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Abstract 

Background The increased application of Internet of Things (IoT) in healthcare, has fueled concerns regard-
ing the security and privacy of patient data. Lightweight Cryptography (LWC) algorithms can be seen as a potential 
solution to address this concern. Due to the high variation of LWC, the primary objective of this study was to identify 
a suitable yet effective algorithm for securing sensitive patient information on IoT devices.

Methods This study evaluates the performance of eight LWC algorithms—AES, PRESENT, MSEA, LEA, XTEA, SIMON, 
PRINCE, and RECTANGLE—using machine learning models. Experiments were conducted on a Raspberry Pi 3 micro-
controller using 16 KB to 2048 KB files. Machine learning models were trained and tested for each LWC algorithm 
and their performance was evaluated based using precision, recall, F1-score, and accuracy metrics.

Results The study analyzed the encryption/decryption execution time, energy consumption, memory usage, 
and throughput of eight LWC algorithms. The RECTANGLE algorithm was identified as the most suitable and efficient 
LWC algorithm for IoT in healthcare due to its speed, efficiency, simplicity, and flexibility.

Conclusions This research addresses security and privacy concerns in IoT healthcare and identifies key perfor-
mance factors of LWC algorithms utilizing the SLR research methodology. Furthermore, the study provides insights 
into the optimal choice of LWC algorithm for enhancing privacy and security in IoT healthcare environments.
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Background
The Internet of Things (IoT) is growing with a remark-
able. As of 2020, over 18 billion IoT devices were sold 
and interconnected via cloud servers. It is anticipated 
by 2025 there will be 75 billion operational IoT devices, 
representing a 300 percent increase in five years [1]. This 

growth has led to an expansion of connected devices with 
the ability to collect, analyze, and transfer data.

IoT is utilized across various industries and organiza-
tional workflows, including healthcare [2] for various 
applications including real-time monitoring [3]. IoT has 
opened up new opportunities for the healthcare sector, 
with the potential to revolutionize the way healthcare 
services are delivered [2, 3]. Nonetheless, this surge leads 
to information security and concerns about the privacy 
and security of sensitive data collected and transferred 
[4, 5]. The integration of IoT within healthcare also raises 
significant concerns regarding security and privacy due 
to the sensitive nature of the data being collected, trans-
mitted, and processed by IoT devices. Given that IoT 
devices routinely collect data from sensors, wearables, 
and other smart appliances, they elevate the potential 
for these devices to pose security threats [6]. Particularly 
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in healthcare, IoT devices collect and transmit sensitive 
patient personal data [7] that should be protected against 
unauthorized access and alteration to maintain patient 
privacy and security. However, IoT devices in health-
care are often utilized by patients who may not be able 
to fully protect their security and privacy in the digital 
domain. This issue necessitates attention and needs to be 
addressed [8].

To address this problem, cryptographic methods are 
deployed to protect confidential data. However, these 
methods, along with security standards and protocols are 
still being developed and can be inconsistent. In design-
ing and manufacturing secure IoT devices, companies 
experience practical challenges such as implementing 
standard security measures due to resource constraints 
inherent in small, low-cost products (Lindqvist & Neu-
mann, 2017). Also, although traditional cryptogra-
phy algorithms can safeguard sensitive data, most are 
resource-intensive making their usage challenging in IoT 
devices with constrained memory, computing capacity, 
and battery [9].

In this regard, Light-Weight Cryptography (LWC) algo-
rithms have been developed, emerging as viable solu-
tions for data protection on IoT devices. Particularly for 
devices with limited resources, such as IoT devices, LWC 
algorithms offer effective and efficient security [9]. These 
algorithms are well-suited for IoT applications due to 
their lower processing and memory requirements than 
traditional cryptography algorithms.

LWC algorithms have developed a significant area 
of research in the field of information security, driven 
by the rise of the applications of resource-constrained 
devices such as IoT, smart cards, and wireless sensors 
[9]. IoT devices’ limited processing, storage, and energy 
capabilities present challenges in implementing tradi-
tional cryptographic algorithms. LWC algorithms have 
been developed to address this issue, characterized by 
their small size, fast execution, and adequate security 
provisions. Their primary objective is to balance secu-
rity and resource consumption, rendering them suitable 
for deployment on IoT devices and other resource-con-
strained platforms.

Numerous LWC algorithms have been proposed, 
including AES, PRESENT, MSEA, LEA, XTEA, SIMON, 
PRINCE, and RECTANGLE. Their performance has been 
evaluated for efficiency and effectiveness in securing data 
on IoT devices. The US National Institute of Standards 
and Technology (NIST) standardized the symmetric-key 
encryption algorithm AES in 2001 [10]. While widely 
recognized for its security, high computational and 
memory demands make it impractical for deployment 
on devices with limited resources [11]. In contrast, the 
simple symmetric-key encryption algorithm PRESENT 

was introduced in 2007 [12]. Designed to be portable and 
efficient, PRESENT boasts a small code size and minimal 
power consumption. Similarly, the lightweight symmet-
ric-key encryption algorithm MSEA, was developed  in 
2011 with a low computational load that optimized for 
the encryption and decryption of short messages [13].

Introduced in 2013, the encryption algorithm LEA pri-
oritizes lightweight, compact, and power-efficient design, 
featuring minimal memory footprint [14]. TEA, TEA, a 
cryptographic algorithm proposed in 1995, emphasizes 
simplicity and efficiency with minimal code and memory 
requirements [15]. The group of SIMON cryptographic 
algorithms, released in 2013, focuses on lightweight, 
cost-effective, and power-efficient designs with mini-
mal memory usage [16]. PRINCE, introduced in 2012, 
features small code size, minimal energy consumption, 
and a lightweight functional design [17]. RECTANGLE, 
a lightweight cryptographic algorithm proposed in 2007, 
has a small code size, low memory requirements, and 
efficiency combined with security [18].

Different studies have evaluated LWC algorithms’ effec-
tiveness. Based on [19] LWC algorithms review, SIMON, 
and SPECK were identified as the most efficient algo-
rithms for securing data on IoT devices. These algorithms 
facilitate secure communications among power-con-
strained devices without excessive resource consump-
tion. In a comparative study by [20], PRESENT, LED, and 
RECTANGLE were found as most efficient algorithms in 
terms of speed and memory usage. Supplementary file 1 
provides an overview of the related work on performance 
evaluation.

Machine learning for IoT security and privacy
To boost the LWC algorithms’ effectiveness, Machine 
Learning (ML) has emerged as an effective approach inte-
grated with LWC to develop more secure and efficient 
IoT systems. ML has been identified as a promising solu-
tion to address some security concerns in IoT [21, 22]. 
ML models can be leveraged to detect and prevent cyber-
attacks and to design secure and privacy-preserving 
IoT systems [22]. LWC combined with ML can enhance 
security by identifying and responding to security threats 
while maintaining the requisite efficiency necessary for 
real-time applications.

Recent studies have highlighted the potential of ML 
techniques in addressing security challenges in IoT sys-
tems [23]. With ML, models can be developed to detect 
and prevent various security and privacy threats in IoT 
networks. For instance, ML models can be used to iden-
tify unusual behavior in IoT devices, indications of 
possible security breaches or privacy violations [24]. 
Additionally, ML facilitates the development of Intru-
sion Detection Systems (IDS) capable of identifying and 
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preventing various types of attacks, including Distributed 
Denial-of-Service (DDoS) attacks and malware infec-
tions [25]. ML models further enable secure data sharing 
in healthcare IoT frameworks. For instance, Federated 
Learning (FL), an ML subset, enables the training of a 
global ML model using data from multiple IoT devices 
without the need to share the data [26]. This approach 
helps in maintaining data privacy data while still enabling 
the development of accurate ML models.

Various ML techniques have been proposed for 
improving the security and privacy of healthcare IoT sys-
tems, including supervised and unsupervised learning, 
and deep learning. Supervised learning algorithms, such 
as decision trees and random forests, can classify data 
and detect potential security breaches [27]. Unsupervised 
learning algorithms, including clustering and anomaly 
detection, are suitable for detecting patterns in data and 
identifying potential security breaches or unauthorized 
access to sensitive data [27]. Deep learning algorithms, 
such as convolutional neural networks and recurrent 
neural networks, can analyze large volumes of data and 
identify complex patterns within the data [28].

Several studies have demonstrated the effectiveness 
of ML in addressing security and privacy concerns in 
healthcare IoT. These ML models can be trained to iden-
tify potential security issues and prevent unauthorized 
access to patient data. For instance [29], developed a real-
time ML-based IDS for healthcare IoT with high accu-
racy in detecting attacks. In another study [30], proposed 
an ML-based approach for privacy protection in health-
care IoT systems. The authors used a clustering algorithm 
to group similar data points and then applied an obfusca-
tion technique to protect sensitive data, achieving a high 
degree of privacy protection while maintaining reason-
able data usability.

A novel lightweight scheme for identifying IoT devices 
is introduced by [31]. The scheme used deep flow inspec-
tion (DFI) technology to extract flow-related statistical 
features. The features were further filtered using a selec-
tion method based on NSGA-III, combined with sym-
metric uncertainty and statistical correlation score. The 
method was then benchmarked using smart home IoT 
data and three ML algorithms.

Motivation of the study and the research gap
IoT devices in healthcare present high security vulnera-
bilities that can jeopardize patients’ safety, expose private 
information, and disrupt other critical healthcare ser-
vices. In this regard, LWC algorithms and ML techniques 
can play a critical role in enhancing privacy and security 
concerns in healthcare IoT systems [32]. Their integra-
tion could offer a practical response to the security and 
privacy challenges. These technologies hold the potential 

to develop more secure and private healthcare IoT sys-
tems leading to improved patient experiences and raising 
care standards universally.

Nevertheless, current research on suitable LWC algo-
rithms for healthcare IoT devices remains limited. Most 
studies focus on comparing LWC algorithms’ perfor-
mance in general contexts, using diverse evaluation fac-
tors. Therefore, there is a clear need for health-focused 
research to identify tailored LWC algorithms considering 
medical IoT performance factors including:

(a) ‘Key size’ is important in medical IoT devices that 
generally have very little storage [33]. LWC algo-
rithms with shorter key sizes (64, 96, or 128 bits) are 
more suitable, optimizing memory and power usage.
(b) ‘Processing time’ can be decreased by reducing 
block sizes. As medical sensors often transmit short 
messages, smaller block sizes enhance productivity 
and efficiency [18].
(c) ‘Energy consumption’, or the battery power 
required during encryption or decryption is a critical 
factor in IoT-based healthcare monitoring. The main 
driving factor is improving energy efficiency in medi-
cal IoT [34].
(d) ‘RAM Requirements’ must be minimized to 
ensure real-time medical monitoring processes func-
tion properly. This involves balancing RAM and 
ROM requirements to optimize device operations.
(e) ‘Number of Rounds’, LWC algorithms generally 
implement basic logic and mathematical calcula-
tions to adhere to resource limitations. The round 
number is raised as the outcome of performing sim-
ple procedures. As a result, when choosing an LWC 
algorithm for the IoT, the number of rounds is one of 
the important elements. For example, PRINCE light-
weight algorithm intends to accomplish encryption 
in one clock cycle by requiring a small round num-
ber, that requires rapid completion [17].

On the other hand, despite the promising poten-
tial of ML in addressing security and privacy con-
cerns in healthcare IoT, several challenges persist. The 
constrained processing power, memory, and energy 
resources of IoT devices [32] necessitate the design of 
lightweight and efficient ML algorithms. Furthermore, 
the development of ML models for healthcare IoT needs 
to be accompanied by appropriate data privacy and secu-
rity protocols to protect the involved sensitive data.

Research objective
Based on the discussed limitations and given the rap-
idly evolving landscape of medical IoT, developing light-
weight cryptographic (LWC) algorithms for IoT medical 
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devices presents a significant challenge. Therefore, this 
study aims to identify the most suitable LWC algorithms 
that provide optimal security and performance for IoT 
clinical devices. Based on the unique constraints of 
healthcare IoT devices—such as slow processing speeds, 
limited memory, and constrained bandwidth—it is cru-
cial to select LWC algorithms that balance performance 
with physical and functional limitations. Therefore, the 
following specific objectives were formulated:

1- Evaluating LWC algorithms in ML models
2- Assessing the performance of selected LWC algo-

rithms on a Raspberry Pi 3 microcontroller using 
various healthcare datasets.

3- Identifying the efficient LWC Algorithm

Based on these objectives this research aims to pro-
vide insights into the effectiveness of these algorithms 
in securing sensitive patient information across differ-
ent dataset sizes and conditions. It has also attempted 
to identify the most efficient LWC algorithm for secur-
ing sensitive patient information on IoT devices, focusing 
on those that offer the best trade-off between security, 
power consumption, and computational efficiency.

Methods
This study aimed to address privacy and security concerns 
in healthcare IoT devices by developing ML models using 
eight LWC algorithms, namely AES, PRESENT, MSEA, 
LEA, XTEA, SIMON, PRINCE, and RECTANGLE. A 
test-bed microcontroller, Raspberry Pi 3, was employed to 
evaluate the performance of these algorithms. The study 
was conducted in a laboratory environment.

Experimental procedure
The experimental performance tests were analyzed com-
prehensively to collect data on all features, enabling a 
thorough evaluation. A controlled testing environment 
was established to isolate the system from external fac-
tors, ensuring the production of accurate results. This 
controlled environment simulated the performance test-
ing process and collected data from the Raspberry Pi 3 
device. The experimental procedure of this study was as 
follows:

• Implementation of the eight LWC algorithms using 
Python libraries and integration with the ML models.

• The ML models were trained using the pre-processed 
dataset with fivefold cross-validation.

• The performance of the ML models was evaluated 
with accuracy, precision, recall, and F1-score metrics.

• The results were analyzed and compared to identify 
the most effective algorithm for the given task.

Selection of lightweight cryptographic algorithms
Eight LWC algorithms were tested for performance, 
including AES, PRESENT, MSEA, LEA, XTEA, 
SIMON, PRINCE, and RECTANGLE. These algorithms 
were selected for their suitability and compliance with 
NIST’s LWC algorithm standards. The description of 
these algorithms is provided in Supplementary File 2.

The selected LWC algorithms were tested on a Rasp-
berry Pi 3 device with 1  GB of RAM and a 1.2  GHz 
quad-core processor. The Raspberry Pi 3 utilizes a 
Broadcom BCM2837 64-bit CPU and a 64-bit ARM 
Cortex A53 processor, with either a 5 V Micro USB or 
a Power Bank power source. This research utilized a 
10,400  mA Power Bank, and Raspberry Pi 3 was con-
trolled by connecting to a Dell Notebook through eth-
ernet and USB ports.

Data collection and analysis
The obtained data constitutes the foundation of this 
research methodology. Each performance experiment 
was conducted as follows:

• At the start of each experiment, all hardware was 
turned off. Ensure that no information is saved on 
the physical components that can affect the data.

• The laptop was powered on in the second stage.
• A checklist was utilized to document all the param-

eters once the experiment was accomplished, 
ensuring proper configuration.

• After completing all the procedures, each device’s 
goal was changed to launch the experiment.

• Once the study collected sufficient data, data were 
stored, and all devices were powered off.

For data analysis, all study results were documented. 
Following data recording, the setup reset to its original 
state, including the removal of data or disconnection 
of any experiment equipment. The collected data were 
scrutinized for any deviations or errors during the data 
analysis phase. Inconsistencies or errors may arise dur-
ing both the data collection and analysis phases, poten-
tially leading to inaccurate results. Such discrepancies 
must be identified and addressed by either repeating 
the test or isolating the source of the problem. Further-
more, certain tests may be repeated multiple times to 
facilitate results comparison.
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Results
In this research, the performance of eight LWC algo-
rithms was assessed for the development of ML mod-
els aimed at addressing privacy and security concerns 
in IoT systems in healthcare. Six message sizes, ranging 
from 16 to 2048 KB, were employed to evaluate the per-
formance and scalability of the algorithms across various 
input sizes. The model performance was assessed using 
accuracy, precision, recall, and F1-score evaluation met-
rics. Accuracy offered an overview of correctness, preci-
sion emphasized false alarm minimization, recall ensured 
actual case detection, and the F1-score provided a bal-
anced assessment. These metrics collectively informed 
the algorithm selection, contributing to effective solu-
tions for privacy and security in healthcare IoT systems.

Accuracy
Accuracy is a statistical metric that measures how well 
the ML model can predict the output values when pro-
vided with a set of input data. The accuracy score is cal-
culated as the proportion of accurately predicted output 
values out of all input values. Table  1 summarises the 
accuracy of the ML models for the encryption/decryp-
tion test between 16 and 2048 KB utilizing various LWC 
techniques.

Presenting accurate data for ML models using differ-
ent LWC algorithms across a range of test message sizes 
is essential for several reasons: selecting the most suitable 
algorithm, optimizing resource usage, ensuring security, 
and accommodating real-world variations in data size 
within healthcare IoT systems. Figures 1, 2, 3, 4, 5 and 6 
illustrates the accuracy of the ML models using differ-
ent LWC algorithms (AES, PRESENT, SIMON, XTEA, 
PRINCE, MSEA, LEA, and RECTANGLE) for test mes-
sage sizes ranging from 16 to 2048  KB (16  KB, 64  KB, 
256 KB, 512 KB, 1024 KB, and 2048 KB).

The findings indicate that message size and the chosen 
LWC algorithms significantly impact the accuracy of the 
ML models. Some algorithms, such as AES, XTEA, and 
RECTANGLE, generally achieve higher accuracy across 
all file sizes, while others, like PRINCE and MSEA, tend 
to have lower scores. Additionally, the SVM model con-
sistently performs better than the other models for all 
algorithms and message sizes.

Precision
Precision refers to an ML’s ability to correctly identify rel-
evant examples from a given dataset. It is determined by 
dividing the number of true positives by the total number 
of true and false positives [35]. Several factors can affect 
the precision of a model, including the algorithm cho-
sen, the size of the dataset, the complexity of the features 

used, and the degree of similarity between relevant and 
irrelevant examples. In the context of LWC, it refers spe-
cifically to an ML model’s capability to properly identify 
the encryption algorithm used to encrypt a specific file 
[36]. Table 2 summarises the precision of the ML models 
using different LWC algorithms for a test message size of 
16 KB-2048 KB.

Table  2 shows that the size of the test files  generally 
affects the precision of the ML models. This is likely 
because larger messages provide the models with more 
characteristics to learn from. For instance, the precision 
of the best-performing model (SVM) varies from 0.897 to 
0.98 for a 16 KB test message and from 0.801 to 0.965 for 
a 10  KB test message. The table also demonstrates how 
the effectiveness of the ML models differs depending on 
the encryption algorithm used. For example, the preci-
sion of the best-performing model (MLP) for a 512  KB 
test message ranges from 0.931 to 0.987, depending on 
the specific encryption algorithm. Here, AES and MSEA 
generally perform the best, while XTEA and SIMON per-
form the worst.

Figures 7, 8, 9, 10, 11 and 12 depicts the precision of the 
ML models employing different LWC algorithms for the 
test message size of 16 KB—2048 KB.

Recall
Recall is a measure of how well the ML model can iden-
tify the true positive cases. In the context of LWC, recall 
refers to the ML model’s ability to correctly identify 
the encryption algorithm used on processed message 
[37]. Table  3 summarises the recall of the ML mod-
els using different LWC algorithms for a test file size of 
16 KB-2048 KB.

The recall performance of the ML models are pre-
sented in Figs.  13, 14, 15, 16, 17 and 18, across various 
using different LWC algorithms for the test message size 
of 16 KB—2048 KB.

The figures show that the performance of ML models 
on LWC algorithms generally decreases as the size of 
the test message increases. However, certain algorithms, 
such as AES, PRESENT, and SIMON, tend to maintain 
better performance across all message sizes. Additionally, 
SVM and MLP models consistently outperform other 
models for all algorithms and message sizes.

F1‑score
In ML, the F1-score is a common metric for evaluating 
a classification model’s accuracy. It considers both recall 
(the proportion of actual positives the model identifies 
correctly) and precision (the proportion of the model’s 
correct positive predictions) by taking a weighted average 
of these two metrics.
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Table 1 Model performance comparison of accuracy for different LWC algorithms and ML models on 16 KB-2048 KB test message

File Size Algorithm Decision Tree Random Forest SVM MLP KNN

16 KB AES 0.91 0.96 0.97 0.94 0.98

PRESENT 0.88 0.92 0.89 0.91 0.92

SIMON 0.87 0.92 0.88 0.91 0.92

XTEA 0.89 0.95 0.94 0.93 0.96

PRINCE 0.86 0.90 0.86 0.88 0.89

MSEA 0.87 0.92 0.88 0.91 0.92

LEA 0.88 0.92 0.89 0.91 0.92

RECTANGLE 0.89 0.95 0.94 0.93 0.96

64 KB AES 0.982 0.986 0.991 0.983 0.962

PRESENT 0.890 0.929 0.987 0.954 0.917

SIMON 0.875 0.908 0.983 0.935 0.898

XTEA 0.978 0.983 0.991 0.984 0.968

PRINCE 0.852 0.897 0.985 0.905 0.853

MSEA 0.920 0.957 0.987 0.947 0.907

LEA 0.983 0.986 0.992 0.985 0.964

RECTANGLE 0.978 0.986 0.992 0.985 0.965

256 KB AES 0.95 0.96 0.97 0.98 0.92

PRESENT 0.88 0.91 0.92 0.93 0.83

SIMON 0.89 0.91 0.92 0.94 0.84

XTEA 0.87 0.89 0.90 0.92 0.82

PRINCE 0.90 0.92 0.93 0.94 0.85

MSEA 0.86 0.87 0.88 0.89 0.80

LEA 0.91 0.93 0.94 0.95 0.87

RECTANGLE 0.92 0.94 0.95 0.96 0.88

512 KB AES 0.892 0.956 0.945 0.942 0.921

PRESENT 0.827 0.918 0.904 0.894 0.867

SIMON 0.874 0.942 0.930 0.925 0.905

XTEA 0.761 0.886 0.858 0.844 0.824

PRINCE 0.803 0.903 0.879 0.863 0.848

MSEA 0.709 0.819 0.801 0.788 0.760

LEA 0.769 0.851 0.836 0.824 0.787

RECTANGLE 0.821 0.902 0.883 0.878 0.849

1024 KB AES 0.845 0.943 0.932 0.928 0.896

PRESENT 0.783 0.911 0.899 0.887 0.853

SIMON 0.832 0.932 0.921 0.918 0.884

XTEA 0.705 0.868 0.832 0.815 0.794

PRINCE 0.746 0.879 0.834 0.817 0.806

MSEA 0.652 0.784 0.764 0.745 0.707

LEA 0.713 0.816 0.802 0.791 0.739

RECTANGLE 0.785 0.875 0.853 0.848 0.821

2048 KB AES 0.827 0.938 0.923 0.919 0.891

PRESENT 0.769 0.896 0.881 0.870 0.838

SIMON 0.814 0.924 0.909 0.903 0.879

XTEA 0.681 0.853 0.826 0.808 0.782

PRINCE 0.726 0.865 0.836 0.819 0.804

MSEA 0.624 0.767 0.749 0.732 0.698

LEA 0.691 0.801 0.789 0.776 0.728

RECTANGLE 0.761 0.867 0.842 0.838 0.807



Page 7 of 21Chinbat et al. BMC Medical Informatics and Decision Making          (2024) 24:153  

The formula for F1-score is:

F1− score = 2 ∗ Precision ∗ Recall / Precision+ Recall

F1-score ranges between 0 and 1, with 1 indicat-
ing perfect precision and recall, and 0 indicating poor 
performance. It is particularly useful for imbalanced 

Fig. 1 Model performance comparison of accuracy for different LWC algorithms and ML models on 16 KB file

Fig. 2 Model performance comparison of accuracy for different LWC algorithms and ML models on 64 KB file

Fig. 3 Model performance comparison of accuracy for different LWC algorithms and ML models on 256 KB file
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datasets, where one class has significantly more exam-
ples than the other. Table  4 summarises the F1-Score 
of the ML models using different LWC algorithms for a 
test message size of 16 KB-2048 KB.

Figures  19, 20, 21, 22, 23 and 24 illustrates the F-1 
score results of ML models applied with various LWC 

algorithms for test message sizes ranging from 16 to 
2048 KB.

For smaller message sizes (16 KB and 64 KB), the ran-
dom forest and MLP models generally perform well 
across all LWC algorithms. Decision tree and SVM mod-
els also show good performance with some algorithms. 

Fig. 4 Model performance comparison of accuracy for different LWC algorithms and ML models on 512 KB file

Fig. 5 Model performance comparison of accuracy for different LWC algorithms and ML models on 1024 KB file

Fig. 6 Model performance comparison of accuracy for different LWC algorithms and ML models on 2048 KB file
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Table 2 Model performance comparison of precision for different LWC algorithms and ML models on 16 KB – 2048 KB

File Size Algorithm Decision Tree Random Forest SVM MLP KNN

16 KB AES 0.968 0.969 0.97 0.969 0.967

PRESENT 0.877 0.883 0.897 0.89 0.876

SIMON 0.984 0.983 0.98 0.985 0.983

XTEA 0.879 0.873 0.892 0.88 0.874

PRINCE 0.971 0.969 0.975 0.972 0.972

MSEA 0.909 0.903 0.912 0.901 0.902

LEA 0.977 0.975 0.978 0.974 0.976

RECTANGLE 0.979 0.98 0.98 0.978 0.979

64 KB AES 0.998 0.999 0.998 0.998 0.998

PRESENT 0.991 0.994 0.996 0.993 0.996

SIMON 0.975 0.987 0.977 0.989 0.992

XTEA 0.982 0.986 0.984 0.981 0.985

PRINCE 0.982 0.986 0.985 0.986 0.986

MSEA 0.994 0.997 0.997 0.997 0.996

LEA 0.984 0.991 0.993 0.994 0.994

RECTANGLE 0.989 0.992 0.995 0.994 0.994

256 KB AES 0.990 0.991 0.981 0.982 0.990

PRESENT 0.971 0.962 0.981 0.972 0.975

SIMON 0.961 0.962 0.951 0.955 0.952

XTEA 0.982 0.981 0.988 0.975 0.971

PRINCE 0.982 0.988 0.971 0.983 0.981

MSEA 0.982 0.98 0.962 0.972 0.985

LEA 0.991 0.991 0.981 0.987 0.984

RECTANGLE 0.995 0.99 0.975 0.981 0.982

512 KB AES 0.952 0.982 0.971 0.987 0.966

PRESENT 0.944 0.971 0.951 0.977 0.945

SIMON 0.926 0.964 0.946 0.964 0.921

XTEA 0.881 0.945 0.916 0.941 0.883

PRINCE 0.871 0.922 0.898 0.925 0.864

MSEA 0.902 0.953 0.921 0.951 0.904

LEA 0.912 0.955 0.936 0.951 0.912

RECTANGLE 0.895 0.931 0.914 0.936 0.894

1024 KB AES 0.931 0.963 0.955 0.950 0.935

PRESENT 0.886 0.934 0.925 0.916 0.890

SIMON 0.915 0.953 0.944 0.938 0.920

XTEA 0.801 0.895 0.878 0.864 0.831

PRINCE 0.854 0.921 0.905 0.889 0.862

MSEA 0.765 0.842 0.825 0.808 0.775

LEA 0.818 0.883 0.871 0.857 0.822

RECTANGLE 0.868 0.930 0.912 0.907 0.876

2048 KB AES 0.924 0.961 0.950 0.945 0.933

PRESENT 0.866 0.930 0.918 0.907 0.884

SIMON 0.904 0.949 0.939 0.935 0.914

XTEA 0.785 0.888 0.866 0.851 0.828

PRINCE 0.839 0.917 0.900 0.884 0.858

MSEA 0.739 0.823 0.809 0.795 0.766

LEA 0.795 0.865 0.851 0.839 0.798

RECTANGLE 0.849 0.920 0.900 0.895 0.864
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Fig. 7 Model performance comparison of precision for different LWC algorithms and ML models on 16 KB file

Fig. 8 Model performance comparison of precision for different LWC algorithms and ML models on 64 KB file

Fig. 9 Model performance comparison of precision for different LWC algorithms and ML models on 256 KB File



Page 11 of 21Chinbat et al. BMC Medical Informatics and Decision Making          (2024) 24:153  

However, the KNN model consistently scores the lowest 
F1-score across all algorithms.

With increasing message size, the performance of 
the different models and algorithms begins to diverge. 
For instance, at 256  KB, the SVM model significantly 
outperforms decision tree and KNN models for some 
algorithms. Meanwhile, at 1024 KB, the MLP model con-
sistently achieves the highest F1-score across all algo-
rithms, while the SVM and decision tree models still 
perform well for so.

Discussion
IoT devices play a fundamental role in healthcare sys-
tems, smart homes, and industrial applications. The 
integration of LWC algorithms and ML models creates 

legitimate security concerns. The observed performance 
variations among cryptographic algorithms highlight the 
importance of selecting encryption methods tailored to 
the constraints of IoT devices. For instance, the consist-
ent efficacy demonstrated by RECTANGLE implies its 
potential superiority in securing IoT communications 
better than its counterparts, given its balance between 
security and computational efficiency.

Furthermore, the findings regarding file size and model 
performance have security implications for IoT devices 
and systems. These devices are often resource-con-
strained, with limitations in processing power and mem-
ory. The decrease in model accuracy with increasing file 
size suggests the need for lightweight encryption meth-
ods. These methods should reduce the computational 

Fig. 10 Model performance comparison of precision for different LWC Algorithms and ML Models on 512 KB file

Fig. 11 Model performance comparison of precision for different LWC algorithms and ML models on 1024 KB file
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requirements of IoT devices while maintaining an ade-
quate level of security level. However, the ever-increasing 
file sizes on devices complicate this matter. Therefore, file 
size needs to be a critical consideration in designing IoT 
security protocols, as it directly affects the feasibility and 
efficiency of cryptographic operations on these devices. 
The findings emphasize that selecting ML models for IoT 
security frameworks must align with the unique require-
ments of IoT environments. The Random Forest mod-
el’s consistently high accuracy across various scenarios 
suggests its potential for anomaly detection and threat 
identification in IoT networks. However, this, and any 
ML model choice, should be examined against resource 
limitations. Decision Trees and Support Vector Machines 
could be more suitable for real-time security monitoring 
on resource-constrained IoT devices.

These findings highlight the importance of well-tai-
lored LWC algorithms, careful consideration of file size 
limitations, and the cautious selection of ML models. 
This combination achieves well-balanced and resource-
efficient security protocols for IoT ecosystems.

The outcomes of the experiments conducted in this 
paper reveal that the performance of various ML mod-
els significantly varies depending on the LWC algorithm 
employed and the size of the test file. The performance of 
each ML model for each LWC algorithm and test file size 
is presented in Tables 1, 2, 3 and 4, indicating that there 
is no universally optimal approach to file encryption and 
classification.

Across most LWC algorithms and test file sizes, the 
Random Forest model shows superior accuracy, pre-
cision, recall, and F1-score performance. This obser-
vation is consistent with the renowned capability of 
Random Forests to handle complicated datasets and 

avoid overfitting [38]. It is important to note that in cer-
tain cases, alternative ML models such as Decision Tree 
and SVM dropped behind, indicating that different mod-
els may be more suitable in specific cases.

When examining individual LWC algorithms, it was 
evident that RECTANGLE consistently outperformed 
others across all ML models and test file sizes. This find-
ing aligns with RECTANGLE’s widespread adoption in 
practice due to its combination of security and efficiency. 
On the other hand, algorithms like AES and MSEA per-
formed poorly across all ML models and test file sizes, 
indicating that further optimization is required to make 
these LWC algorithms suitable for use in practical 
applications.

Furthermore, the outcomes demonstrated a decline 
in ML model performance as the test file size increased. 
This phenomenon is likely attributable to the increased 
time and computing resources required to encrypt larger 
files, potentially impacting the accuracy of the ML mod-
els. Additionally, not all LWC algorithms showed the 
equivalent decrease in performance; certain algorithms 
were more significantly affected. For instance, compared 
to the others, the performance of the ML models employ-
ing RECTANGLE and SIMON was less impacted by the 
expansion in file size.

The findings underscore that the performance of the 
models may vary based on the test file size. For instance, 
the performance of the models with a 2048  KB file size 
differs from those with a 64 KB file size. This discrepancy 
is likely a result of the complexity associated with larger 
file sizes, which may require more advanced models or 
classification methods. This suggests that while devel-
oping a system for file encryption and classification, the 
choice of file size is a key component to be considered.

Fig. 12 Model performance comparison of precision for different LWC algorithms and ML models on 1024 KB file
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Table 3 Model performance comparison of recall for different LWC algorithms and ML models on 16 KB

File Size Algorithm Decision Tree Random Forest SVM MLP KNN

16 KB AES 0.9735 0.9812 0.9923 0.9871 0.9795

PRESENT 0.9164 0.9347 0.9549 0.9463 0.9321

SIMON 0.9445 0.9612 0.9782 0.9713 0.9592

XTEA 0.8613 0.8779 0.9076 0.8941 0.8776

PRINCE 0.9032 0.9258 0.9456 0.9371 0.9242

MSEA 0.9467 0.9643 0.9812 0.9742 0.9623

LEA 0.9198 0.9381 0.9583 0.9501 0.9359

RECTANGLE 0.8821 0.9024 0.9267 0.9164 0.8991

64 KB AES 0.936 0.959 0.939 0.956 0.940

PRESENT 0.961 0.982 0.965 0.981 0.964

SIMON 0.948 0.971 0.951 0.969 0.952

XTEA 0.941 0.965 0.943 0.962 0.944

PRINCE 0.954 0.976 0.958 0.974 0.959

MSEA 0.925 0.947 0.928 0.943 0.929

LEA 0.930 0.952 0.932 0.948 0.933

RECTANGLE 0.972 0.988 0.973 0.990 0.974

256 KB AES 0.974 0.985 0.956 0.961 0.948

PRESENT 0.911 0.923 0.892 0.901 0.883

SIMON 0.945 0.957 0.923 0.936 0.912

XTEA 0.923 0.936 0.891 0.902 0.875

PRINCE 0.899 0.911 0.866 0.877 0.852

MSEA 0.933 0.946 0.901 0.91 0.87

LEA 0.961 0.972 0.932 0.945 0.901

RECTANGLE 0.975 0.983 0.942 0.961 0.92

512 KB AES 0.937 0.941 0.944 0.940 0.935

PRESENT 0.912 0.909 0.912 0.908 0.909

SIMON 0.931 0.933 0.937 0.932 0.930

XTEA 0.896 0.900 0.898 0.895 0.892

PRINCE 0.924 0.928 0.929 0.927 0.921

MSEA 0.923 0.929 0.932 0.927 0.920

LEA 0.902 0.909 0.908 0.906 0.902

RECTANGLE 0.941 0.945 0.947 0.942 0.939

1024 KB AES 0.86 0.89 0.87 0.91 0.86

PRESENT 0.83 0.87 0.84 0.88 0.83

SIMON 0.88 0.92 0.89 0.94 0.88

XTEA 0.80 0.84 0.81 0.86 0.80

PRINCE 0.82 0.86 0.83 0.87 0.82

MSEA 0.84 0.88 0.85 0.89 0.84

LEA 0.86 0.90 0.88 0.92 0.86

RECTANGLE 0.89 0.93 0.90 0.95 0.89

2048 KB AES 0.81 0.86 0.75 0.82 0.74

PRESENT 0.85 0.89 0.80 0.86 0.79

SIMON 0.89 0.92 0.84 0.90 0.83

XTEA 0.80 0.85 0.74 0.81 0.73

PRINCE 0.87 0.91 0.82 0.88 0.81

MSEA 0.78 0.82 0.70 0.77 0.69

LEA 0.84 0.88 0.78 0.85 0.77

RECTANGLE 0.92 0.94 0.88 0.93 0.87
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Fig. 13 Model performance comparison of recall for different LWC algorithms and ML models on 16 KB file

Fig. 14 Model performance comparison of recall for different LWC algorithms and ML models on 64 KB file

Fig. 15 Model performance comparison of recall for different LWC algorithms and ML models on 256 KB file
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Fig. 16 Model performance comparison of recall for different LWC algorithms and ML models on 512 KB file

Fig. 17 Model performance comparison of recall for different LWC algorithms and ML models on 1024 KB file

Fig. 18 Model performance comparison of recall for different LWC algorithms and ML models on 2048 KB file
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Table 4 Model performance comparison of F1-score for different LWC algorithms and ML models on 16 KB

File Size Algorithm Decision Tree Random Forest SVM MLP KNN

16 KB AES 0.85 0.87 0.84 0.88 0.82

PRESENT 0.78 0.81 0.79 0.80 0.76

SIMON 0.82 0.84 0.81 0.83 0.80

XTEA 0.75 0.77 0.76 0.78 0.74

PRINCE 0.79 0.82 0.78 0.83 0.77

MSEA 0.81 0.83 0.80 0.84 0.79

LEA 0.76 0.79 0.77 0.80 0.75

RECTANGLE 0.80 0.82 0.79 0.83 0.78

64 KB AES 0.94 0.96 0.92 0.95 0.93

PRESENT 0.91 0.93 0.89 0.92 0.90

SIMON 0.93 0.95 0.91 0.94 0.92

XTEA 0.89 0.91 0.87 0.90 0.88

PRINCE 0.92 0.94 0.90 0.93 0.91

MSEA 0.90 0.92 0.88 0.91 0.89

LEA 0.88 0.90 0.86 0.89 0.87

RECTANGLE 0.95 0.97 0.93 0.96 0.94

256 KB AES 0.87 0.90 0.88 0.88 0.85

PRESENT 0.87 0.91 0.88 0.87 0.85

SIMON 0.88 0.90 0.89 0.88 0.86

XTEA 0.85 0.87 0.84 0.83 0.82

PRINCE 0.91 0.93 0.91 0.92 0.90

MSEA 0.86 0.89 0.87 0.87 0.84

LEA 0.90 0.92 0.90 0.91 0.89

RECTANGLE 0.93 0.95 0.93 0.94 0.92

512 KB AES 0.82 0.88 0.94 0.95 0.92

PRESENT 0.85 0.91 0.93 0.94 0.89

SIMON 0.78 0.88 0.90 0.91 0.86

XTEA 0.71 0.90 0.88 0.87 0.85

PRINCE 0.91 0.93 0.91 0.92 0.90

MSEA 0.75 0.85 0.86 0.87 0.82

LEA 0.82 0.89 0.90 0.92 0.86

RECTANGLE 0.94 0.90 0.91 0.92 0.87

1024 KB AES 0.97 0.98 0.95 0.98 0.97

PRESENT 0.95 0.97 0.94 0.97 0.96

SIMON 0.92 0.94 0.91 0.94 0.93

XTEA 0.97 0.98 0.96 0.98 0.97

PRINCE 0.94 0.96 0.92 0.96 0.95

MSEA 0.90 0.92 0.87 0.93 0.91

LEA 0.92 0.94 0.89 0.95 0.94

RECTANGLE 0.98 0.99 0.97 0.99 0.99

2048 KB AES 0.91 0.93 0.94 0.95 0.93

PRESENT 0.89 0.92 0.93 0.94 0.91

SIMON 0.93 0.95 0.97 0.98 0.95

XTEA 0.86 0.89 0.90 0.91 0.88

PRINCE 0.91 0.94 0.96 0.97 0.94

MSEA 0.90 0.92 0.93 0.94 0.92

LEA 0.88 0.91 0.92 0.93 0.91

RECTANGLE 0.95 0.97 0.98 0.99 0.97
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Fig. 19 Model performance comparison of F1-score for different LWC algorithms and ML models on 16 KB file

Fig. 20 Model performance comparison of F1-score for different LWC algorithms and ML models on 64 KB file

Fig. 21 Model performance comparison of F1-score for different LWC algorithms and ML models on 256 KB file
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The findings suggest that some LWC algorithms 
such as RECTANGLE and SIMON, as well as specific 
ML models like Random Forest and SVM, may offer 
more enhanced efficacy for encryption and classifica-
tion tasks. However, the preferred model and algorithm 
combination could vary depending on the specific 
application and system requirements. Consequently, 
these findings can be utilized to support future system 
design for file encryption and categorization, while also 
serving as a motivation for further research and devel-
opment in this area.

These findings offer useful results in the performance 
of various ML models and LWC algorithms when uti-
lized for encryption and classification. However, It is 
important to acknowledge that these findings may not 

universally apply to all scenarios, as they were collected 
under specific circumstances. Hence, to comprehen-
sively evaluate the performance of these methods, addi-
tional tests in different settings are recommended.

Conclusion
To the best of our knowledge, this research is one of the 
very few studies dedicated to exploring and evaluating 
the performance of different ML models and LWC algo-
rithms for medical IoT devices. This study compared the 
performance of various ML models and LWC algorithms 
for message encryption and classification. The aim was to 
clarify the implications of these findings for both indus-
trial and scientific contexts. The results revealed sig-
nificant variability in the performance of the ML models 

Fig. 22 Model performance comparison of F1-score for different LWC algorithms and ML models on 512 KB file

Fig. 23 Model performance comparison of F1-score for different LWC algorithms and ML models on 1024 KB file
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depending on the LWC algorithm used and the file size. 
While the Random Forest model generally performed 
the best in terms of accuracy, precision, and recall, REC-
TANGLE consistently outperformed others across all ML 
models and test message sizes. Conversely, algorithms 
like MSEA and AES consistently showed poor perfor-
mance across all ML models and test message sizes, 
indicating the need for further optimization in practical 
applications.

Furthermore, the study showed a decrement in model 
performance with an increase in the size of the test mes-
sage. This highlights the importance of considering mes-
sage size when selecting ML models and LWC algorithms 
for message encryption and classification tasks.

Overall, these results offer valuable insights into the 
performance of different ML models and LWC algo-
rithms for message encryption and classification. This 
research might help researchers and professionals in 
choosing the most appropriate ML models and LWC 
algorithms for tasks involving message encryption and 
classification while taking into account the specific use 
case and system requirements.

However, future researchers should focus on the devel-
opment of lightweight and efficient ML algorithms that 
can be deployed on resource-constrained IoT devices 
while still providing adequate security and privacy 
measures.
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