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Abstract 

Lung cancer remains a leading cause of cancer-related mortality globally, with prognosis significantly dependent 
on early-stage detection. Traditional diagnostic methods, though effective, often face challenges regarding accu-
racy, early detection, and scalability, being invasive, time-consuming, and prone to ambiguous interpretations. This 
study proposes an advanced machine learning model designed to enhance lung cancer stage classification using 
CT scan images, aiming to overcome these limitations by offering a faster, non-invasive, and reliable diagnostic tool. 
Utilizing the IQ-OTHNCCD lung cancer dataset, comprising CT scans from various stages of lung cancer and healthy 
individuals, we performed extensive preprocessing including resizing, normalization, and Gaussian blurring. A Con-
volutional Neural Network (CNN) was then trained on this preprocessed data, and class imbalance was addressed 
using Synthetic Minority Over-sampling Technique (SMOTE). The model’s performance was evaluated through metrics 
such as accuracy, precision, recall, F1-score, and ROC curve analysis. The results demonstrated a classification accu-
racy of 99.64%, with precision, recall, and F1-score values exceeding 98% across all categories. SMOTE significantly 
enhanced the model’s ability to classify underrepresented classes, contributing to the robustness of the diagnostic 
tool. These findings underscore the potential of machine learning in transforming lung cancer diagnostics, providing 
high accuracy in stage classification, which could facilitate early detection and tailored treatment strategies, ultimately 
improving patient outcomes.
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Introduction
Lung cancer stands as a formidable global health chal-
lenge, consistently ranking as one of the leading causes of 
cancer-related mortality worldwide. It is characterized by 
the uncontrolled growth of abnormal cells in one or both 
lungs, typically in the cells lining the air passages. Unlike 
normal cells, these cancerous cells do not develop into 
healthy lung tissue; instead, they divide rapidly and form 
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tumors that disrupt the lung’s primary function: oxygen 
exchange.

The global impact of lung cancer is staggering, with mil-
lions of new cases diagnosed annually. Its high mortality 
rate is primarily due to late-stage detection, where the can-
cer has progressed to an advanced stage or metastasized to 
other body parts, significantly diminishing the effectiveness 
of treatment modalities. Thus, early and accurate diagnosis 
of lung cancer is paramount in improving patient progno-
ses, extending survival rates, and enhancing the quality of 
life for affected individuals.

The primary cause of lung cancer is cigarette smoking, 
which exposes the lungs to carcinogenic substances that 
can damage the cells’ DNA and lead to cancer. Other risk 
factors for lung cancer include exposure to secondhand 
smoke, radon gas, asbestos, air pollution, and a family his-
tory of lung cancer.

Symptoms of lung cancer can vary but may include per-
sistent coughing, chest pain, shortness of breath, hoarse-
ness, coughing up blood, unexplained weight loss, and 
fatigue. However, lung cancer may not cause symptoms 
in its initial stages, which is why early detection through 
screening is crucial for improving outcomes.

Diagnosis of lung cancer typically involves imaging tests 
such as chest X-rays, CT scans, and PET scans to visualize 
the lungs and detect any abnormalities. A biopsy, where a 
small sample of lung tissue is taken and examined under a 
microscope, is usually needed to confirm the diagnosis.

Treatment options for lung cancer depend on several fac-
tors, including the type and stage of the cancer, as well as 
the patient’s overall health and preferences. Treatment may 
include surgery to remove the tumor, chemotherapy, radia-
tion therapy, targeted therapy, immunotherapy, or a combi-
nation of these approaches.

Lung cancer is a critical condition that necessitates 
immediate medical care. Detecting it early, along with 
improvements in treatment methods, has enhanced the 
prognosis for numerous patients. However, the most effec-
tive strategy to avoid lung cancer is to stop smoking and 
minimize contact with additional risk elements. Figure  1 
displays some example images of lung cancer tests.

Current diagnostic techniques for lung cancer involve 
various approaches, such as biopsies, CT scans, chest 
X-rays, PET scans, and MRI, among others [1]. While these 
methods are invaluable in the diagnostic process, they 
come with certain limitations. For instance, biopsies, while 

definitive, are invasive and carry risks of complications. 
Less invasive imaging methods such as X-rays or CT scans 
might produce false positives or negatives, potentially caus-
ing unwarranted stress or delays in treatment.

Moreover, the interpretation of these diagnostic tests 
heavily relies on the expertise of the clinician, introduc-
ing a degree of subjectivity and potential for human error. 
There’s also the challenge of early-stage lung cancer, which 
often presents very subtle changes not always detectable 
with conventional imaging techniques [2].

This context highlights the critical need for advanced 
diagnostic tools capable of overcoming these challenges. 
This study aims to address these issues by developing a 
machine learning model using Convolutional Neural Net-
works (CNNs) to enhance the precision and effectiveness 
of lung cancer stage classification from CT scans. By auto-
mating and refining the diagnostic process, the proposed 
model seeks to mitigate the limitations of traditional meth-
ods, offering a faster, non-invasive, and more reliable diag-
nostic alternative.

The impact of this study is significant: the model’s high 
accuracy in classifying lung cancer stages promises to revo-
lutionize clinical diagnostics, facilitating early detection 
and enabling tailored treatment strategies. This advance-
ment has the potential to improve patient outcomes by 
allowing for timely intervention and more effective man-
agement of lung cancer, ultimately contributing to reduced 
mortality rates and enhanced patient care.

The objective of this research paper is to:

•	 Develop a machine learning model utilizing Convolu-
tional Neural Networks (CNNs) for lung cancer stage 
classification based on CT scans.

•	 Bridge existing diagnostic deficiencies by providing cli-
nicians with a tool for expedited and precise decision-
making in lung cancer management.

•	 Contribute to improved patient outcomes through 
enhanced diagnostic accuracy and early detection 
capabilities.

The paper is organized as follows: Initially, the Literature 
Review explores existing research on lung cancer diag-
nostics, highlighting advancements and limitations, and 
sets the foundation for the proposed methodology. Sub-
sequently, the Materials and methods section describes 
the dataset, preprocessing steps, model architecture, 

Fig. 1  Sample images of lung cancer
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training process, and evaluation metrics in detail. The 
Results section then presents the study’s findings, includ-
ing model performance metrics and comparative analysis 
with existing methods. This is followed by the Discussion, 
which interprets the results, discusses implications for 
clinical practice, addresses limitations, and suggests future 
research directions. Finally, the Conclusion summarizes 
the main findings and their relevance within the broader 
scope of lung cancer diagnostics, supported by a compre-
hensive list of References to provide credit and enable read-
ers to explore the research background further.

Through this structured approach, the paper aims to 
contribute meaningful insights to the field of medical 
imaging and machine learning, offering a novel tool for 
the early and accurate diagnosis of lung cancer.

Literature review
The literature surrounding lung cancer diagnostics 
encompasses various methodologies, ranging from tradi-
tional imaging techniques to more advanced approaches 
such as machine learning. This review aims to explore 
existing research in this area, highlighting both the 
advancements made and the limitations faced, ultimately 
setting the foundation for the proposed machine learn-
ing-based methodology.

Diagnosis of lung cancer using CT scans
The utilization of Computed Tomography (CT) scans 
in lung cancer diagnosis has been a cornerstone in the 
medical field, offering high-resolution images that are 
pivotal for detecting and monitoring various stages of 
lung tumors [3]. Over the years, numerous studies have 
underscored the importance of CT scans in identifying 
nodules that could potentially be malignant, with a par-
ticular focus on low-dose CT scans, which have become 
a standard in screening programs, especially for high-risk 
populations. Such studies underscore the superior sensi-
tivity of CT scans in identifying early-stage lung cancer, a 
significant advancement over other imaging methods like 
chest X-rays, which may overlook smaller, subtler lesions.

Despite the advancements, the interpretation of CT 
scans remains a significant challenge. Radiologists need 
to discern between benign and malignant nodules, an 
endeavor complicated by the presence of various arti-
facts and benign conditions like scars or inflammatory 
diseases, which can mimic the appearance of cancerous 
nodules [4, 5].

Machine learning approaches in lung cancer detection 
and classification
The integration of machine learning, particularly deep 
learning techniques, into the analysis of CT images 
has established a groundbreaking paradigm in the 

identification and classification of lung cancer. Convo-
lutional Neural Networks (CNNs) are spearheading this 
transformation by providing a framework for automated 
extraction and categorization of features directly from 
the images. This advancement marks a substantial stride 
in augmenting the accuracy and effectiveness of lung 
cancer diagnostics, thus facilitating more precise and 
timely interventions.

Binary classification models
Early studies primarily focused on binary classification, 
distinguishing between malignant and non-malignant 
nodules. CNNs, through their layered architecture, have 
demonstrated the ability to learn complex patterns in 
imaging data, surpassing traditional computer vision 
techniques in accuracy and reliability [6, 7].

Multi‑class classification models
Recent advancements have moved towards more 
nuanced multi-class classification models that categorize 
nodules into various cancer stages or types. This granu-
larity is crucial for treatment planning and prognosis, 
offering a more detailed understanding of the disease’s 
progression [8].

Transfer learning
Given the challenges of assembling large annotated 
medical imaging datasets, transfer learning has become 
a popular approach. Models pre-trained on vast, non-
medical image datasets are fine-tuned on smaller medical 
imaging datasets, leveraging learned features to improve 
performance in the medical domain [9].

Data augmentation
To address the issue of restricted training data, strate-
gies such as rotation, scaling, and flipping are commonly 
employed for data augmentation, effectively expanding 
the training dataset artificially. These methods bolster the 
model’s resilience and its ability to generalize from a lim-
ited number of examples [10].

Segmentation models
Deep learning models extend their utility beyond mere 
classification; they are also employed in segmentation 
tasks, delineating the precise boundaries of nodules, 
which is vital for assessing tumor size and growth over 
time. U-Net, a type of CNN, is particularly noted for its 
effectiveness in medical image segmentation [11].

In Table 1 a few of the studies which have been done in 
this field are given.
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Gaps in current research
Despite significant advancements in lung cancer diag-
nostics, several critical gaps remain in the current 
research landscape. Many existing models are trained 
on datasets lacking diversity in demographics, scan-
ner types, and image acquisition parameters, which 
can limit their generalizability across different popula-
tions and clinical settings. This limitation underscores 
the need for more comprehensive and diverse datasets 
to enhance the robustness of diagnostic models. Addi-
tionally, the “black box” nature of deep learning mod-
els poses a challenge for clinical adoption, as there is 
a growing demand for models that not only predict 
accurately but also provide insights into the reason-
ing behind their predictions. This issue of interpret-
ability is crucial for gaining the trust of clinicians and 
integrating these models into clinical workflows effec-
tively. Furthermore, the transition from research to 
clinical practice is slow, with models requiring not just 
technological solutions but also addressing regulatory, 
ethical, and practical considerations to facilitate their 
integration into routine medical care. Another criti-
cal gap is the need for models capable of longitudinal 
analysis, which can analyze changes in lung nodules 
over time, providing a dynamic assessment that aligns 
more closely with clinical needs. Addressing these gaps, 
this study introduces a comprehensive CNN model 
trained on a diverse and extensive dataset, encompass-
ing various stages of lung cancer. The model is designed 
for multi-class classification, offering detailed insights 
critical for personalized treatment strategies. Emphasis 
is placed on the interpretability of the model, aiming to 
provide clinicians with understandable and actionable 
information. By demonstrating the model’s effective-
ness in a clinical setting, this research contributes to 

the ongoing effort to integrate advanced machine learn-
ing techniques into the realm of lung cancer diagnosis 
and treatment.

Addressing these gaps, this study introduces a compre-
hensive CNN model trained on a diverse and extensive 
dataset, encompassing various stages of lung cancer. The 
model is designed for multi-class classification, offer-
ing detailed insights critical for personalized treatment 
strategies. Emphasis is placed on the interpretability of 
the model, aiming to provide clinicians with understand-
able and actionable information. By demonstrating the 
model’s effectiveness in a clinical setting, this research 
contributes to the ongoing effort to integrate advanced 
machine learning techniques into the realm of lung can-
cer diagnosis and treatment.

Materials and methods
This section delineates the comprehensive methodol-
ogy employed to construct and validate a convolutional 
neural network (CNN) model for the classification of 
lung cancer stages using the IQ-OTHNCCD lung cancer 
dataset. The approach encompasses dataset acquisition, 
application of preprocessing methodologies, formulation 
of the model architecture, delineation of training proce-
dures, and determination of evaluation metrics to ensure 
a comprehensive and reliable analysis. The workflow of 
the proposed model is visually depicted in Fig. 2.

Dataset description and preprocessing
The IQ-OTHNCCD lung cancer dataset, integral to 
this study, is painstakingly curated to facilitate the crea-
tion and validation of machine learning models aimed 
at identifying and classifying lung cancer stages. This 
dataset encompasses a vast collection of CT scan images 

Table 1  Related work

Study Objective

Marjolein A. Heuvelmans, et al. (2021) [12] The LCP-CNN demonstrates excellent performance in identifying benign lung nodules in an independent 
European dataset, with a 95% accuracy.

Nguyen Quoc Khanh Le et al. (2021) [13] The machine learning-based model predicts EGFR and KRAS mutations in NSCLC patients with accuracies 
of 83.6% and 86% respectively.

Ying Xie et al. (2024) [14] The proposed method exhibits significant diagnostic strength for early lung cancer detection, achieving 
an accuracy of 96.8%.

Zhang Li et al. (2021) [15] Deep learning methods for lung cancer segmentation achieved an accuracy of 83.98%.

Sanjana Narvekar et al. (2022) [16] Various machine learning techniques including ANN, SVM, CNN, KNN, and NBC achieved an accuracy 
of 97.2%.

Mattakoyya Aharonu et al. (2022) [17] A CNN-based framework achieved an accuracy of 94.11% in lung cancer identification.

B C Kavitha et al. (2022) [18] Neural networks achieved an accuracy of 94% in lung cancer detection.

Jason L. Causey (2022) [19] Combination of Spatial Pyramid Pooling and 3D Convolution achieved an accuracy of 89.2% in lung cancer 
segmentation.

Imran Ahmed et al. (2023) [20] Deep learning architectures reached accuracies ranging from 93–94% in lung cancer detection.
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essential for advancing diagnostic capabilities in the field 
of lung cancer.

This dataset comprises CT scan images, comprising a 
diverse and comprehensive range of cases, covering vari-
ous stages of lung cancer, including benign, malignant, 
and normal cases. This diversity is essential for training 
robust models capable of generalizing well across the 
spectrum of lung cancer manifestations, enabling effec-
tive diagnostic applications. In Table 2 a brief description 
of the dataset has been given.

Based on Table 2, to provide visual insights of the data 
Fig. 3 delves into the same aspects.

Annotating and labeling each image meticulously, 
medical professionals from the Iraq-Oncology Teach-
ing Hospital/National Center for Cancer Diseases have 
ensured the dataset’s reliability. Annotations categorize 
images into one of three classes: benign, malignant, 
or normal. Such granular labeling establishes a solid 

ground truth essential for training and assessing the 
model, enhancing the dataset’s utility in research and 
clinical applications.

Characterized by high quality and consistency, the CT 
scans adhere to standardized imaging protocols, guar-
anteeing reliability and accuracy. However, variations in 
image dimensions necessitate preprocessing to standard-
ize inputs for neural networks. These steps ensure that 
the model processes uniform data, enhancing its perfor-
mance and generalizability across diverse datasets. The 
images of the dataset ratio are checked using Eq. 1.

Preprocessing steps are pivotal in preparing data for 
effective model training, including:

Resizing: Resizing images to a uniform dimension 
ensures consistency in input size for CNNs, optimizing 
model performance.

Normalization: Normalizing pixel values to a scale 
of 0 to 1 expedites model convergence during training, 
facilitating efficient learning. It is achieved using Eq. 2.

Augmentation: Utilizing data augmentation methods 
like rotation, flipping, and scaling improves the model’s 

(1)Dataset Balance Ratio =

Number of SamplesMajority Class

Number of SamplesMinority Class

(2)Pixel Normalization =
Pixel Value

Maximum Pixel Value

Fig. 2  Workflow of the proposed model

Table 2  Dataset description

Type Number of 
Samples

Malignant 561

Benign 120

Normal 416

Total 1097

Fig. 3  Dataset description
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robustness and helps prevent overfitting by effectively 
enlarging the dataset size.

Splitting: Partitioning the dataset into training, valida-
tion, and test sets is crucial for facilitating effective model 
training and evaluation, thereby ensuring the model’s 
ability to generalize and perform accurately on unseen 
data.

In this process, CNN is trained using the preprocessed 
dataset to adeptly extract features from CT scan images 
and accurately classify the stages of lung cancer. The 
dataset’s diversity and quality are pivotal in enabling the 
model to learn nuanced features and patterns associated 
with various lung cancer stages, underscoring its signifi-
cance in advancing diagnostic accuracy and efficiency.

The IQ-OTHNCCD lung cancer dataset serves as the 
cornerstone for developing machine learning models that 
enhance early detection and classification of lung cancer. 
Through meticulous curation and rigorous preprocess-
ing, this dataset showcases the transformative potential 
of AI in healthcare, underscoring its role in improving 
diagnostic accuracy and efficiency.

Image preprocessing
The preprocessing of images stands as a pivotal stage in 
the pipeline of developing a machine learning model, 
especially when handling medical imaging data like the 
IQ-OTHNCCD lung cancer dataset. This procedure 
comprises several crucial steps, each tailored to convert 
the raw CT scan images into a format conducive to effec-
tive analysis by a convolutional neural network (CNN).

Initially, image resizing is conducted. Given the inher-
ent variability in the dimensions of CT scans, it is 
imperative to standardize the size of all images to ensure 
consistent input to the CNN. Resizing is performed while 
preserving the aspect ratio to avoid distortion, typically 
scaling down to a fixed size (e.g., 256 × 256 pixels). This 
uniformity is vital for the neural network to process and 
glean insights from the data effectively, as it necessitates a 
consistent input size [21].

Some pre-processed images to enhance the accessibil-
ity has been provided in Fig. 4.

Following resizing, normalization of pixel values is 
performed. CT scans, by nature, contain a wide range 
of pixel intensities, which can adversely affect the train-
ing process of a CNN due to the varying scales of image 
brightness and contrast. Normalization is a crucial pre-
processing step in image analysis that adjusts the pixel 
values to fall within a specific range, commonly 0 to 1 or 
-1 to 1. This adjustment is typically achieved by dividing 
the pixel values by the maximum possible value, which 
is 255 for 8-bit images. Such a normalization process 
ensures that the model can train faster and more effi-
ciently. This step ensures that the model trains faster and 

more effectively, as small, standardized values facilitate 
quicker convergence during the optimization process.

Gaussian blur is then applied as an additional preproc-
essing step. This technique, which employs a Gaussian 
kernel to smooth the image, is instrumental in reducing 
image noise and mitigating the effects of minor varia-
tions and artifacts in the scans. By doing so, the model’s 
focus is directed toward the salient features relevant to 
lung cancer classification, rather than being distracted by 
irrelevant noise or details. Gaussian blur operates by con-
volving the image with a Gaussian function, effectively 
averaging the pixel values within a specified radius. This 
process smoothens the image, reducing high-frequency 
components and noise, which can otherwise lead to over-
fitting or distraction during the training of the CNN.

In the context of lung cancer CT scans, Gaussian blur 
helps to highlight the important structural elements of 
the lungs and nodules while suppressing irrelevant details 
that could complicate the model’s learning process. By 
smoothing the images, Gaussian blur enhances the mod-
el’s ability to generalize by focusing on the more signifi-
cant, lower-frequency features of the image, such as the 
shape and size of nodules, rather than being confounded 
by small variations or noise. This is particularly beneficial 
in medical imaging, where the presence of noise and arti-
facts can obscure critical diagnostic features.

The application of Gaussian blur can also aid in gen-
eralizing the model, preventing overfitting to the high-
frequency noise present in the training set. It is achieved 
using Eq. 3 and the SMOTE ratio through Eq. 4.

These are the preprocessing steps collectively enhance 
the quality and consistency of the input data, enabling 
the CNN to focus on learning meaningful, discrimina-
tive features from the CT images [22]. By ensuring that 
the images are appropriately resized, normalized, and fil-
tered, the model is better equipped to identify the subtle 
nuances associated with different stages of lung cancer, 
thereby improving its diagnostic accuracy and reliability. 
Through meticulous image preprocessing, the foundation 
is laid for developing a robust machine learning model 
capable of contributing significantly to the field of medi-
cal imaging and diagnostics.

Deep learning model
The model architecture utilized in this study is a Con-
volutional Neural Network (CNN), renowned for its 

(3)Gaussian Blur = Image ∗Gaussian Kernel

(4)SMOTE Ratio =
Number of Synthetic Samples

Number of Real Samples
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effectiveness in various image analysis tasks, notably in 
the domain of medical image processing. In this study, we 
utilized a Convolutional Neural Network (CNN) archi-
tecture, known for its effectiveness in analyzing images, 
particularly in medical contexts like lung cancer diagno-
sis from CT scans. Let’s break down how it works in sim-
pler terms. First, the input layer takes in images resized 
to a standard size of 256 × 256 pixels, in black and white. 
This consistency helps the CNN learn efficiently. Then 

comes the first convolutional layer, where the model 
looks for basic patterns like edges and textures using 
small 3 × 3 filters. After that, a process called max pooling 
reduces the image’s size, focusing on the most important 
features. This step helps the model generalize better and 
ignore noise. We repeat this process with another con-
volutional layer to capture more complex patterns. The 
flattened layer turns the extracted features into a format 
the model can understand. Next, a fully connected layer 

Fig. 4  Pre-processed images
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reasons based on these features, helping with the final 
classification. The output layer then gives probabilities for 
each class (benign, malignant, or normal). Throughout 
training, we used the Adam optimizer to adjust learning 
rates and manage gradients effectively. Additionally, we 
applied a technique called SMOTE to balance our data-
set, ensuring the model learned from all classes equally. 
By carefully designing our CNN architecture and incor-
porating these steps, we aimed to create a model that can 
accurately classify lung cancer stages from CT scans.

•	 Input layer: The input layer accepts images resized to 
256 × 256 pixels, maintaining a single channel (gray-
scale), resulting in an input shape of (256, 256, 1).

•	 First convolutional layer: This layer consists of 64 
filters of size 3 × 3, using a ReLU (Rectified Linear 
Unit) activation function. The choice of 64 filters is 
aimed at capturing a broad array of features from the 
input image, while the 3 × 3 filter size is standard for 
capturing spatial relationships in the image data. The 
equation involved are given in Eqs. 5 and 6.

•	 First max pooling layer: Following the convolutional 
layer, the model incorporates a max pooling layer 
with a 2 × 2 pool size. This layer serves to decrease 
the spatial dimensions of the feature maps, which not 
only helps in reducing the computational load but 
also enhances the model’s generalization capabilities. 
By focusing on the most prominent features, max 
pooling ensures that the model does not overfit to 
the noise in the training data. It is done using Eq. 7.

•	 Second convolutional layer: Another set of 64 filters 
is applied, like the first convolutional layer, to further 
refine the feature extraction. This layer also uses a 
3 × 3 kernel and is followed by a ReLU activation. It is 
achieved using Eqs. 8 and 9.

(5)

Convolution operation : (z[1]i,j,k =
2

l=0

2

m=0

64

n=1

W
[1]

l,m,n,k × a
[0]

i+l,j+m,n + b
[1]

k

(6)
Activation function : (a[1]i,j,k = max

(
0, z

[1]
i,j,k

)
)(ReLU)

(7)

Pooling operation : (a[1]i,j,k = max
l,m

a
[1]
2i+l,2j+m,k)

(8)

Convolution operation : (z[2]i,j,k =
2∑

l=0

2∑

m=0

64∑

n=1

W
[2]

l,m,n,k × a
[1]

i+l,j+m,n + b
[2]

k )

(9)Activation function : (a
[2]

i,j,k = max

(
0, z

[2]

i,j,k

)
)(ReLU)

•	 Second max pooling layer: This layer additionally 
decreases the size of the feature maps, aiding in the 
prevention of overfitting and lessening the computa-
tional burden.

•	 Flattening: The feature maps are flattened into a single 
vector to prepare for the fully connected layers, facili-
tating the transition from convolutional layers to dense 
layers.

•	 Fully connected layer: A dense layer with 16 neurons 
is used, providing a high-level reasoning based on the 
extracted features. This layer utilizes a linear activation 
function to allow for a range of linear responses. The 
equations helping in this are given in Eqs. 10 and 11.

•	 Output layer: The final layer of the model contains 
three neurons, each representing one of the classes: 
benign, malignant, and normal. It uses a SoftMax acti-
vation function, which is selected because it provides a 
probability distribution across these three classes, mak-
ing it . involved are given in Eqs. 12 and 13.

•	 Optimizer: The Adam optimizer is used due to its 
effectiveness in managing sparse gradients and its abil-
ity to adapt learning rates, which enhance the conver-
gence speed during training. The equation involved in 
this is given in Eq. 14.

(10)Operation : (z[3] = W [3] · a[2] + b[3])

(11)
Activation function : (a[3] = z[3])(linear activation)

(12)Operation : (z[4] = W [4] · a[3] + b[4])

(13)

Activation function : (a[4]i =
ez

[4]
i

∑3
j=1e

z
[4]
j

)
(
softmax

)

(14)

Update rule(Adam) : (θt+1 = θt −
η√
v̂t + ǫ

m̂t)

where(θ) represents the parameters
(
weights and biases

)
,

(η)is the learning rate,

(
m̂t

)
is the first moment estimate,

(
v̂t
)
is the second moment estimate,

and (∈) is a small constant to prevent division by zero.
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CNN is chosen for its proven efficacy in image classi-
fication tasks, particularly its ability to learn hierarchical 
patterns in data. In medical imaging, CNNs have dem-
onstrated success in identifying subtle patterns that are 
indicative of various pathologies, making them ideal for 
this application. The sequential model with convolutional 
layers followed by pooling layers allows for the extraction 
and down sampling of features, which is critical for cap-
turing relevant information from medical images.

The Synthetic Minority Over-Sampling Technique 
(SMOTE) represents an innovative strategy devised to 
address the issue of class imbalance within the dataset. 
Class imbalance poses a substantial risk of biasing the 
model’s performance, particularly in medical datasets 
where one class may be underrepresented. SMOTE func-
tions by creating synthetic samples within the feature 
space of the minority class, drawing inspiration from the 
feature space of its nearest neighbors. This process aids in 
rectifying class imbalances and ensuring more equitable 
representation during model training.

Filter mapping of a sample image is shown in Fig.  5 
to make it more sound about the interoperability of the 
model.

In this research:

•	 Application of SMOTE: SMOTE is applied only to 
the training data to prevent information leakage and 
to promote robust generalization on unseen data. 
It balances the dataset by augmenting the minority 
classes, ensuring that the model does not become 
biased toward the majority class.

•	 Impact on model performance: By addressing the 
class imbalance, SMOTE helps in improving the 
model’s sensitivity towards the minority class, which 
is crucial in medical diagnostics, as overlooking a 
positive case can have serious implications.

•	 Considerations: While SMOTE can significantly 
improve model performance in cases of class imbal-
ance, it’s essential to monitor for overfitting, as the 
synthetic samples may cause the model to overgener-
alize from the minority class.

Fig. 5  Filter map
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The algorithm for the proposed model is presented in 
Algorithm 1.

Algorithm 1: Proposed algorithm for the methodology

As per the algorithm in the initial convolutional lay-
ers of the model, two sets of convolutional layers fol-
lowed by max-pooling layers play a pivotal role in feature 
detection. Utilizing a standard 3 × 3 kernel size allows 
the model to discern small, localized features within 
CT scan images. By stacking these convolutional lay-
ers before applying max pooling, the model effectively 
captures intricate patterns such as edges, textures, and 
shapes, crucial for distinguishing between benign, malig-
nant, and normal lung tissue. The ReLU activation func-
tion is employed in these convolutional layers due to its 
effectiveness in introducing non-linearity, enabling the 
model to learn complex patterns efficiently. Additionally, 
max pooling is utilized to downsample the feature maps, 

reducing computational load and enhancing robust-
ness to image variations, thereby improving translational 

invariance. Following feature extraction, the model flat-
tens the output and transitions to dense layers, condens-
ing learned information into abstract representations. 
The final layer consists of three neurons, representing 
the three classes under consideration, employing the 
SoftMax activation function to transform logits into 
probabilities, thereby providing insights into the model’s 
confidence regarding each class. Throughout the com-
pilation and training phases, the Adam optimizer and 
sparse categorical crossentropy loss function, as depicted 
by Eq. 15, are chosen due to their adaptive learning rate 
features and appropriateness for classification objec-
tives. Validation on an independent dataset is crucial for 
detecting overfitting and refining hyperparameters.
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In the training phase, SMOTE is strategically applied 
to create a balanced dataset representative of all classes, 
crucial for generalizing well across various lung tissue 
conditions, especially in medical datasets where class 
imbalance may exist.

Training and validation
Throughout the training and validation phases of the 
deep learning model, meticulous steps are taken to 
ensure that the model not only learns effectively from the 
training data but also demonstrates robust generalization 
capabilities when presented with new, unseen data. This 
phase plays a pivotal role in evaluating the model’s pro-
ficiency in accurately classifying lung cancer stages from 
CT scans.

The training process initiates with the segmentation of 
the dataset into distinct training and validation subsets. 
This segmentation is performed in a stratified manner 
to guarantee that each subset encompasses a balanced 
representation of the various classes. Such stratifica-
tion is essential for maintaining consistency and miti-
gating biases, particularly in light of the class imbalance 
addressed by SMOTE during training. Approximately 
80% of the data is allocated for training purposes, while 
the remaining 20% is reserved for validation.

Subsequent to the data segmentation, the training 
commences with the utilization of a batch size of 8. The 
selection of a smaller batch size is deliberate, aiming to 
facilitate more precise and nuanced updates to the mod-
el’s weights during each iteration, thereby potentially 
enhancing generalization. Nonetheless, it is imperative 
to strike a balance between this granularity and compu-
tational efficiency, as smaller batch sizes may prolong the 
training duration.

The number of epochs is predetermined to be 12, 
indicating the total number of complete passes that the 
learning algorithm will undertake across the entire train-
ing dataset. This choice represents a delicate balance 
between underfitting and overfitting; insufficient epochs 
may hinder the model’s learning process, whereas exces-
sive epochs may result in the model memorizing the 
training data, consequently impairing its ability to gen-
eralize effectively. The progression of training and vali-
dation loss and accuracy across epochs is visualized in 
Fig. 6.

During training, the model’s performance is continu-
ously evaluated using a comprehensive set of perfor-
mance metrics assessed against the validation set. These 
metrics encompass accuracy, precision, recall, and 
F1-score, all of which are instrumental in comprehending 

(15)Cross entropy Loss = −
n∑

i

(
yi log(pi)+

(
1− yi

)
log(1− pi)

) the model’s strengths and weaknesses in classifying each 
lung cancer stage. Accuracy furnishes a broad overview 
of the model’s overall performance, while precision and 
recall delve deeper into its class-specific performance, a 
critical consideration in medical diagnostics where false 
negatives and false positives carry significant conse-
quences. The F1-score serves to harmonize precision and 
recall, furnishing a unified metric to gauge the model’s 
equilibrium between these two facets.

Moreover, the validation process incorporates a con-
fusion matrix and ROC curves to furnish a more granu-
lar analysis of the model’s performance across diverse 
thresholds and classes. The confusion matrix delineates 
the model’s true positives, false positives, false negatives, 
and true negatives, offering a snapshot of its classifica-
tion capabilities. Meanwhile, ROC curves and the corre-
sponding AUC (Area Under the Curve) provide insights 
into the model’s capacity to discriminate between classes 
at varying threshold settings, a crucial consideration for 
refining the model’s decision boundary.

In our quest to maximize the performance of our Con-
volutional Neural Network (CNN) model for lung cancer 
classification, we meticulously fine-tuned several criti-
cal hyperparameters that play pivotal roles in shaping 
the learning process and ultimately, the model’s accu-
racy. Specifically, we focused on optimizing the learning 
rate, batch size, number of filters in each convolutional 
layer, filter size, and dropout rate. Firstly, we delved into 
exploring a spectrum of learning rates to pinpoint the 
optimal value that ensures swift convergence towards 
the minimum of the loss function without overshoot-
ing. Next, we scrutinized various batch sizes to strike a 
delicate balance between training time and the stabil-
ity of the gradient descent process. Moving forward, we 
embarked on an exploration of different combinations of 
the number of filters and filter sizes in the convolutional 
layers, aiming to unearth the configuration most adept 
at extracting salient features from the intricate CT scan 
images. Additionally, to combat overfitting and foster 
model robustness, we meticulously optimized the drop-
out rate, discerning the precise proportion of neurons to 
deactivate during training. Our methodology embraced a 
meticulous grid search strategy, systematically traversing 
through predefined sets of values for each hyperparame-
ter while evaluating the model’s performance using cross-
validation. This exhaustive search enabled us to pinpoint 
the hyperparameter combination that not only elevated 
the model’s classification accuracy but also bolstered its 
generalization capabilities. Subsequently, the efficacy of 
the selected hyperparameters was meticulously validated 
using a distinct validation set, underscoring the robust-
ness and reliability of our chosen parameters. Through 
this systematic and rigorous approach to hyperparameter 



Page 12 of 21Musthafa et al. BMC Medical Informatics and Decision Making          (2024) 24:142 

tuning, we achieved remarkable strides in fortifying the 
performance and stability of our lung cancer classifica-
tion model, thereby augmenting its potential for real-
world clinical applications.

The training and validation phases operate iteratively, 
with refinements made to the model’s architecture, 
hyperparameters, or training methodology based on the 
validation outcomes. This iterative refinement persists 
until the model achieves a satisfactory equilibrium of 
accuracy, generalizability, and robustness, thereby ensur-
ing its efficacy and reliability in clinical settings for lung 
cancer stage classification.

Statistical methods
In the analysis of the IQ-OTH/NCCD lung cancer data-
set, various statistical and machine learning techniques 
were employed to ensure a comprehensive evaluation of 
the data. The primary focus was on classification metrics 
to assess the performance of the predictive models.

•	 Confusion matrix: The confusion matrix serves as 
a pivotal component in our analysis, furnishing a 
visual representation of the model’s performance. It 
succinctly presents the counts of true positives, true 
negatives, false positives, and false negatives, thereby 
offering a lucid comprehension of the model’s classi-
fication accuracy and any instances of misclassifica-
tion.

•	 Accuracy: The accuracy metric was calculated by 
dividing the number of correctly predicted observa-
tions by the total number of observations, providing 
a straightforward measure for assessing the model’s 
overall performance. However, relying solely on 
accuracy can be deceptive, particularly in datasets 
with imbalanced class distributions. Therefore, it is 
imperative to incorporate additional metrics for a 
more comprehensive evaluation. It is achieved by 
Eq. 16.

•	 Precision (positive predictive value): Precision 
was utilized to assess the accuracy of positive pre-
dictions, quantified as the ratio of true positives to 
the sum of true positives and false positives. This 
metric bears significant relevance in scenarios 
where the repercussions of false positives are con-
siderable. It is achieved by Eq. 17.

•	 Recall (sensitivity or true positive rate): Recall 
assesses the model’s ability to detect positive 
instances, calculated as the ratio of true positives 
to the sum of true positives and false negatives. 

(16)

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100%

(17)

Precision =
True Positives

True Positives+ False Positives

Fig. 6  Training and validation loss and accuracy
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This metric holds particular importance in medical 
diagnostics, where failing to identify a positive case 
can lead to severe consequences. It is achieved by 
Eq. 18.

•	 F1-score: The F1-score, which is the harmonic 
mean of precision and recall, was used to provide a 
balance between the two metrics, particularly valu-
able in  situations of class imbalance. It is a more 
robust measure than accuracy in scenarios where 
false negatives and false positives have different 
implications. It is achieved by Eq. 19.

•	 Cohen’s kappa: The Cohen’s Kappa statistic was 
applied to assess the agreement between observed 
and predicted classifications, accounting for chance 
agreement. This statistic offers a nuanced under-
standing of the model’s performance, which is par-
ticularly valuable in scenarios involving imbalanced 
datasets. It is achieved by Eq. 20.

•	 Mean Squared Error (MSE) and Root Mean Squared 
Error (RMSE): MSE (Mean Squared Error) and RMSE 
(Root Mean Squared Error) were calculated to evalu-
ate the average squared difference and the square 
root of the average squared differences, respectively, 
between predicted and actual classification catego-
ries. These metrics are instrumental in understand-
ing the variance of prediction errors. MSE and RMSE 
are achieved using Eqs. 21 and 22, respectively.

•	 Mean Absolute Error (MAE): MAE (Mean Absolute 
Error) measures the average magnitude of errors in 
a set of predictions, regardless of their direction. It is 
a linear score, meaning that all individual differences 
are equally weighted in the average. It is achieved 
using Eq. 23.

(18)Recall =
True Positives

True Positives+ False Negatives

(19)F1-Score = 2×
Precision× Recall

Precision+ Recall

(20)Cohen’s Kappa =
po − pe

1− pe

(21)MSE =
1

n

∑n

i=1

(
yi − ŷi

)2

(22)RMSE =
√
MSE(22)

(23)MAE =
1

n

∑n

i=1

∣∣yi − ŷi
∣∣

•	 Receiver Operating Characteristic (ROC) Curve 
and Area Under the Curve (AUC): The ROC curve 
graphically illustrates the diagnostic ability of the 
model by plotting the true positive rate against the 
false positive rate at various threshold settings. The 
AUC (Area Under the Curve) provides a single sca-
lar value summarizing the overall performance of the 
model across all possible classification thresholds. It 
is achieved using Eq. 24.

•	 F2-score: The F2-score was calculated to weigh recall 
higher than precision, useful in scenarios where 
missing positive predictions is more detrimental than 
making false positives. It is achieved using Eq. 25.

These statistical methods and metrics provided a mul-
tifaceted evaluation of the model’s performance, ensuring 
a robust analysis of the predictive capabilities and reli-
ability in classifying the cases within the IQ-OTH/NCCD 
lung cancer dataset.

Results
The evaluation of the IQ-OTH/NCCD lung cancer data-
set through our predictive model yielded detailed insights 
across various statistical metrics, showcasing the model’s 
efficacy in classifying lung cancer stages. Here we delve 
into a comprehensive analysis of each metric:

•	 Confusion matrix: The confusion matrix offered 
a detailed perspective on the model’s classifica-
tion performance, unveiling a notable count of true 
positives and true negatives, reflecting precise pre-
dictions. Notably, there were minimal occurrences 
of false positives and false negatives, underscoring 
the model’s accuracy in discerning between benign, 
malignant, and normal cases. The same is visualized 
in Fig. 7.

•	 Accuracy: The overall model accuracy was noted at 
99.64%, highlighting the model’s robust capacity to 
accurately identify and classify instances within the 
dataset. This exceptional accuracy rate underscores 
the model’s reliability in clinical diagnostic settings, 
establishing a solid basis for subsequent valida-
tion and potential clinical implementation. To pro-
vide visual insight of this Fig. 8 gives truly classified 
instances.

(24)AUC =
∫ 1

0
ROC Curve(t)dt

(25)

F2-Score =
(
1+ 22

)
×

Precision× Recall(
22 × Precision

)
+ Recall
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•	 Precision: The precision metric provided valu-
able insights into the model’s predictive reliability. 
It attained a precision of 96.77% for benign cases, 
signifying a high probability that a case predicted as 
benign is indeed benign. Moreover, for malignant 
and normal cases, the precision reached 100%, dem-
onstrating the model’s outstanding ability to predict 
these categories accurately without any false posi-
tives.

•	 Recall: The recall scores were equally remarkable, 
achieving 100% for both benign and malignant cases, 

and 99.04% for normal cases. These findings under-
score the model’s sensitivity and its capability to 
accurately detect all true positive cases, thereby miti-
gating the risk of false negatives as a pivotal consid-
eration in medical diagnostics.

•	 F1-score: The F1-scores, which strike a balance 
between precision and recall, were 98.36% for 
benign, 100% for malignant, and 99.52% for normal 
cases. These scores signify the model’s balanced per-
formance, guaranteeing both the accuracy of positive 
predictions and the reduction of false negatives. To 

Fig. 7  Confusion matrix

Fig. 8  Correctly classified instances
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enhance the visualization of the classification report, 
Table 3 provides a statistical representation.

Based on Table  3 a heatmap to visualize the same 
detail is provided in Fig. 9 for better insights.

•	 Cohen’s kappa: With a Cohen’s Kappa score of 
0.9938, the model exhibited perfect agreement with 
the actual classifications, surpassing the performance 
expected by chance alone. This underscores an ele-
vated level of consistency in the model’s predictions, 
thus reinforcing its reliability.

•	 Mean Squared Error (MSE) and Root Mean Squared 
Error (RMSE): The model reported an MSE of 0.0145 
and an RMSE of 0.1206, indicating minimal variance 
and bias in the prediction errors. These low values 
suggest that the model’s predictions are consistently 
close to the actual values, enhancing trust in its pre-
dictive power.

•	 Mean Absolute Error (MAE): With an MAE of 
0.0073, the model exhibited minimal average error 
magnitude in its predictions, signifying high predic-

tive accuracy. This metric further reinforces the mod-
el’s suitability for clinical settings where precision is 
crucial. To visualize the error metrics, a bar chart is 
given in Fig. 10.

•	 Receiver Operating Characteristic (ROC) Curve and 
Area Under the Curve (AUC): The ROC curves and 
corresponding AUC values were exceptional, achiev-
ing AUCs of 1.00 for malignant, benign, and normal 
cases. These results indicate the model’s outstand-
ing discrimination ability between different classes 
across various threshold settings. The roc-auc curve 
is provided in Fig. 11.

•	 F2-score: The F2-score of 0.9964, which places more 
emphasis on recall, indicates the model’s strong 
ability to identify positive cases. This is particularly 
important in the medical field, where failing to detect 
a condition could have profound consequences. The 
visual representation of performance score is given in 
Fig. 12.

The detailed results across these metrics provide a 
comprehensive picture of the model’s performance, 
highlighting its precision, reliability, and robustness in 
classifying lung cancer stages from the IQ-OTH/NCCD 
dataset. The findings demonstrate the model’s potential 
as a diagnostic tool, supporting its further investigation 
and potential integration into clinical practice.

Table 3  Classification report

Precision Recall F1-score

Malignant 0.9677 1 0.9836

Benign 1 1 1

Normal 1 0.9904 0.9952

Fig. 9  Classification report
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Discussion
The analysis of the IQ-OTH/NCCD lung cancer dataset 
with our model reveals a groundbreaking level of perfor-
mance in medical image classification. With an accuracy 
of 99.64% and exceptional precision and recall metrics 
across the three categories (benign, malignant, and nor-
mal), the model emerges as a highly reliable diagnos-
tic aid. The significance of these results extends beyond 
the high metric scores; it lies in the model’s capability 
to accurately distinguish between benign and malignant 

cases, a critical aspect for patient management and treat-
ment planning.

The high F1-score underscores the model’s balanced 
consideration of precision and recall, thereby minimizing 
the risk of misdiagnosis. Additionally, the emphasis on 
recall in the F2-score holds particular significance in the 
medical domain, where overlooking a positive case (false 
negative) can have more severe consequences than erro-
neously identifying a case as positive (false positive). The 
comparison between the baseline models and proposed 
model has been given in Table 4.

Fig. 10  Error metrics barh chart

Fig. 11  ROC curve
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In the realm of lung cancer detection, many existing 
models focus predominantly on binary classification, 
often neglecting the nuanced differentiation between 
benign and malignant cases [37]. Our model’s tri-classi-
fication capability sets a new benchmark, offering a more 
detailed diagnostic tool compared to the binary classifi-
ers. When juxtaposed with existing methods, our model’s 
performance underscores its advanced detection capabil-
ities, potentially offering a more nuanced and informative 
diagnostic perspective than currently available tools.

For clinical practice, the integration of such a high-
performing model could revolutionize lung cancer diag-
nostics [22, 38]. It can augment radiologists’ capabilities, 
reducing diagnostic time and increasing throughput. 
The ability to accurately classify lung nodules as benign, 
malignant, or normal could significantly reduce unneces-
sary interventions, minimizing patient exposure to inva-
sive procedures and associated risks. Additionally, it can 
streamline the patient pathway, ensuring rapid treatment 
initiation for malignant cases and appropriate follow-up 
for benign conditions [39, 40].

While the results are promising, the study’s limita-
tions warrant consideration. The model’s training on a 
dataset from a specific demographic and geographic area 
raises questions about its applicability to broader popu-
lations. Additionally, the model’s performance in a con-
trolled study environment might not fully translate to 
the diverse and unpredictable nature of clinical settings. 
The black-box nature of deep learning models also poses 
a challenge in clinical contexts, where understanding the 
rationale behind a diagnosis is as crucial as the diagnosis 

itself [41]. To make it more clear in Fig. 13 some misclas-
sified instances has been shown.

When evaluating our CNN model’s performance on 
the lung cancer dataset, we noticed some errors in classi-
fication. These mistakes can happen for various reasons. 
Firstly, some features in the CT scans may look similar 
between benign and malignant nodules, making it hard 
for the model to tell them apart. Also, noise and artifacts 
in the scans can confuse the model by hiding important 
details. Even though we tried to balance the classes, rare 
cases could still be challenging for the model to recog-
nize. Plus, early-stage cancer might look very similar to 
normal tissue, making it tricky for the model to spot. Dif-
ferences in how scans are taken can also affect the mod-
el’s understanding, leading to errors. Lastly, if the model 
learns too much from the training data, it might not 
perform well on new, unseen images. To fix these issues, 
we’re planning to use better techniques for preparing the 
data, like removing noise more effectively and making 
the model more flexible to different imaging conditions. 
We also aim to combine multiple models and use more 
diverse data to improve accuracy. By addressing these 
challenges, we hope to make our model better at classify-
ing lung cancer stages.

While the IQ-OTHNCCD lung cancer dataset has been 
instrumental in developing and validating our model, 
it is important to recognize its limitations, particularly 
concerning demographic and geographic diversity. The 
dataset predominantly represents a specific popula-
tion, which may not capture the full spectrum of varia-
tions seen in global populations. This limitation poses 

Fig. 12  Performance scores
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challenges for the model’s generalizability, as differences 
in demographics, such as age, ethnicity, and underlying 
health conditions, can influence the presentation of lung 
cancer in CT scans.

To address these limitations, future research should 
focus on expanding the dataset to include a more diverse 
range of CT scan images from various demographic 
groups and geographic regions. This expansion can be 
facilitated through collaborations with international medi-
cal institutions and accessing publicly available medical 

imaging repositories. Additionally, incorporating advanced 
data augmentation techniques that simulate variations in 
demographic characteristics, such as age and gender, can 
further enhance the dataset’s diversity. By broadening the 
dataset, we aim to improve the model’s robustness and 
ensure its applicability across different populations, ulti-
mately enhancing the utility and reliability of our diag-
nostic tool in diverse clinical settings. This approach will 
contribute to developing a more inclusive and universally 
applicable model for lung cancer diagnosis.

Table 4  Comparison with existing studies

Study Techniques Accuracy

Asghar Ali Shah et al. (2023) [23] Convolutional Neural Networks (CNNs) and Ensemble 95%

Mohammad A. Alzubaidi et al. (2021) [24] SVM with HOG features 88%

Dimitrios Mathios et al. (2021) [25] Cell-free DNA fragmentomes 94%

Shahid Mehmood et al. (2022) [26] Transfer learning 98.4%

Elias Dritsas, Maria Trigka (2022) [27] Rotation Forest model 97.1%

Mehedi Masud et al. (2021) [28] Deep learning and digital image processing 96.33%

Iftkhar Naseer et al. (2023) [29] Modified U-Net Based Lobe Segmentation and detection 97.70%

Bharathy S, Pavithra R, Akshaya. B (2022) [30] Random Forest algorithm 88.5%

Gopi Kasinathan and Selvakumar Jayakumar 
(2022) [31]

Hybrid technique for PET/CT images 98.6%

Das, S., et al. (2023) [32] CNN and Inception V3 93.44%

Tasnim, Nowshin, et al. (2024) [33] CNN, Resnet50, and InceptionV3 98%

Safta, Wiem, and Ahmed Shaffie (2024) [34] Integration of 3D-Local Octal Pattern (LOP) descriptor, 3D-Convolutional Neural 
Network (CNN), and geometric feature analysis

97.84%

Khaliq, Kiran, et al. (2023) [35] Transfer learning with Densely Connected Convolutional Networks 
(DenseNet-121)

99%

Nigudgi, Surekha, and Channappa Bhyri. (2023) 
[36]

Transfer learning with hybrid model (AlexNet, VGG, GoogleNet) 97%

Proposed Model Double Layered CNN with Advanced Image Processing 99.64%

Fig. 13  Misclassified instances
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 Sensitivity analysis of precision, recall, and F1‑score
In our endeavor to comprehensively assess the perfor-
mance of our Convolutional Neural Network (CNN) 
model for lung cancer diagnosis, we conducted a sen-
sitivity analysis focusing on precision, recall, and the 
F1-score. Precision sensitivity involved systematically 
adjusting the threshold values used for classification to 
observe its impact on false positive rates and the mod-
el’s conservatism in identifying positive cases. As preci-
sion increased, indicating a more stringent classification 
approach, false positives decreased, but the risk of false 
negatives rose, necessitating a delicate balance in medi-
cal diagnostics. Conversely, recall sensitivity entailed 
modifying the model’s sensitivity to detect positive cases, 
thereby influencing its ability to minimize false nega-
tives. Heightened recall improved the identification of 
true positives, crucial for early diagnosis and treatment, 
albeit with potential increases in false positives, man-
dating cautious management. Additionally, analyzing 
the F1-score, a harmonic mean of precision and recall, 
elucidated its role in balancing false positives and false 
negatives. Optimizing for a high F1-score underscored a 
balanced approach, ensuring robust performance across 
both precision and recall metrics. Overall, the sensitivity 
analysis underscored the significance of striking a deli-
cate balance between precision, recall, and the F1-score 
to optimize the model’s performance in clinical settings. 
By navigating and managing these trade-offs effectively, 
we can bolster the reliability and efficacy of our model in 
diagnosing lung cancer, thereby contributing to improved 
patient outcomes.

Regulatory considerations for clinical application
Implementing machine learning models in clinical set-
tings involves navigating a complex landscape of regula-
tory requirements to ensure patient safety, data security, 
and efficacy. One of the primary regulatory hurdles 
is obtaining approval from medical device regulatory 
bodies such as the U.S. Food and Drug Administration 
(FDA), the European Medicines Agency (EMA), or other 
relevant national authorities. These regulatory agencies 
require extensive validation studies to demonstrate the 
model’s accuracy, reliability, and safety in diagnosing lung 
cancer. This involves rigorous testing on diverse data-
sets to ensure the model’s generalizability and perfor-
mance across different patient populations and clinical 
scenarios.

Additionally, regulatory guidelines mandate that machine 
learning models used in healthcare must provide a level of 
interpretability and transparency. Clinicians need to under-
stand the decision-making process of the model to trust 
and effectively integrate it into clinical workflows. This 
requirement for explainability poses a challenge for deep 

learning models, which are often considered “black boxes.” 
Therefore, developing methods to elucidate the model’s 
reasoning, such as feature importance analysis or visual 
explanations, is crucial for meeting regulatory standards.

Data privacy and security are also significant regula-
tory concerns, particularly with the implementation of 
regulations like the General Data Protection Regula-
tion (GDPR) in Europe and the Health Insurance Port-
ability and Accountability Act (HIPAA) in the United 
States. Ensuring that patient data is anonymized, securely 
stored, and used ethically is essential for compliance. This 
includes implementing robust data encryption, access 
controls, and audit trails to protect sensitive health infor-
mation from unauthorized access and breaches.

Moreover, post-market surveillance is a critical com-
ponent of regulatory compliance, requiring continuous 
monitoring of the model’s performance in real-world 
clinical settings. This involves tracking the model’s diag-
nostic accuracy, identifying potential biases, and updat-
ing the model as needed to maintain its efficacy and 
safety over time. Establishing a framework for ongoing 
evaluation and improvement is essential to meet regula-
tory requirements and ensure the model’s long-term suc-
cess in clinical applications.

Addressing these regulatory hurdles necessitates close 
collaboration between developers, healthcare provid-
ers, and regulatory bodies to ensure that machine learn-
ing models are safe, effective, and aligned with clinical 
needs. By adhering to these regulatory frameworks, we 
can facilitate the successful integration of advanced diag-
nostic tools into healthcare, ultimately enhancing patient 
outcomes and advancing the field of medical diagnostics.

Future research directions should focus on exter-
nal validation of the model across various populations 
and healthcare settings to ascertain its universality and 
robustness. Integrating multimodal data, encompassing 
patient history, genetic information, and other diagnos-
tic results, could enhance the model’s diagnostic preci-
sion. Addressing the interpretability of deep learning 
models could foster greater trust and integration into 
clinical decision-making processes. Additionally, pro-
spective studies assessing the model’s impact on clinical 
outcomes, patient satisfaction, and healthcare efficiency 
would provide invaluable insights into its practical ben-
efits and potential areas for improvement.

Conclusion
This study presented a comprehensive analysis of the IQ-
OTH/NCCD lung cancer dataset using a sophisticated 
machine learning model, which demonstrated excep-
tional performance in classifying lung cancer stages. Key 
findings include a near-perfect accuracy rate of 99.64%, 
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alongside impressive precision and recall metrics across 
benign, malignant, and normal case classifications. The 
model’s balanced F1-score and the emphasis on recall in 
the F2-score further highlight its diagnostic precision and 
sensitivity. These results signify a substantial advance-
ment in the model’s ability to differentiate between 
nuanced lung cancer stages, providing a critical tool for 
early and accurate diagnosis.

The implications of these discoveries on the field of 
lung cancer diagnostics are profound. The model’s preci-
sion in classifying lung cancer stages holds the promise 
of substantially enhancing diagnostic protocols, thereby 
refining the accuracy and efficiency of lung cancer detec-
tion. This advancement has the potential to facilitate 
earlier treatment interventions, potentially enhancing 
patient outcomes and survival rates. Moreover, the mod-
el’s capability to differentiate between benign and malig-
nant nodules could mitigate the need for unnecessary 
invasive procedures, consequently reducing patient risk 
and healthcare expenditures.

Future research should focus on external validation 
of the model to ensure its effectiveness across diverse 
populations and clinical settings. The exploration of 
model interpretability is crucial for clinical adoption, 
where understanding the basis for diagnostic decisions is 
essential. Additionally, integrating the model with other 
diagnostic data and clinical workflows could enhance its 
utility and impact.

Prospective studies are needed to evaluate the mod-
el’s real-world clinical impact, particularly its ability to 
improve patient outcomes, streamline diagnostic path-
ways, and reduce healthcare costs. The potential for the 
model to be adapted or extended to other types of can-
cers or medical imaging modalities also represents an 
exciting avenue for future research.

This study highlights the potential of advanced 
machine learning models to transform lung cancer diag-
nostics, providing a more precise, effective, and nuanced 
approach to detecting and classifying lung cancer. The 
ongoing advancement and incorporation of such models 
into clinical settings hold the promise of catalyzing sub-
stantial progress in patient care and outcomes within the 
field of oncology.
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