0.303
Systemic lupus erythematosus (%) 25 (5.5) 80 (6.4) 0.457
Emergency surgery (%) 25 (5.5) 54 (4.3) 0.333
Total hip arthroplasty (%) 338 (73.8) 1057 (85.0) < 0.001*
Artificial femoral head replacement (%) 50 (10.9) 97 (7.8) 0.043*
Revision surgery (%) 27 (5.9) 27 (2.2) < 0.001*
Debridement (%) 19 (4.2) 12 (1.0) < 0.001*
Lesion excision (%) 10 (2.2) 23 (1.9) 0.659
Autotransfusion (%) 135 (29.5) 158 (12.7) < 0.001*
Tranexamic acid use (%) 402 (87.8) 1073 (86.3) 0.435
Operation time (min) 174.8 (111.7, 234.7) 105.5 (84.0, 141.4) < 0.001*
Preoperative laboratory tests
Hemoglobin (g/L) 123 (110, 135) 134 (124, 145) < 0.001*
Platelet (109/L) 216.5 (173, 271) 224 (186.5, 267.5) 0.080
APTT (s) 28.7 (26.0, 32.6) 27.7 (25.6, 30.5) < 0.001*
PT (s) 12.0 (11.4, 12.6) 11.8 (11.3, 12.3) < 0.001*
D-dimer (mg/L FEU) 0.8 (0.4, 2.0) 0.5 (0.3, 1.1) < 0.001*
Fibrinogen (g/L) 3.3 (2.7, 4.0) 3.1 (2.6, 3.7) < 0.001*
ALT (U/L) 16 (12, 24) 17 (12, 26) 0.013*
Total bilirubin (µmol/L) 9.3 (7.3, 12.7) 10.3 (7.9, 13.5) < 0.001*
Direct bilirubin (µmol/L) 3.1 (2.4, 4.3) 3.2 (2.4, 4.2) 0.635
Albumin (g/L) 39 (36, 42) 41 (38, 43) < 0.001*
Creatinine (µmol/L) 64 (54, 75) 65 (56, 76) 0.022*
Urea (mmol/L) 5.1 (4.2, 6.5) 5.0 (4.2, 6.2) 0.131
*Variables with a P value < 0.05 were included in the predictive models. Continuous variables were shown by median (interquartile range) and categorical variables 
were shown by frequency (percentage). Abbreviations: BMI, body mass index; ASA, American Society of Anesthesiologists; APTT, activated partial thromboplastin 
time; PT, prothrombin time; ALT, alanine aminotransferase; min, minutes
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(OR, 1.02; 95%CI, 1.01 to 1.02) (Table  3). Femoral head 
necrosis (OR, 0.55; 95%CI, 0.41 to 0.74), osteoarthritis 
(OR, 0.59; 95%CI, 0.43 to 0.80), and higher preoperative 
hemoglobin (OR, 0.95; 95%CI, 0.94 to 0.96) were associ-
ated with decreased transfusion risk (Table 3).

Performance of machine learning models
The testing set of 730 hip surgeries was used to evaluate 
the predictive abilities of machine learning models. The 
Ridge Classifier demonstrated the best performance with 
the highest AUC of 0.85 (95% CI, 0.81 to 0.88) and the 
lowest Brier score of 0.21. The receiver operating charac-
teristic curve, the precision-recall curve, and the calibra-
tion curve of the Ridge Classifier in the testing set were 
displayed in Fig.  2a and b, and Fig.  3a. The comparison 
of accuracy, recall, precision, F1 score, and Brier score 

among all models was also shown in Table  4. The deci-
sion curve analysis in the testing set suggested the Ridge 
Classifier achieved good net benefit for the prediction of 
perioperative blood transfusion (Fig. 3b).

Further model interpretation was implemented using 
the SHAP values for the Ridge Classifier. For the global 
variable importance analysis, the SHAP summary plot 
showed the top 10 most relevant variables (Figs.  4 and 
5). Operation time and preoperative hemoglobin had the 
greatest average effect on the model prediction. Femoral 
head necrosis, ASA Physical Status > 2, osteoarthritis, 
total hip arthroplasty, anemia, autotransfusion, preopera-
tive fibrinogen, and preoperative albumin had the lower 
average effect. We found that patients with longer opera-
tion time, lower preoperative hemoglobin, ASA Physical 
Status > 2, total hip arthroplasty, anemia, autotransfu-
sion, lower preoperative fibrinogen, and lower preopera-
tive albumin were significantly associated with increased 
transfusion risk.

Discussion
To optimize the utilization of blood products, improve 
outcomes and reduce healthcare costs, it is necessary to 
highlight the importance of preoperative evaluation and 
prediction for perioperative blood transfusion. Recent 
advancements in artificial intelligence are changing 
perioperative medicine for risk stratification, intraop-
erative monitoring, and intensive care management [32]. 
Machine learning has been regarded as a useful tool to 
process enormous data and accelerate the development 
of clinical prediction. To our knowledge, it is the first 
study to develop and test machine learning models to 
predict perioperative blood transfusion in hip surgery.

Although the calibration performances of models 
were below expectation, most algorithms showed good 

Table 3 Multivariable logistic regression analysis of variables in 
the training set
Variables OR (95% CI) P value
ASA Physical status > 2 1.91 (1.32–2.77) 0.001
Anemia 1.02 (0.65–1.62) 0.918
Femoral head necrosis 0.55 (0.41–0.74) < 0.001
Osteoarthritis 0.59 (0.43–0.80) 0.001
Ankylosing spondylitis 1.40 (0.78–2.53) 0.261
Total hip arthroplasty 1.37 (0.92–2.03) 0.123
Debridement 1.40 (0.57–3.43) 0.460
Autotransfusion 1.45 (1.02–2.06) 0.036
Operation time 1.02 (1.01–1.02) < 0.001
Hemoglobin 0.95 (0.94–0.96) < 0.001
PT 1.06 (0.94–1.19) 0.361
D-dimer 1.01 (0.99–1.03) 0.376
Fibrinogen 0.91 (0.79–1.06) 0.226
Albumin 0.98 (0.94–1.02) 0.259
Abbreviations: OR, odds ratio; CI, confidence interval; ASA, American Society of 
Anesthesiologists; PT, prothrombin time

Fig. 2 a The receiver operating characteristic curve of the Ridge Classifier in the testing set. b The precision-recall curve of the Ridge Classifier in the 
testing set
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discrimination (AUC > 0.8) [29]. The Ridge Classifier had 
the best comprehensive performance and provided good 
net benefit for predicting perioperative blood transfu-
sion. Unlike most previous studies, we focused on peri-
operative blood transfusion rather than intraoperative or 
postoperative transfusion, which decreased complexity 
and inconvenience of routine practice [33, 34]. More-
over, existing prediction tools have typically specialized 
in modeling a limited subset of surgeries or population 
and did not incorporate diagnoses to develop models 
[16, 26]. Our goal was to provide prediction models with 
generalizable application across a variety of procedures 
and diagnoses in hip surgery. Therefore, the performance 
might be not good as models for a single set of surgeries. 
Additionally, the model performances were assessed and 
compared by discrimination and calibration, accompany-
ing with the accuracy, recall, precision, and F1 score of 
models, which greatly improved the reliability of results. 
Furthermore, although some studies have identified the 

risk factors of blood transfusion, the contribution of fea-
tures to the transfusion risk was not characterized [16, 
35]. This study extended interpretable visualization tech-
niques to assist practitioners in early identification of 
important factors and potential interventions.

The variables utilized in the models were comprehen-
sive and accessible in the hospital database. We com-
bined patient demographic characteristics, preoperative 
laboratory tests, and surgical information to predict the 
likelihood of perioperative blood transfusion. Compared 
to previous studies, we included a large number of sur-
gery-related variables to explore the association between 
them and the risk of perioperative blood transfusion. 
Consistent with previous studies, the machine learning 
algorithms outperformed logistic regression in our study 
and identify more risk factors [16, 36]. Machine learning 
models could extract information from large amounts of 
data and multiple variables, capture complex no-linear 
relationships and provide new hypotheses for clinical 

Table 4 Discrimination and calibration metrics of machine learning models in the testing set
Models AUC (95%CI) Accuracy Recall Precision F1 Brier
Ridge Classifier 0.85 (0.81–0.88) 0.79 0.78 0.50 0.61 0.21
Extra Trees Classifier 0.85 (0.81–0.87) 0.75 0.87 0.45 0.59 0.25
Ada Boost Classifier 0.85 (0.81–0.87) 0.75 0.81 0.45 0.58 0.25
Linear Discriminant Analysis 0.84 (0.80–0.87) 0.80 0.78 0.51 0.62 0.20
Logistic Regression 0.84 (0.80–0.88) 0.78 0.79 0.48 0.60 0.22
Random Forest Classifier 0.84 (0.80–0.86) 0.75 0.81 0.45 0.58 0.25
CatBoost Classifier 0.82 (0.78–0.86) 0.82 0.67 0.56 0.61 0.18
SVM - Linear Kernel 0.82 (0.78–0.87) 0.78 0.79 0.50 0.61 0.22
Light Gradient Boosting Machine 0.82 (0.78–0.85) 0.71 0.82 0.41 0.55 0.29
Extreme Gradient Boosting 0.81 (0.77–0.84) 0.77 0.69 0.48 0.56 0.23
Gradient Boosting Classifier 0.80 (0.75–0.83) 0.77 0.70 0.47 0.56 0.23
Naive Bayes 0.79 (0.72–0.83) 0.74 0.71 0.43 0.54 0.26
Decision Tree Classifier 0.71 (0.66–0.75) 0.78 0.29 0.46 0.36 0.22
K Neighbors Classifier 0.71 (0.62–0.76) 0.75 0.38 0.42 0.40 0.25

Fig. 3 a The calibration curve of the Ridge Classifier in the testing set. b The decision curve analysis of the Ridge Classifier in the testing set
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diagnosis and treatment. By exploring these relevant risk 
factors for perioperative blood transfusion in hip surgery, 
our findings could assist surgeons to identify high-risk 
patients and contribute to decision-making, including 
preoperative optimization, intraoperative monitoring 
tools, and postoperative management.

One of the strengths of our study was the visualization 
of machine learning model interpretation. Many machine 
learning algorithms produce models without providing 
the correlation between variables and outcomes. Under-
standing how machine learning models make predictions 
contributes to overcoming the drawback of the “black 
box” models and improving trust in machine learning for 
physicians [37, 38]. The risk factors screened by the Ridge 
classifier were consistent with clinical practice and previ-
ous literature. In agreement with previous studies, lower 
preoperative hemoglobin and higher ASA Physical Status 
have been regarded as important risk factors for transfu-
sion in this study [16, 39, 40]. Additionally, anemia was a 
strong factor that increased the risk of transfusion. The 
prevalence of anemia in our cohort could reach 14.2%. 

Studies have shown that preoperative anemia was related 
to increased risk of blood transfusion [14, 41]. Evidence 
from a previous study demonstrated that the treatment 
of preoperative anemia was associated with decreased 
perioperative blood transfusion in patients undergoing 
elective orthopedic and gynecologic surgery [42]. Lower 
preoperative albumin has been identified as a risk factor 
for blood transfusion [43, 44]. The serum albumin level 
was a widely used marker of malnutrition, which has 
been demonstrated to be associated with postoperative 
complications and mortality following orthopedic pro-
cedures [45, 46]. Patients with lower albumin were more 
likely to be frail and in poor health status, which may 
increase transfusion requirements. As modifiable preop-
erative risk factors, patients may benefit from preopera-
tive interventions to correct anemia and lower albumin 
level to avoid unnecessary blood transfusion. Preopera-
tive fibrinogen was an important indicator of coagulation 
function. We found that lower preoperative fibrinogen 
was associated with increased transfusion risk, which has 
been examined in spine surgery [47].

Fig. 4 Summary plot for the importance analysis of the top 10 variables in the Ridge Classifier. Each variable was made up of individual dots, each of 
which was the SHAP value of a sample. Variables with wide distribution indicated strong contribution to model predictions. For continuous variables, red 
color represented high values and blue represented low values of variables. For categorical variables, the red color represented the presence of variables 
and the blue color represented the absence of variables. A positive SHAP value (SHAP value greater than 0) was associated with increased transfusion risk 
and a negative one (SHAP value less than 0) was related to decreased transfusion risk. Abbreviations: ASA, American Society of Anesthesiologists
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As for surgery-specific variables, it was well-accepted 
that patients with longer operation time were at signifi-
cantly increased risk of blood transfusion. Our study was 
consistent with past findings [16, 39]. Moreover, our data 
showed that the correlation between diagnosis and blood 
transfusion risk was important, which has been reported 
in previous studies. A study suggested that hidden blood 
loss after total hip arthroplasty significantly differed in 
patients with different diagnoses [48]. They found that 
blood loss in patients with nonunion of femoral neck 
fracture was increased in comparison with patients with 
osteoarthritis, avascular necrosis of the femoral head, 
and developmental dysplasia of the hip. Evidence from a 
previous study showed that patients who had ankylosing 
spondylitis with total bony ankylosis of the hips suffered 
more blood loss and blood transfusion than patients 
with hip osteoarthritis [49]. Another study reported that 
patients with rheumatoid arthritis appeared to have a 
significantly higher incidence of preoperative anemia 
and blood transfusion than osteoarthritis patients [50]. 
However, the types of ankylosing spondylitis and femo-
ral neck fracture were not distinguished in our study. A 
possible reason for patients with femoral neck necrosis 
and osteoarthritis having the low transfusion rate may 
be because of the low difficulty and short duration of 

surgical procedures. Additionally, patients with osteo-
arthritis and femoral head necrosis were relatively com-
mon in our cohort. Surgeons were more experienced in 
surgical procedures, which may lead to less intraopera-
tive blood loss. This may be another underlying reason 
for the results. Furthermore, it was necessary to note 
that machine learning algorithms could provide the cor-
relation between variables and outcomes, but could not 
prove the causality. More investigations in large popu-
lations are needed to explore the relationship between 
diagnosis and blood transfusion risk. In terms of surgery 
types, total hip arthroplasty was regarded as a signifi-
cant risk factor for blood transfusion. As a common and 
effective way for patients with hip disease to relieve pain 
and improve function, the demand for total hip arthro-
plasty has been rising in recent years [1]. Consistent with 
previous findings, the data from our study showed that 
patients with total hip arthroplasty were at the high risk 
of perioperative blood transfusion [3, 4]. These surgery-
related risk factors should be also considered when pre-
paring preoperative plans. Although some of them were 
not modifiable, effective interventions and strategies 
should be taken to reduce perioperative blood transfu-
sion and avoid unnecessary health costs.

Fig. 5 Summary plot for global average impact of the top 10 variables in the Ridge Classifier. It was shown using the average absolute value of all SHAP 
values of each variable. Abbreviations: ASA, American Society of Anesthesiologists
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Recently, some attempts have been adopted to reduce 
blood transfusion in orthopedic surgery, such as the use 
of tranexamic acid and autotransfusion. Although several 
studies demonstrated the association between the use of 
tranexamic acid and decreased blood transfusion in hip 
arthroplasty, we did not find any significant difference 
in our cohort of hip surgery [51, 52]. The reason for this 
may be that tranexamic acid has been widely used in our 
institution and the population not using tranexamic acid 
was too small to detect the difference in the transfusion 
rates. Previous findings suggested that intraoperative 
autotransfusion was associated with reduced blood loss 
and transfusion [53, 54]. However, autotransfusion has 
been regarded as a risk factor for blood transfusion in our 
cohort, which may be attributed to the limited samples of 
autotransfusion in our cohort. Patients selected for auto-
transfusion were usually the ones who potentially would 
be at high risk of blood loss and they were more likely to 
receive perioperative blood transfusion. Although auto-
transfusion was applied in these patients, it could not 
decrease the need for allogeneic blood transfusion. For 
these patients, in addition to autotransfusion, other pre-
operative interventions should be taken to minimize allo-
genic blood transfusion.

There were several limitations in our study. First, this 
study was based on a single institution and lacked exter-
nal validation. Second, there were some possible bias due 
to the retrospective nature of this study. Third, patients 
with missing data were eliminated, which may constrain 
the results of the analysis. Fourth, as for comorbidities, 
only hypertension, diabetes, and coronary artery disease 
were included, limiting further exploration of comor-
bidities on perioperative blood transfusion. Fifth, the 
period of data was relatively large and there may be some 
unknown time-related effects. Finally, it is necessary to 
acknowledge that the odds of transfusion could not be 
represented based on present analysis, which is the com-
mon limitation in the studies of prediction models [16, 
33, 34].

Conclusions
We developed and tested machine learning models with 
excellent discriminative ability to predict periopera-
tive blood transfusion in hip surgery, which may allow 
surgeons to support decision-making, improve clinical 
outcomes and reduce healthcare costs. Identification of 
risk factors provides opportunities for accurate evalu-
ations and prompt interventions. Further studies are 
still needed to validate the models in large cohorts and 
expand clinical implementation.
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