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Abstract 

Background Epilepsy, a chronic brain disorder characterized by abnormal brain activity that causes seizures 
and other symptoms, is typically treated using anti‑epileptic drugs (AEDs) as the first‑line therapy. However, due 
to the variations in their modes of action, identification of effective AEDs often relies on ad hoc trials, which is particu‑
larly challenging for pediatric patients. Thus, there is significant value in computational methods capable of assisting 
in the selection of AEDs, aiming to minimize unnecessary medication and improve treatment efficacy.

Results In this study, we collected 7,507 medical records from 1,000 pediatric epilepsy patients and developed 
a computational clinical decision‑supporting system for AED selection. This system leverages three multi‑channel 
convolutional neural network (CNN) models tailored to three specific AEDs (vigabatrin, prednisolone, and clobazam). 
Each CNN model predicts whether a respective AED is effective on a given patient or not. The CNN models showed 
AUROCs of 0.90, 0.80, and 0.92 in 10‑fold cross‑validation, respectively. Evaluation on a hold‑out test dataset further 
revealed positive predictive values (PPVs) of 0.92, 0.97, and 0.91 for the three respective CNN models, representing 
that suggested AEDs by our models would be effective in controlling epilepsy with a high accuracy and thereby 
reducing unnecessary medications for pediatric patients.

Conclusion Our CNN models in the system demonstrated high PPVs for the three AEDs, which signifies the poten‑
tial of our approach to support the clinical decision‑making by assisting doctors in recommending effective AEDs 
within the three AEDs for patients based on their medical history. This would result in a reduction in the number 
of unnecessary ad hoc attempts to find an effective AED for pediatric epilepsy patients.
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Background
Epilepsy is an intractable chronic neurological disease 
that involves abnormal brain activity such as seizures and 
other symptoms, posing significant challenges to patients 
worldwide. According to the World Health Organization, 
approximately 50 million individuals worldwide are suf-
fering from epilepsy, with an estimated five million new 
diagnoses annually [1]. Notably, in the United States 
alone, there are three million adult epilepsy patients and 
470,000 pediatric epilepsy patients [2].

Generally, anti-epileptic drugs (AEDs) serve as a pri-
mary therapy for symptom management in the majority 
of epilepsy patients [3]. However, it is often necessary 
to adopt an ad hoc trial-and-error approach to identify 
effective AEDs due to the diverse causes of epilepsy and 
the variations of AEDs in their modes of action [4, 5]. 
Such empirical strategies may have a detrimental effect 
on the quality of life provided to patients, particularly 
pediatric epilepsy patients, due to the inherent risks and 
potential adverse effects associated with clinical trials 
[6−9]. Therefore, the minimization of the trials to find 
out effective AEDs is crucial in epilepsy treatment and 
there is a continuous demand for computational methods 
to suggest an effective AED for pediatric patients, mini-
mizing the ad hoc trials.

With the rapid advance of machine learning methods, 
such as convolutional neural network (CNN) [10] and 
long short-term memory network [11], there is a new-
found opportunity to develop computational methods 
for predicting individual seizure occurrences and surgical 
outcomes based on medical data, comprising primarily 
textual and visual information [12−15]. However, there 
are few studies on precise patient-specific drug sugges-
tion methods for epilepsy patients, and there have been 
no studies that develop personalized drug suggestion 
models for pediatric epilepsy patients [16−18].  Previ-
ous studies have utilized electronic health records (EHR) 
and genomic data to predict drug outcomes [16−18]. 
However, the high costs associated with genetic test-
ing present a significant financial barrier to the practical 
application of these models for the selection of person-
alized drugs [19, 20]. Although EHR-based drug recom-
mendation approach does not mandate additional costly 
tests, the reported performances, with F1-scores rang-
ing from 0.20 to 0.40, undermine its practical utility [16]. 
Consequently, despite the previous studies on patient-
specific drug suggestion methods, there is a continued 
demand for cost-effective and precise methods.

In this study, we developed a computational clinical 
decision-supporting system tailored for pediatric epi-
lepsy patients based on their medical history. Our system 
relies on three multi-channel CNN models dedicated to 
vigabatrin, prednisolone, and clobazam, respectively. 

These CNN models in our system predict the efficacy of 
specific AEDs for a given pediatric epilepsy patient based 
solely on medical history, encompassing prescription his-
tories and EEG interpretation reports. This signifies the 
potential of our system to support doctors in prescribing 
effective and personalized AEDs for individual patients, 
thereby enhancing clinical decision-making processes in 
the treatment of pediatric epilepsy.

Results and discussion
Aim of study
The primary objective of this study is to develop a system 
that assists doctors in making clinical decisions regard-
ing the AED selection for pediatric epileptic patients 
based on their medical history. The system conducts a 
comprehensive analysis of each patient’s medical history 
and provides recommendations on the potentially effec-
tive AEDs based on the predictions of effectiveness of 
vigabatrin, prednisolone, and clobazam. The system iden-
tifies patterns within the medical history associated with 
the efficacy of AED, thereby providing suggestions about 
personalized and optimal AED for individual patients.

Patient data analysis and processing
We collected the medical history data of 1,000 pediatric 
epilepsy patients from the Epilepsy Research Institute, 
Severance Children’s Hospital, Republic of Korea. Fig-
ure 1 presents the statistics of the compiled medical data, 
which includes age, gender, prescribed AEDs, and EEG 
interpretation reports. A significant proportion of the 
patients, 81%, were notably within the age of zero to five 
years (Fig. 1a). The rest, 19%, were aged between six and 
28 years. As for the gender distribution, it was balanced 
with 554 males and 446 females (Fig. 1b).

A total of 52 AEDs were prescribed to the 1,000 pedi-
atric epilepsy patients, and 7,507 post-medication EEG 
interpretation reports were collected. Among these 
AEDs, the ten most frequently prescribed drugs were 
vigabatrin (840 patients with 1,937 EEG reports), pred-
nisolone (665 patients with 785 EEG reports), clobazam 
(600 patients with 1,078 EEG reports), topiramate (517 
patients with 625 EEG reports), levetiracetam (422 
patients with 481 EEG reports), phenobarbital (419 
patients with 492 EEG reports), zonisamide (376 patients 
with 588 EEG reports), valproate (373 patients with 443 
EEG reports), divalproex (316 patients with 368 EEG 
reports), and midazolam (267 patients with 46 EEG 
reports) (Fig. 1c and d).

Given the necessity for sufficient training data to 
develop accurate machine learning models, it was 
observed that the majority of drugs in our dataset 
lacked sufficient quantification in terms of both pre-
scribed patients and medical data. As a result, due to 
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the limited availability of data, only the three most fre-
quently prescribed AEDs (vigabatrin, prednisolone, 
and clobazam) were suitable for the model construc-
tion. Thus, we focused on developing individual CNN 
models dedicated to predicting the efficacy of each of 
those AEDs for pediatric epilepsy patients. Specifically, 

counts of EEG interpretation reports for these AEDs 
were 1,937 (70 relieved and 1,867 non-relieved), 784 (15 
relieved and 770 non-relieved), and 1,078 (18 relieved 
and 1,060 non-relieved), respectively (Table 1). As epi-
lepsy is a seizure disease, there are diverse types of epi-
lepsy and, in certain people, their causes are not known 
yet, which makes ad hoc trials and errors inevitable in 
the search for effective AEDs. Therefore, less than 5% of 
patients experienced symptom relief after medication, 
leading to highly imbalanced datasets (Table 1).

As illustrated in Fig. 2, the collected data comprised 
various types, including textual (EEG interpretation 
reports), numerical (age, total number of prescribed 
AEDs and their doses), and categorical (gender) data. 
The numerical and categorical data were directly uti-
lized as features, while the textual data underwent pre-
processing for featurization. The featurization involved 
several steps: extraction of redundant terms from EEG 
interpretation reports using WordNetLemmatizer from 
the Natural Language Toolkit (NLTK) [21], encod-
ing of each lemma into a numerical 1D vector through 
Tokenizer [22], pre-padding of vectors with zeros to 
maintain consistency, and mapping of padded vec-
tors to pretrained GloVe word embedding for semantic 
enrichment [23]. Subsequently, the EEG interpreta-
tion reports were transformed into embedding matri-
ces tailored to vigabatrin, prednisolone, and clobazam, 
respectively, with dimensions 194, 190, and 208. These 
embedding matrices served as the input features for 
corresponding CNN models.

Model construction
Given that our target AEDs consisted of three drugs, 
we considered two approaches: developing a single 
multi-class model to predict the efficacy of all three 
AEDs simultaneously or developing three independent 
binary classification models, each dedicated to predict-
ing the efficacy of a single AED. However, due to the 
limited number of patients prescribed all three AEDs 
(only 103 patients), there was insufficient data to con-
struct a robust multi-class model. Consequently, three 

Fig. 1  The data distribution of age, gender, and AED. a The 
distribution of patient age. b The distribution of patient gender. c 
The number of patients prescribed each AED. d The number of EEG 
interpretation reports corresponds to the ten most frequently 
prescribed AEDs. In (c) and (d), the top ten highly prescribed AEDs are 
shown and the target three AEDs of our drug suggestion system are 
colored in blue

Table 1 The number of patients who were prescribed an AED 
and the corresponding EEG interpretation reports

AEDs Patients EEG interpretation reports

Relieved Non-relieved

Vigabatrin 840 70 1867

Prednisolone 665 15 770

Clobazam 660 18 1060
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distinct multi-channel CNN models were constructed, 
each tailored to a single AED. These models formed the 
foundation of our AED suggestion system (Fig. 2a).

The architectural overview of our models is illus-
trated in Fig.  2b. Briefly, as described in Methods, each 
CNN model features dedicated channels responsible for 
extracting features from the patient’s medical history 
data. These features are then aggregated via max-pooling, 
combined, flattened, and subsequently passed through a 
dropout layer equipped with softmax activation to predict 
the efficacy of a specific AED for the queried patient. As 
a result, our decision-supporting system comprises three 
individual CNN models, with each model predict the 

potential efficacy of single AED for a given patient. Dur-
ing a hyperparameter tuning phase, we optimized several 
parameters as follows (Table 2): the number of channels 
was set to three, with corresponding filter sizes of three, 
four, and five. A dropout value of 0.5 was employed, cou-
pled with a learning rate of 0.001 and an epoch size of 
100. Furthermore, batch sizes were set to 128, 32, and 32 
for vigabatrin, prednisolone, and clobazam, respectively.

Prediction performance
We conducted ten iterations of 10-fold cross-valida-
tion and performance assessment on a hold-out data-
set to ensure robustness. For the comparison with other 

Fig. 2  The schematic illustration of our clinical decision‑supporting system.  Our clinical decision‑supporting system is comprised of three 
multi‑channel CNN models, which predict the outcome of respective AED: vigabatrin, prednisolone, and clobazam. a The comprehensive overview 
of our clinical decision‑supporting system. b The processes of pediatric epilepsy patient data collection and construction of the datasets, generation 
of an embedding matrix using an interpretation report of EEG, and architecture of our CNN models in the clinical decision‑supporting system
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algorithms, we constructed models employing conven-
tional algorithms such as k-nearest neighbors (KNN), 
logistic regression, naïve Bayes, random forest, and 
LightGBM. This comparison was crucial due to the rel-
atively small patient population in our dataset, where 
conventional machine learning algorithms might exhibit 
superior performances compared with advanced deep 
learning algorithms.

The results of 10-fold cross-validation are shown in 
Table  3. Our CNN models for vigabatrin, predniso-
lone, and clobazam achieved AUROCs of 0.90, 0.80, 
and 0.92, respectively, along with positive predictive 
values (PPVs) of 0.94, 0.91, and 0.90. Notably, our CNN 
models consistently outperformed other models. For 
instance, KNN models achieved AUROCs of 0.79, 0.67, 
and 0.67, and LightGBM achieved AUROCs of 0.82, 
0.61, and 0.69 for the three AEDs, respectively. The 

validation results on hold-out test datasets, as shown 
in Table  4, demonstrated the superiority of our CNN 
models. Across the all metrics, our models showed 
either better or comparable performance. Notably, the 
PPVs of our models were 0.92, 0.97, and 0.91 for the 
three AEDs, while those of KNN were 0.60, 0.50, and 
0.35, and LightGBM resulted in 0.65, 0.30, and 0.50, 
respectively.

In this study, as the primary goal is to suggest the effi-
cacies of AEDs through the system, particular emphasis 
is placed on PPVs. PPV holds paramount importance 
in clinical decision-supporting systems, as it directly 
reflects the accuracy of drug suggestion and determines 
the practical applicability of the model in making clini-
cal decisions [24]. Given that our system aimed to sup-
port clinical decisions by predicting the drug outcomes 
of three AEDs, PPV is a critical metric. Our CNN mod-
els achieved exceptionally high PPVs exceeding 0.9, as 
listed in Tables 3 and 4. This highlights their effective-
ness in identifying effective AEDs. In contrast, con-
ventional models achieved lower PPVs. This contrast 
underscores the practical applicability of our clinical 
decision-supporting system, built upon three multi-
channel CNN models, in the field of clinical decision-
supporting. The high PPVs enable our system to assist 
the doctors in selecting an effective AED, thereby 
reducing the need for unnecessary trial and error in 
drug selection processes.

Table 2 The ranges of parameters in hyperparameter optimization

Parameters Range

Number of channels [1, 2, 3, 4, 5]

Filter size [2, 3, 4, 5, 6, 7, 8, 10]

Values of dropout [0.2, 0.3, 0.4, 0.5]

Learning rate [0.0005, 0.0001, 0.005, 
0.001, 0.05, 0.01]

Epochs [32, 50, 64, 100, 128, 150]

Batch sizes [16, 32, 64, 128]

Table 3 The results of 10‑fold cross‑validation of our models and conventional machine learning models for each AED.

* Mean ± standard error

AEDs Models AUROC BAL-ACC SEN SPE PPV NPV

Vigabatrin Our model 0.90 ± 0.003 0.93 ± 0.030 0.88 ± 0.057 0.99 ± 0.003 0.94 ± 0.037 1.00 ± 0.000

KNN 0.79 ± 0.024 0.88 ± 0.025 0.78 ± 0.047 0.98 ± 0.003 0.58 ± 0.047 1.00 ± 0.000

Logistic regression 0.77 ± 0.015 0.60 ± 0.006 0.22 ± 0.009 0.99 ± 0.003 0.66 ± 0.037 0.89 ± 0.006

Naïve Bayes 0.74 ± 0.022 0.54 ± 0.003 0.10 ± 0.003 0.99 ± 0.003 0.77 ± 0.047 0.72 ± 0.015

Random forest 0.81 ± 0.028 0.83 ± 0.052 0.68 ± 0.101 0.99 ± 0.003 0.65 ± 0.056 0.98 ± 0.009

LightGBM 0.82 ± 0.028 0.92 ± 0.029 0.85 ± 0.056 0.99 ± 0.003 0.65 ± 0.056 0.99 ± 0.003

Prednisolone Our model 0.80 ± 0.047 0.92 ± 0.031 0.85 ± 0.063 1.00 ± 0.000 0.91 ± 0.126 1.00 ± 0.000

KNN 0.67 ± 0.072 0.83 ± 0.036 0.68 ± 0.069 0.99 ± 0.003 0.50 ± 0.142 1.00 ± 0.000

Logistic regression 0.63 ± 0.069 0.65 ± 0.052 0.31 ± 0.101 0.99 ± 0.003 0.35 ± 0.142 0.92 ± 0.012

Naïve Bayes 0.62 ± 0.072 0.52 ± 0.004 0.06 ± 0.012 0.99 ± 0.003 0.40 ± 0.126 0.78 ± 0.018

Random forest 0.70 ± 0.069 0.53 ± 0.015 0.08 ± 0.028 0.99 ± 0.003 0.55 ± 0.148 0.85 ± 0.037

LightGBM 0.61 ± 0.063 0.52 ± 0.015 0.07 ± 0.027 0.98 ± 0.003 0.30 ± 0.126 0.91 ± 0.012

Clobazam Our model 0.92 ± 0.050 0.91 ± 0.045 0.82 ± 0.088 1.00 ± 0.003 0.90 ± 0.101 1.00 ± 0.000

KNN 0.67 ± 0.069 0.82 ± 0.064 0.65 ± 0.126 0.99 ± 0.003 0.35 ± 0.142 1.00 ± 0.00

Logistic regression 0.64 ± 0.069 0.68 ± 0.018 0.38 ± 0.034 0.99 ± 0.003 0.35 ± 0.142 0.98 ± 0.006

Naïve Bayes 0.57 ± 0.066 0.50 ± 0.004 0.02 ± 0.006 0.99 ± 0.003 0.45 ± 0.148 0.69 ± 0.006

Random forest 0.70 ± 0.072 0.56 ± 0.031 0.14 ± 0.060 0.99 ± 0.003 0.50 ± 0.142 0.91 ± 0.015

LightGBM 0.69 ± 0.069 0.54 ± 0.040 0.09 ± 0.037 0.99 ± 0.003 0.50 ± 0.142 0.88 ± 0.027
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Limitations of our models
Current drug suggestion models often rely on costly tech-
niques such as whole-genome sequencing, which are not 
feasible for many healthcare settings [16−18]. Similarly, 
other omics data such as transcriptomic and proteomic 
data face similar limitations due to their associated costs 
[25]. To overcome these limitations, we have proposed a 
computational clinical decision-supporting system based 
on deep learning models that utilize patient medical his-
tory data. This offers a more practical and cost-effective 
alternative to expensive omics experiments. In addi-
tion to the practical implications, we have demonstrated 
the effectiveness of the multi-channel CNN method in 
extracting valuable information from unstructured tex-
tual data for prediction tasks.

Although our CNN models showed high accuracy in 
predicting drug efficacies for the three AEDs, they were 
developed from limited and highly imbalanced datasets 
for pediatric epilepsy patients. There are many other 
AEDs (52 AEDs in our collected dataset) that were not 
sufficiently prescribed in our dataset, which prevented us 
from building models for the remaining 49 AEDs. Addi-
tionally, due to variations in the mode of action among 
AEDs, effective AEDs for individuals are scarce, result-
ing in highly imbalanced datasets. Finally, since our 
focus was on pediatric epilepsy patients, the number of 
patients was significantly lower. To develop more reli-
able and accurate prediction models covering all available 
AEDs, a larger patient dataset is necessary, which could 

be achieved through collaboration across many hospitals 
worldwide.

Conclusion
Our study presents a novel computational clinical deci-
sion-supporting system designed to assist the person-
alized selection of AEDs for pediatric patients. Using 
multi-channel CNN models and patient medical history 
data, our system offers a practical and cost-effective alter-
native to existing methodologies, which often rely on 
expensive techniques such as whole-genome sequencing. 
The analysis and validation of our models have demon-
strated the effectiveness of our approach in identifying 
effective AEDs, as evidenced by high PPVs exceeding 0.9. 
Despite the challenges associated with limited patient 
data and specific AEDs, our system demonstrated its 
robustness and potential, paving the way for the future 
advancements in the field of personalized AED selection. 
In conclusion, our study contributes to the enhancement 
of clinical decision-making processes in the treatment 
of pediatric epilepsy patients and holds promise for the 
improvement of treatment processes with the minimiza-
tion of unnecessary trials in drug selection.

Methods
Data preparation
The medical history and drug response dataset of 1,000 
pediatric epilepsy patients was obtained from the Epi-
lepsy Research Institute, Severance Hospital in Seoul, 

Table 4 Performance test results of our models and models trained using conventional algorithms

* Mean ± standard error

AEDs Models BAL-ACC SEN SPE PPV NPV

Vigabatrin Our model 0.94 ± 0.007 0.89 ± 0.012 0.99 ± 0.003 0.92 ± 0.012 0.99 ± 0.003

KNN 0.83 ± 0.020 0.68 ± 0.037 0.98 ± 0.003 0.60 ± 0.069 1.00 ± 0.003

Logistic regression 0.60 ± 0.006 0.22 ± 0.009 0.99 ± 0.003 0.68 ± 0.066 0.91 ± 0.006

Naïve Bayes 0.54 ± 0.003 0.10 ± 0.003 0.99 ± 0.003 0.73 ± 0.053 0.75 ± 0.012

Random forest 0.83 ± 0.052 0.68 ± 0.101 0.99 ± 0.003 0.65 ± 0.056 0.98 ± 0.009

LightGBM 0.92 ± 0.059 0.85 ± 0.056 0.99 ± 0.003 0.65 ± 0.056 0.99 ± 0.003

Prednisolone Our model 0.95 ± 0.028 0.92 ± 0.053 0.99 ± 0.003 0.97 ± 0.006 0.99 ± 0.003

KNN 0.78 ± 0.037 0.58 ± 0.072 0.99 ± 0.003 0.50 ± 0.142 1.00 ± 0.000

Logistic regression 0.65 ± 0.052 0.31 ± 0.101 0.99 ± 0.003 0.50 ± 0.142 0.98 ± 0.003

Naïve Bayes 0.52 ± 0.007 0.06 ± 0.012 0.99 ± 0.003 0.70 ± 0.126 0.82 ± 0.012

Random forest 0.53 ± 0.031 0.08 ± 0.028 0.99 ± 0.003 0.55 ± 0.148 0.85 ± 0.037

LightGBM 0.52 ± 0.031 0.07 ± 0.028 0.98 ± 0.003 0.30 ± 0.126 0.91 ± 0.012

Clobazam Our model 0.92 ± 0.014 0.85 ± 0.025 0.99 ± 0.003 0.91 ± 0.006 0.97 ± 0.006

KNN 0.80 ± 0.029 0.62 ± 0.056 0.99 ± 0.003 0.35 ± 0.142 1.00 ± 0.000

Logistic regression 0.53 ± 0.018 0.08 ± 0.034 0.99 ± 0.003 0.35 ± 0.142 0.93 ± 0.006

Naïve Bayes 0.50 ± 0.004 0.02 ± 0.006 0.99 ± 0.003 0.45 ± 0.148 0.69 ± 0.041

Random forest 0.56 ± 0.031 0.14 ± 0.060 0.99 ± 0.003 0.50 ± 0.142 0.91 ± 0.015

LightGBM 0.54 ± 0.020 0.09 ± 0.037 0.99 ± 0.003 0.50 ± 0.142 0.88 ± 0.028
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Republic of Korea. The data was collected between 
2010 and 2021, and 808 patients were aged between 
zero and five years. The data includes prescription 
records for 52 AEDs and 7,507 medical reports. The 
following data were extracted from patient information 
and medical reports: age, gender, dose of prescribed 
AED, total number of prescribed AEDs, EEG interpre-
tation report, and EEG impression report.

The EEG impression report was a crucial determi-
nant in assessing whether a prescribed AED alleviated 
the epileptic symptoms. It was used exclusively for this 
determination. For this assessment, we analyzed EEG 
impression reports that were documented within a 
maximum duration of a month post-prescription. If the 
impression report indicated normalized EEG patterns 
or symptom relief post-medication, the prescribed AED 
was classified as effective. Conversely, if such improve-
ments were not observed, the AED was categorized as 
ineffective. In the development of our models, we uti-
lized effective AEDs as positive instances and ineffec-
tive AEDs as negative instances.

Data preprocessing and data embedding
Features extracted from medical history were cat-
egorized into three groups based on their data types: 
textual data (EEG interpretation report), numerical 
data (age, total number of prescribed AEDs and their 
doses), and categorical data (gender). The EEG inter-
pretation reports were written in a freeform text by 
doctors. However, the text was unstructured and con-
tained numerous stopwords, such as ‘a’, ‘an’, and ‘the’, 
potentially introducing bias into the model [26, 27]. To 
address this issue, the textual data was preprocessed 
using NLP methods such as WordNetLemmatizer of 
NLTK and Tokenizer of Keras [21, 22]. For instance, 
“This is an abnormal tracing due to slow disorgan-
ized background rhythm.” would be transformed into 
“abnormal trace due slow disorganize background 
rhythm” after lemmatization and removal of stop-
words such as “This”, “is”, “an”, and “to”. Subsequently, 
the processed sentence would be tokenized, resulting 
in a sequence vector such as [17, 79, 3, 48, 23, 7, 10]. 
Given the variable length of textual data, the tokenized 
text would be pre-padded with zeros to maintain con-
sistency, resulting in a 1D vector representation of the 
textual data (e.g. [0, 17, 79, 3, 48, 23, 7, 10]). These pre-
processing steps ensured the conversion of text into a 
machine-interpretable format. Furthermore, during the 
preprocessing, the lemmatization and removal of stop-
words enhanced the quality of the textual features, and 
the preprocessed textual features were subsequently 

transformed into matrices using precomputed GloVe 
embedding [23].

Construction of clinical decision-supporting system
We developed three multi-channel CNN models as part 
of a clinical decision-supporting system, each dedicated 
to predicting the effectiveness of a specific AED (vigaba-
trin, prednisolone, and clobazam). Inspired by the suc-
cess of CNNs in various fields, such as image and text 
processing, we adapted CNN for medical text classifi-
cation, using its inherent ability to learn features from 
text data in a position-independent manner [28−30]. By 
treating text as an image and employing 1D vector, CNN 
can capture meaningful word combinations regardless of 
their position. This automatic feature extraction enables 
the identification of complex relationships and enhances 
accuracy, even with varying sentence structures.

Our CNN models employed three filters of different 
sizes to extract various features. Each model comprised 
three different convolutional layers and corresponding 
max-pooling layers. The features extracted by these con-
volutional and pooling layers were then concatenated 
and flattened into a 1D vector, which was subsequently 
processed by a dropout layer to prevent overfitting. The 
flattened feature vector was passed to a fully connected 
output layer with a softmax activation function to predict 
the effectiveness of the AED.

In order to train the respective CNN models, the data-
set was divided into a training set and a testing set in a 
9:1 ratio, respectively. Various performance metrics, 
including AUROC, PPV, negative predictive value (NPV), 
sensitivity (SEN), and specificity (SPE), were calculated. 
To address the imbalance of the dataset, each class in 
the dataset was weighted based on the number of sam-
ples and balanced accuracy (BAL-ACC) was calculated in 
order to provide a more robust metric of the predictive 
performances [31]. The data splitting and evaluation pro-
cesses were repeated ten times to ensure the robustness 
of the models. Both averaged performance metrics and 
standard errors were calculated via iteration. Addition-
ally, hyperparameters were optimized via 10-fold cross-
validation, and the ranges of the hyperparameters are 
listed in Table 2.

Other machine learning models
To facilitate a comprehensive comparison, five addi-
tional models were constructed using widely employed 
conventional machine learning algorithms, including 
KNN, logistic regression, naïve Bayes, random forest, 
and LightGBM [32]. These models were built using the 
same features and the dataset utilized for our CNN 
models, ensuring fair comparison and performance 
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across different algorithms. The ten times iteration pro-
cess of data splitting and evaluation was conducted in 
the same manner as for our CNN models. The same 
metrics were calculated consistently to evaluate the 
predictive performances of the models and enable the 
comparison with our CNN models.
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