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Abstract 

Many state-of-the-art results in natural language processing (NLP) rely on large pre-trained language models (PLMs). 
These models consist of large amounts of parameters that are tuned using vast amounts of training data. These fac-
tors cause the models to memorize parts of their training data, making them vulnerable to various privacy attacks. 
This is cause for concern, especially when these models are applied in the clinical domain, where data are very 
sensitive. 

Training data pseudonymization is a privacy-preserving technique that aims to mitigate these problems. This tech-
nique automatically identifies and replaces sensitive entities with realistic but non-sensitive surrogates. Pseudonymi-
zation has yielded promising results in previous studies. However, no previous study has applied pseudonymization 
to both the pre-training data of PLMs and the fine-tuning data used to solve clinical NLP tasks. 

This study evaluates the effects on the predictive performance of end-to-end pseudonymization of Swedish clinical 
BERT models fine-tuned for five clinical NLP tasks. A large number of statistical tests are performed, revealing minimal 
harm to performance when using pseudonymized fine-tuning data. The results also find no deterioration from end-
to-end pseudonymization of pre-training and fine-tuning data. These results demonstrate that pseudonymizing train-
ing data to reduce privacy risks can be done without harming data utility for training PLMs.

Keywords  Natural language processing, Language models, BERT, Electronic health records, Clinical text, 
De-identification, Pseudonymization, Privacy preservation, Swedish

Introduction
The popularization of the transformer architecture [1] 
in the past few years has led to rapid advances in natural 
language processing (NLP). Many benchmarks are now 
dominated by pre-trained language models (PLMs) that 
learn to model language using unlabeled corpora. There 
are many PLM architectures, and this article focuses 
on the BERT architecture [2], which is widely used and 

competitive in many NLP benchmarks. PLMs typically 
consist of hundreds of millions, even billions, of param-
eters which are trained on enormous amounts of unla-
beled training data. The sizes of the corpora used to 
pre-train these models are typically in the range of tens 
of gigabytes or even terabytes of data. The BERT models 
used in this study consist of over 100 million parameters 
and are pre-trained on around 6 billion tokens [2, 3]. On 
the other end of the scale, the largest publicly available 
version of Llama 2 consists of 70 billion parameters tuned 
using a corpus spanning 2 trillion tokens [4].

PLMs have shown great promise in several NLP 
domains, and the clinical domain is no exception. State-
of-the-art results in clinical NLP tend to rely on PLMs, 
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e.g., for temporal relation extraction [5], text similarity 
[6], concept normalization [7], adverse drug event extrac-
tion [8], medication event extraction [9] and informa-
tion extraction [10]. However, while PLMs are generally 
pre-trained using readily available corpora in the general 
domain – e.g., Wikipedia and other data sources on the 
Internet – research suggests that using generic PLMs in 
highly specialized domains such as healthcare may be 
suboptimal due to significant domain differences [11, 
12], even in the presence of large language models like 
T5-XL and GPT-3 [13]. This has motivated efforts to 
develop domain-specific clinical PLMs. There are dif-
ferent approaches to developing domain-specific PLMs 
[14], including pre-training a new language model from 
scratch with in-domain data, e.g., in the form of clinical 
text from electronic health records (EHRs). An alterna-
tive approach is to adapt an existing, generic PLM to 
the target domain by continuing to pre-train it with 
in-domain data. The vocabulary of the model can be 
retained or adapted to account for domain differences. 
This continued pre-training is known as domain-adap-
tive pre-training [15–17].

While PLMs have shown great promise in solving 
important NLP problems, their reliance on increasingly 
large numbers of parameters and vast corpora causes 
models to memorize parts of their training data [18–20]. 
This tendency is undesirable in many use cases but also 
has important implications for privacy. When models are 
domain-adapted using clinical data, these privacy risks 
must be mitigated. Clinical data often describes sensitive 
information that must be protected, not just for ethical 
reasons but also due to current regulations.

One way to reduce the privacy risks of using clinical 
data is to remove sensitive information. An important 
technique for doing so is called pseudonymization, which 
involves locating sensitive passages using named entity 
recognition (NER) and substituting them with realistic 
surrogate data. This technique has been applied to data 
for pre-training language models [21, 22] and for fine-
tuning models [20, 23], with successful results. However, 
previous research has only studied these two training 
steps in isolation.

In this paper, we demonstrate the first example of 
a clinical language model that has been fully pseu-
donymized in both the domain-adaptive pre-training and 
fine-tuning steps. This is done by:

•	 Pseudonymizing datasets for five clinical down-
stream tasks.

•	 Fine-tuning and evaluating a total of 300 models 
through 10-fold cross-validation of 30 different com-
binations of pseudonymized data and models.

•	 Comparing all models in terms of F1 to determine if 
any statistically significant differences in predictive 
performance exist.

The results show that end-to-end pseudonymization 
can be successfully applied to the pre-training and fine-
tuning of language models. We find that end-to-end 
pseudonymization preserves privacy and simultaneously 
retains the utility of the data for domain-adaptive pre-
training and fine-tuning of PLMs.

Background
This study focuses on mitigating the privacy issues of 
modern transformer models in NLP using pseudonymi-
zation. This section gives a more detailed motivation for 
how these models are vulnerable to privacy attacks and 
why pseudonymization is a good privacy-preserving 
technique. Other privacy-preserving techniques are dis-
cussed, and previous works on pseudonymization are 
presented to provide the context in which this study is 
situated.

Privacy attacks
As mentioned in the introduction, large language mod-
els can be susceptible to privacy attacks. This suscepti-
bility is partially due to the self-supervised pre-training 
objectives that tend to involve reconstructing a noisy or 
obscured version of the training data. For example, BERT 
models are pre-trained using masked language modeling 
[2], which involves reconstructing a version of the train-
ing data in which some tokens have been replaced with 
[MASK] tokens. The pre-training is then performed 
using large text corpora with unknown quantities of sen-
sitive information, and the learned features are encoded 
in millions or billions of parameters.

Privacy attacks targeting PLMs aim to extract infor-
mation about their training corpora. The attacks do so 
by targeting the information encoded in the parameters 
of the models. Depending on the objective, these attacks 
can be categorized into two main classes. Training data 
extraction attacks aim to reconstruct data used to train 
a model. This is a severe form of attack since it can result 
in the disclosure of sensitive information about persons 
described in the training data of a model. In the clini-
cal domain, this could mean exposing the details of a 
patient’s medical history. Training data extraction attacks 
require an effective algorithm for sampling information 
from a model; however, such algorithms are not (yet) 
described for all models [24–27]. Nevertheless, there are 
examples of successful training data extraction attacks 
targeting generative systems such as GPT-2 and Chat-
GPT [19, 28].
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Membership inference attacks aim to discern whether or 
not a particular datapoint has been used to train a target 
model [29]. In a clinical context, this information could 
reveal if a patient associated with an EHR has visited a set 
of clinical units associated with particular health prob-
lems. This category of attacks typically involves meas-
uring the reaction of a model to a set of datapoints and 
using this information to distinguish between members 
and non-members of the training data [30, 31]. Success-
ful membership inference attacks may pose a privacy 
threat in themselves, but are also often used as a building 
block in training data extraction attacks when determin-
ing whether the algorithm has extracted a real or spuri-
ous datapoint.

Privacy‑preserving techniques
Several privacy-preserving techniques have been devel-
oped to mitigate the privacy threats described in the 
previous section. In this section, a non-exhaustive list of 
techniques will be described to provide context for why 
this study focuses on the pseudonymization of training 
data. Other promising and oft-mentioned techniques 
include differential privacy, homomorphic encryption, 
and synthetic training data.

Differential privacy is a notion of privacy that was 
originally designed for database records. The idea is 
that, given a datapoint d and two datasets D and D′ dif-
fering only in that d ∈ D while d /∈ D′ , the output of any 
aggregation of these datasets should be close to indistin-
guishable [32]. As it is typically formulated, we have (ǫ, δ)
-differential privacy [33] for an aggregation M with range 
R if

Differential privacy has also been adapted for deep 
learning. The DP-SGD algorithm [34] is a differentially 
private version of the stochastic gradient descent algo-
rithm commonly used to train neural networks. While 
differentially private learning has the advantage of hav-
ing a formal mathematical definition, the ǫ and δ param-
eters can be difficult to choose and interpret. This issue is 
compounded by the fact that effective differential privacy 
typically works by adding noise to the aggregation (e.g., 
the training algorithm), which may hinder efficient train-
ing [35]. Furthermore, differential privacy was originally 
designed for database records, and some have argued 
that it is ill-suited to the unstructured nature of natural 
language [36].

In contrast to differential privacy, homomorphic 
encryption aims to protect the result of an input X and its 
output M(X | D) rather than D (e.g., the data used to train 
a machine learning model M) itself. This is achieved by 
implementing M using operations that handle encrypted 

P[M(D) ∈ R] ≤ eǫP[M(D′) ∈ R] + δ.

data, meaning that both X and M(X | D) are knowable 
only to the person using the model [29]. Homomorphic 
encryption allows users to use a model owned by another 
party safely. The technique enables private inferences that 
do not disclose any information about the data to the 
owner of the model nor to any potential eavesdropper. 
However, it does not protect the owner of the model from 
attacks such as membership inference attacks or training 
data extraction attacks since the output of the inference 
is made available to the user initiating the inference.

With the growing availability of models capable of 
high-quality natural language generation, some have con-
sidered creating synthetic training data. This data, being 
synthetic, is assumed to be non-sensitive. By synthesiz-
ing data, the use of sensitive clinical data can be reduced 
[37] or done away with entirely [38, 39]. Synthetic data 
has been used in several studies to train well-performing 
fine-tuned clinical NLP models while limiting the risk 
of exposing private information from the original data 
[37–39]. There are fewer examples of models pre-trained 
using synthetic data. This is likely due to, at least in part, 
the computational costs of operating the large language 
models required to produce enough high-quality syn-
thetic text. However, the example of GatorTronS [40] 
shows that this approach is indeed possible and that 
models pre-trained on synthetic text can perform well. 
On the other hand, the extent to which a synthetic text 
itself may contain sensitive data is poorly understood. 
The risk that the synthesizing language model acciden-
tally generates parts of its own training data cannot be 
ruled out.

Automatic de‑identification and pseudonymization
Many of the aforementioned privacy-preserving tech-
niques are not specific to natural language data. Differ-
ential privacy, for example, was originally designed for 
database-style structured data where each row is to be 
protected. Unstructured natural language data stands out 
as a particularly high-dimensional data form. In contrast 
to structured database rows, it can be difficult to exhaus-
tively specify all of the information contained in an EHR. 
On the other hand, another feature of textual data is 
that many words or phrases can be replaced with similar 
information without changing the overarching meaning 
of a text. Examples of this phenomenon are synonyms 
which, broadly speaking, are interchangeable words that 
have the same meaning.

Automatic de-identification typically relies on NER 
to remove sensitive entities, such as data constituting 
personally identifiable information (PII). These entities 
usually cover direct identifiers such as names, but also 
cover quasi-identifiers such as locations, ages, and dates. 
Quasi-identifiers are PII that do not directly identify a 



Page 4 of 15Vakili et al. BMC Medical Informatics and Decision Making          (2024) 24:162 

person, but that may do so when combined with other 
quasi-identifiers or with auxiliary information. A com-
monly used set of PII is the collection of entities desig-
nated as personal health information (PHI) by the HIPAA 
regulation [41] in the United States. Examples of PII, PHI, 
and how they relate to different types of identifiers can be 
found in Fig.  1. In this article, we use the broader term 
PII. However, the set of PII covered by the de-identifiers 
is based on the PHI described by the HIPAA regulation 
[42].

De-identification is typically done in two main steps. 
First, the NER model of the de-identifier is used to detect 
entities that are PII. Next, these are sanitized in some 
way. Examples of sanitization techniques include replac-
ing entities with their class name, masking them with a 
nondescript placeholder, and replacing them with sur-
rogate values. This study focuses on the last strategy—
pseudonymization—which replaces sensitive entities 
with realistic replacement values of the same entity type. 
These should preferably be chosen cleverly to preserve as 

much semantic information as possible without harming 
privacy. An example of how this process can work is illus-
trated in Fig. 2.

The goal of pseudonymization is to remove the PII 
most likely to be used to re-identify individuals. How-
ever, it is important to recognize that pseudonymizers are 
never perfect. The NER models that power them often 
have imperfect recall and precision. Imperfect recall is a 
privacy issue since low recall implies that the model will 
miss sensitive entities that should be sanitized. On the 
other hand, low precision will result in many non-sensi-
tive entities being replaced with inappropriate values. In 
the worst case, poor precision can lead to task-relevant 
words being replaced with irrelevant information, cor-
rupting the datapoint and potentially having a negative 
impact on data utility. Both the low-recall and low-preci-
sion scenarios are illustrated in Fig. 3.

Pseudonymization is related to but different from 
anonymization. Although the terms are sometimes 
used interchangeably in the literature, anonymization 

Fig. 1  The HIPAA regulation in the United States lists 18 types of PII, called Protected Health Information (PHI), that should be removed for privacy 
reasons. These cover most of the PII types that are typically considered to be direct identifiers. However, as the figure illustrates, there are many 
quasi-identifiers that are not covered by this PHI definition

Fig. 2  The pseudonymizers used in this study replace detected sensitive entities with realistic surrogates. The figure illustrates some of the entities 
considered by the system. The surrogate values are selected to preserve as much information as possible. However, an adversary with knowledge 
of Swedish geography would realize that, in this example, Kluk is an unlikely place to go skiing
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is typically associated with stronger privacy guarantees. 
For example, when the term is used in the GDPR1 it is 
often understood as implying complete and irreversible 
removal of any information that can be used to partially 
or fully identify an individual [44]. Pseudonymization, 
as understood in this study, does not fulfill this stricter 
requirement. Rather, it is a process that enhances the pri-
vacy of data.

In contrast to other techniques within the field of pri-
vacy-preserving machine learning, pseudonymization is a 
text-specific technique for privacy preservation that har-
nesses the particular characteristics of natural language. 
When successfully applied, pseudonymization preserves 
the overall semantics of a datapoint while removing sen-
sitive information. This scenario increases the privacy of 
a dataset while preserving its utility. However, when pre-
cision is not high enough, erroneous classifications and 
subsequent replacements will lead to a corruption of the 
data. The aim of this study is to demonstrate that, with a 
reasonably strong NER model, this does not happen often 
enough to harm the utility of the data for pre-training or 
fine-tuning clinical BERT models.

Utility for machine learning using sanitized text
An early study on using pseudonymized EHRs is 
described by Yeniterzi et  al. [45]. The authors trained 
NER models for detecting PII using both the pseu-
donymized and the original data. They found that the 
results deteriorated significantly when training on pseu-
donymized data and evaluating on unaltered text, with 
the F1 score falling from 0.862 to 0.728.

Lothritz et al. [23] study the impact of de-identification 
on a wide range of general-domain datasets. They employ 
a variety of sanitization strategies, including two pseu-
donymization strategies of different sophistication. They 
evaluate these strategies using ERNIE [46] and BERT 
models on eight different downstream tasks. Their results 
show that de-identification harms the utility of their 

datasets, but that this harm was small. The results also 
show that pseudonymization yields the strongest perfor-
mance among the considered sanitization strategies.

Another study using sanitized text for machine learn-
ing is described by Berg et  al. [47]. The authors pseu-
donymized Swedish clinical texts and then used them to 
train two different machine learning algorithms to detect 
PII. These algorithms were then evaluated on real Swed-
ish clinical text data. The study aimed to enable sanitized 
training data to be transferred between hospitals for per-
forming de-identification tasks. The authors tried two 
machine learning algorithms: conditional random fields 
(CRF) and long short-term memory (LSTM) networks. 
CRF gave the best results on training on sanitized text 
and de-identifying real clinical text; however, the per-
formance on identifying several PII classes deteriorated, 
with the overall recall decreasing from 85% to 50%. This 
effect was primarily observed for the PII classes Location, 
Health Care Units and Full Date.

Berg et al. conducted another study [48] using four dif-
ferent strategies to sanitize the training data for down-
stream tasks, where models with different levels of recall 
were used to sanitize a set of Swedish datasets for clinical 
NER. Using a model with high recall is a good strategy in 
terms of privacy since it will identify more sensitive enti-
ties. However, these benefits may come at the expense of 
lower precision and more false positives. The study eval-
uated four different strategies for sanitizing the datasets: 
pseudonymization, masking the sensitive entities, replac-
ing them with their class name, and removing the entire 
sentences in which sensitive entities were detected. The 
impact of sanitizing the data was evaluated by training 
CRF models for three clinical NER tasks using different 
sanitized datasets. Overall, the pseudonymization strat-
egy had the smallest negative impact on the downstream 
tasks, while the sentence removal strategy resulted in a 
larger performance deterioration.

The overlap between PII and clinical entities is a 
source of potential harm to utility and has been thor-
oughly investigated by Berg et al. [48]. It was found that 
only one percent of clinical entities were affected by the 

Fig. 3  The NER models that power pseudonymizers are never perfect. When recall is insufficient, they will miss names such as Lundvall, which 
will remain exposed in the text. When there are problems with precision, non-sensitive words will be changed to irrelevant replacement values. In 
the worst case, a clinically relevant term like fracture may be replaced with a surrogate PII entity that harms data utility

1  The GDPR is the General Data Protection Regulation of that is applied 
throughout the European Union [43].
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de-identification process. The worst affected PII classes 
were Health Care Unit and Person (first and last name), 
which tended to overlap with the clinical entities drug, 
body part, disorder and finding. A later study [49] indi-
cated that the risk of misclassifying eponyms (e.g., dis-
eases like Alzheimer disease that are named after medical 
doctors) is lower when using BERT-based PII classifiers 
compared to earlier approaches. However, clinical enti-
ties are diverse, and there are other cases where misclas-
sifications could be an issue.

Vakili et  al. [22] evaluated the impact of pre-training 
BERT models using de-identified and unaltered data. 
Two sanitizing strategies were used: pseudonymization 
and sentence removal. Two models were adapted to the 
clinical domain by pre-training using clinical data sani-
tized with each strategy. The resulting models were then 
evaluated on six downstream tasks. The results showed 
no negative impact from pre-training using de-identified 
data compared to using unaltered data. Similarly, Vakili 
& Dalianis [20] evaluated the impact of fine-tuning a 
clinical BERT model using pseudonymized or unaltered 
datasets. They evaluated their approach using three 
downstream tasks, again finding no significant differ-
ence between training on unaltered or pseudonymized 
data. This study further builds upon the previous stud-
ies and provides deeper examinations of the interactions 
between pseudonymization and data utility. Further-
more, we demonstrate that pseudonymization can be 
applied both to the pre-training and fine-tuning data 
without harming the performance on clinical NLP tasks.

Methods and materials
This study relies on a large number of datasets and mod-
els, mainly created using data from the Swedish Health 
Record Research Bank (Health Bank)2. The original data 
were collected from the Karolinska University Hospital 
[50] and consist of a large number of Swedish EHRs3. 
This section describes the data and models used in the 
experiments, and how these experiments were carried 
out.

Clinical BERT models
This study examines the impact of pseudonymization 
applied to data for domain-adaptive pre-training and 
fine-tuning BERT models. As illustrated in Fig. 4, two dif-
ferent PLMs are used. One—SweDeClin-BERT—that has 
been trained using pseudonymized pre-training data [22], 
and another model—SweClin-BERT—that was trained on 
the unaltered version of the same dataset [51]. Both mod-
els were initialized using weights from the Swedish gen-
eral-domain KB-BERT model [52] and were adapted to 
the clinical domain by pre-training for three epochs over 
the Health Bank corpus. Figure B1 in Appendix B con-
tains a diagram showing how the models relate to other 
parts of the Health Bank.

The Health Bank corpus used for domain-adaptive 
pre-training consists of approximately 2.8 billion words 

Fig. 4  This study uses two different clinical BERT models created in earlier studies. SweClin-BERT is trained on a sensitive version of the Health 
Bank corpus [51], whereas SweDeClin-BERT is trained on a version that has been automatically pseudonymized [22]. Both models are initialized 
with the weights of KB-BERT [52]

2  http://​www.​dsv.​su.​se/​healt​hbank
3  This research has been approved by the Swedish Ethical Review Authority 
under permission no. 2019-05679.

http://www.dsv.su.se/healthbank
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which is comparable to the 3.3 billion words used to train 
KB-BERT [3]. We did not pre-train for more than three 
epochs for reasons of resource efficiency. This is justi-
fied by prior work using the same data [53] showing that 
longer pre-training was unnecessary when starting from 
a general-domain model.

Five clinical downstream tasks
The utility of the models and datasets after and before 
pseudonymization was assessed using five clinical NLP 
tasks. The five tasks are based on corpora from the Health 
Bank infrastructure and are summarized4 in Table 1 and 
described in this section. The utility of each pseudonymi-
zation configuration was examined by measuring the 
performance of models fine-tuned on these tasks. Below 
is a list of the datasets as well as the abbreviated names 
used in Table 1 and other tables in the paper.

Stockholm EPR Gastro ICD‑10 Corpus I (ICD‑10)
The Gastro ICD-10 dataset consists of gastro-related dis-
charge summaries and their assigned ICD-10 diagnosis 
codes. The discharge summaries relate to 4,985 unique 
patients. The ICD-10 codes are divided into 10 groups 
corresponding to different body parts; the ICD-10 codes 
range from K00 to K99. Each group contains several 
codes [55].

Stockholm EPR Clinical Entity Corpus (Clinical NER)
A clinical entity dataset encompassing 157,123 tokens 
and 20,675 annotated entities assigned to four clinical 
entity classes Diagnosis, Findings, Body parts, and Drugs 
[56]. The goal of the task is to identify and correctly label 
the clinical entities.

Stockholm EPR Diagnosis Factuality Corpus (Factuality NER)
A factuality diagnosis dataset specifying six levels of 
confidence regarding the factuality of a diagnosis. The 
dataset encompasses 6,865 annotated entities5 labeled 
as Certainly Positive, Probably Positive, Possibly Positive, 
Possibly Negative, Probably Negative, or Certainly Nega-
tive [57, 58]. The task consists of identifying tokens in the 
corpus specifying diagnoses and assigning them a factu-
ality label.

Stockholm EPR Diagnosis Factuality Corpus (Factuality)
A dataset which is a variation of the Stockholm EPR Diag-
nosis Factuality NER Corpus that instead assigns a factu-
ality level to the entire document. The classification task 
is a multi-label classification problem where the model 
needs to predict the factuality of each document. The 
labels are the same as in the NER version of the task.

Stockholm EPR ADE ICD‑10 Corpus (ADE)
The ADE corpus contains 21,725 discharge summaries 
describing adverse drug events (ADEs). The task is a 
binary classification task, where positive samples have 
been assigned an ICD-10 code that denotes an ADE. 
Negative text samples in each group have been assigned 
an ICD-10 code describing a diagnosis that is not drug-
induced. The task is to determine whether the diagnosis 
defined by the ICD-10 code was induced by an ADE or 
not [22].

Pseudonymization
The pseudonymization performed in this study relies on 
NER to locate sensitive entities that should be replaced. 
Two such NER models are used. Both are based on BERT 
and are fine-tuned on the Stockholm EPR PHI Cor-
pus [42]. This corpus contains 380,000 tokens and 4,480 
manually annotated entities in nine classes based on the 
American HIPAA regulation. One model pseudo+ uses 
a non-pseudonymized Swedish clinical BERT model 
[59] and another, slightly weaker model called pseudo is 
based on SweDeClin-BERT [22]. Tables  2 and 3 list the 
per-class performance of both NER models as measured 
using the test splits of their training data. Figure B2 in 
Appendix B shows how these models relate to other parts 
of the Health Bank.

Two pseudonymized versions of each dataset described 
in the previous  section were created, one for each NER 
model. Sensitive entities were detected and then replaced 
with realistic surrogate values based on the method 

Table 1  The five tasks were based on four different clinical 
corpora from the Health Bank. This table lists the size of each 
corpus in terms of the number of documents and tokens. The 
table also specifies the number of possible classes and whether 
the tasks are document-level or token-level classification tasks

Corpus Documents Tokens Classes Level

ICD-10 6,062 930,550 10 Document

ADE 21,725 931,778 2 Document

Factuality 3,710 102,223 6 Document

Factuality NER 3,822 286,205 6 Token

Clinical NER 3,120 178,672 4 Token

4  The number of tokens was calculated using the Punkt tokenizer for Swed-
ish in NLTK [54].

5  The dataset also contains 199 entities annotated for purposes irrelevant to 
our experiments. These annotations were ignored.
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described in this section. The number of sensitive entities 
detected by the pseudonymizers is displayed in Tables 4 
and 5. These numbers include both false and true posi-
tives and indicate the degree to which the data were 
altered in the pseudonymization process.

An overview of the algorithm for surrogate selection is 
available in Dalianis [60], which describes the first ver-
sion of the pseudonymizer. The system has been further 
refined since its initial conception. One adaption made 
from the original pseudonymizer is that the name lists 
used to replace first and last names have been expanded 
to include a wider range of names. The original system 
only considered the most common Swedish names, while 
the current system chooses from 244,000 first names 
and 34,000 surnames. However, a limitation of the pseu-
donymizer is that it lacks functionality for replacing 

organizations. As shown in Tables 4 and 5, organizations 
are very infrequent, meaning that the privacy and perfor-
mance implications are limited.

The pseudonymizer created by Dalianis [60] replaces 
many entities using word lists. For example, a gendered 
name is replaced with another name typically associ-
ated with the same gender, and a gender-neutral name is 
replaced with a gender-neutral name. Streets and places 
in Stockholm randomly with other streets in Stock-
holm. Similarly, other locations in Sweden are replaced 
with locations in the same county, and similar logic 
exists to replace country names with names of countries 
in the same continent. Health care units are changed 
to other health care units using a list of known clinics. 
Other entities are changed using rules. Postal codes are 
replaced with more common postal codes with large 

Table 2  The recall and precision of the pseudo+ model for each 
PII type are displayed. The model is a clinical BERT model [59] that 
has been fine-tuned and evaluated using the Stockholm EPR PHI 
Corpus [42]

PII Class Recall Precision

Age 100% 100%

First Name 100% 100%

Last Name 98% 98%

Partial Date 99% 97%

Full Date 90% 91%

Phone Number 81% 68%

Health Care Unit 85% 94%

Location 100% 100%

Organization 71% 100%

Table 3  The recall and precision of the pseudo model for each 
PII type are displayed. The model is based on the pseudonymized 
SweDeClin-BERT model and has been fine-tuned and evaluated 
using the Stockholm EPR PHI Corpus [42]

PII Class Recall Precision

Age 100% 100%

First Name 97% 98%

Last Name 96% 97%

Partial Date 99% 98%

Full Date 87% 91%

Phone Number 93% 89%

Health Care Unit 89% 88%

Location 89% 81%

Organization 29% 80%

Table 4  Sensitive entities detected by the pseudo model

PII Class Factuality 
NER

Clinical 
NER

ICD-10 Factuality ADE

Age 1,392 1,149 3,060 1,353 2,995

First Name 528 274 1,185 510 3,965

Last Name 1,105 274 1,829 1,062 4,257

Partial Date 681 554 11,371 644 4,305

Full Date 128 137 18,875 125 22,296

Phone 
Number

148 45 141 142 460

Health Care 
Unit

3,554 2,005 3,365 3,406 7,635

Location 110 78 510 105 689

Organization 5 1 37 4 59

Total words 253,124 191,202 798,120 239,722 788,930

Table 5  Sensitive entities detected by the pseudo+ model

PII Class Factuality 
NER

Clinical 
NER

ICD-10 Factuality ADE

Age 955 764 2,565 929 2,257

First Name 523 283 1,378 506 3,884

Last Name 1,055 707 1,904 1,016 4,064

Partial Date 369 316 5,740 355 2,995

Full Date 110 121 12,703 107 17,552

Phone 
Number

118 39 75 113 172

Health Care 
Unit

4,285 2,282 12,654 4,117 9,751

Location 182 102 1,217 172 985

Organization 4 12 6 1 66

Total words 253,124 191,202 798,120 239,722 788,930
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populations. Dates are shifted one or two weeks earlier 
or later. Years and ages are handled similarly and are 
increased or decreased by a small and random number 
of years. Phone numbers are changed to other phone 
numbers according to the formatting rules for Swedish 
phone numbers.

Evaluating the impact of pseudonymization
As previously discussed, pseudonymization often entails 
a certain degree of data corruption. The main experiment 
in this study examines this effect on the downstream per-
formance of clinical BERT models pre-trained and fine-
tuned on pseudonymized clinical training data.

Once  the datasets  for the five clinical downstream 
tasks had been pseudonymized, a series of evaluations 
were carried out. Each version of every dataset was used 
to fine-tune and test both BERT models using 10-fold 
cross-validation [61], as illustrated in Fig.  5. Since the 
pseudonymization procedure is a deterministic pre-pro-
cessing step, the pseudonymized models are tested on 
pseudonymized folds. The repeated training and evalu-
ation using different splits resulted in a range of evalu-
ation metrics used to estimate the mean and standard 
deviation of each configuration. The configurations 
were compared based on their F1 scores6 [63]. All fine-
tuning configurations ran for a maximum of 10 epochs, 
with early stopping implemented to avoid overfitting and 
unnecessary computations.

In total, 30 different combinations of models and 
datasets were evaluated using 10-fold cross-validation. 
For every downstream task, we compare the differ-
ence in the performance of all combinations of mod-
els and pseudonymization approaches. The difference 
between each pair was tested for statistical significance 
using a Mann-Whitney U test7 [64, 65] by compar-
ing the F1 scores of every fold in both models’ 10-fold 
cross-validations.

Results
The 30 different model-dataset configurations combined 
with the 10-fold cross-validation resulted in 300 fine-
tuned models. The evaluations of these models were used 
to produce F1 for each configuration and downstream 
task. The means and standard deviations of each evalu-
ation are listed in Table 6. From studying the columns of 
the table, it is apparent that most of the values are within 
a standard deviation of each other.

Comparing every configuration within each down-
stream task resulted in 150 Mann-Whitney U tests 
being performed. Out of these, 126 comparisons 
showed no statistically significant difference for 
p < 0.05 . The remaining 24 comparisons showed vary-
ing degrees of statistical significance. To facilitate a 
focused analysis of the results, a curated sample of the 
significant results is listed in Table 7. These are limited 
to the cases where using real data outperformed using 
pseudonymized data, as these examples challenge the 

Fig. 5  Every dataset described in the “Five clinical downstream tasks” section was pseudonymized using both the pseudo and pseudo+ 
de-identifiers. SweDeClin-BERT and SweClin-BERT were fine-tuned using the non-pseudonymized and the two pseudonymized versions 
of the datasets. All models were compared based on the F1 scores aggregated from the 10-fold cross-validation of each model

6  Metrics for the token classification tasks were calculated using the 
seqeval library [62] in strict mode. 7  This test is also sometimes referred to as a Wilcoxon rank-sum test.
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main hypothesis of the study. The full list of the 24 sta-
tistically significant differences is provided in Table A1 
of Appendix A.

Notably, none of the statistically significant differ-
ences were cases where SweClin-BERT outperformed 
SweDeClin-BERT. This is apparent from the P column for 
the Weaker model only containing ✗’s. This implies that 
SweDeClin-BERT is a stronger model for the downstream 
tasks in this study. In that case, this difference in general 
model performance explains rows 4–11 of Table  7. Fur-
thermore, there are no examples where training SweDe-
Clin-BERT on different forms of fine-tuning data yielded 
statistically significant differences in performance.

The first three rows in Table 7 show that training Swe-
Clin-BERT using non-pseudonymized data sometimes 
yields statistically significant improvements compared to 
using pseudonymized data. This is found for one pair of 
configurations for three of the tasks. There are no exam-
ples where training on real data outperforms both forms 
of pseudonymized data. For example, the first row finds 
a statistically significant improvement from using real 
ICD-10 data rather than data pseudonymized using the 
pseudo model, but no significant difference is found if the 
pseudo+ model is used.

Table 6  The table compares the performance of each combination of models and datasets. The scores are the mean F1 scores 
together with their standard deviation based on the results from the 10 folds. P stands for pre-training data and F for fine-tuning 
data. A ✗ denotes that no pseudonymization was done, a ✓ that it was done using the pseudo model and a + means that 
pseudonymization was performed using the pseudo+ model

Pseudonymized Factuality Clinical Entity ICD-10 Factuality ADE

 P F NER NER Classification Classification Classification

✗ ✗ 0.686±0.013 0.851±0.012 0.821±0.012 0.729±0.020 0.186±0.009

✗ ✓ 0.639±0.038 0.843±0.011 0.810±0.011 0.725±0.021 0.190±0.017

✗ + 0.668±0.024 0.841±0.011 0.814±0.008 0.726±0.018 0.188±0.014

✓ ✗ 0.696±0.019 0.861±0.011 0.835±0.010 0.726±0.025 0.188±0.011

✓ ✓ 0.663±0.048 0.856±0.009 0.825±0.010 0.716±0.016 0.198±0.013

✓ + 0.695±0.013 0.853±0.011 0.832±0.007 0.733±0.022 0.205±0.018

Table 7  Out of 24 statistically significant results, 11 are cases where using non-pseudonymized data yields better results than using 
pseudonymized data. All of these find this effect with regard to the fine-tuning data. The p-value is the result of the Mann-Whitney U 
test for determining if the Weaker model performs worse than the Stronger model. For each model, P indicates whether the pre-training 
data was pseudonymized, and F indicates if the fine-tuning data was pseudonymized. Again, a ✗ denotes that no pseudonymization 
was done, a ✓ that it was done using the pseudo model and a + means that pseudonymization was performed using the pseudo+ 
model

Row Task Weaker model Stronger model p-value

P F P F

(1) ICD-10 ✗ ✓ ✗ ✗ 0.0378

(2) Factuality NER ✗ ✓ ✗ ✗ 0.0014

(3) Clinical NER ✗ + ✗ ✗ 0.0269

(4) ICD-10 ✗ ✓ ✓ ✗ 0.0007

(5) Clinical NER ✗ ✓ ✓ ✗ 0.0029

(6) Factuality NER ✗ ✓ ✓ ✗ 0.0005

(7) ICD-10 ✗ + ✓ ✗ 0.0011

(8) Clinical NER ✗ + ✓ ✗ 0.0022

(9) Factuality NER ✗ + ✓ ✗ 0.0156

(10) ICD-10 ✗ ✗ ✓ ✗ 0.0086

(11) Clinical NER ✗ ✗ ✓ ✗ 0.0226
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Discussion
The previous section presents several interesting find-
ings. In this section, the results of the study are analyzed 
and contextualized. We also provide ideas for future work 
and discuss the limitations of our study.

Interpreting the significant results
The results of this study are based on a large number of 
Whitney-Mann U tests. When performing 150 statis-
tical tests, there is a non-trivial risk of finding spurious 
statistical differences. The standard cut-off of p < 0.05 
still risks finding differences by chance 1 out of 20 times. 
Nevertheless, there are some trends in Table  7 that are 
interesting to discuss.

First, it is notable that none of the statistically signifi-
cant comparisons find that pre-training with real data 
outperforms pre-training with pseudonymized data. 
A similar result was indicated in a previous study by 
Vakili et al. [22]. However, it is important to note that 
only two pre-trained models were compared in this 
study. While the results strongly suggest that SweDe-
Clin-BERT is better than SweClin-BERT, this does not 
mean that pre-training with pseudonymized data is 
better in general. Examining this would require pre-
training many more BERT models with and without 
pseudonymizing the data. It would likely also require 
comparing pre-trained models initialized from random 
weights rather than the weights of a general-domain 
model. While this could be interesting to study, it is 
beyond the computational constraints imposed by the 
scope of this study.

Some of the statistically significant results in Table  7 
do indicate that fine-tuning a non-pseudonymized 
model using unaltered data can yield stronger results 
than fine-tuning with pseudonymized data. However, 
this is only found for three of the five downstream 
tasks. Furthermore, none of these results hold for both 
of the pseudonymizers. The results in Table 6 also show 
that these examples are still within a standard devia-
tion of each other. The results where fine-tuning on 
real data does outperform using both pseudonymized 
data (such as rows 4 and 7 of Table 7) are results where 
SweDeClin-BERT outperforms SweClin-BERT. Thus, 
these cases are better explained by the overall stronger 
results of SweDeClin-BERT. Crucially, for the pur-
poses of this study, there are no examples of statisti-
cally significant differences where a model trained using 
end-to-end pseudonymization is outperformed by a 
non-pseudonymized version. The hypothesis of this 
study holds since we find no evidence of any significant 
deterioration from pre-training and fine-tuning using 
automatically pseudonymized data.

Quantifying privacy benefits
An important limitation of this study is that the privacy 
benefits of pseudonymization are only quantified in 
terms of the number of removed sensitive entities. This 
assumes that the sensitivity of the training data directly 
corresponds to the sensitivity of the model. This assump-
tion may be pessimistic since it is unlikely that the trained 
model will memorize all remaining sensitive entities. On 
the other hand, relying on metrics such as recall and 
precision also obscures any particularities in the specific 
entities that are missed and if these could be more at risk 
of memorization.

Previous research has suggested that membership infer-
ence attacks can be used for estimating the degree of 
memorization in a model [30, 31, 66]. This approach can 
be effective for some privacy-preserving techniques, such 
as differentially private learning [34]. Unfortunately, this 
method has been shown to work poorly when applied to 
models trained using pseudonymized data [67].

The lack of robust methods for quantifying the privacy 
gains of pseudonymizing training data remains a signifi-
cant drawback of the technique. For example, differen-
tially private learning, as described in the background, 
gives rigorous mathematical privacy guarantees. In con-
trast, while the results in this article show that privacy 
can be gained without sacrificing data utility, the exact 
privacy gains remain unknown. However, the estimated 
amount of remaining PII in the training data provides 
an upper bound concerning the entities covered by the 
pseudonymizer. In any case, there is no consensus on 
how privacy should be measured from a regulatory stand-
point. Indeed, according to some strict but prominent 
interpretations of the GDPR, legal use of data containing 
PII may be next to impossible [44]. The development of 
GDPR-compliant privacy metrics should preferably be 
conducted in communication with the legal community.

Domain‑adaptive pre‑training
Both pre-trained models—SweDeClin-BERT and Swe-
Clin-BERT—are initialized with the weights of the 
general-domain Swedish KB-BERT model. As shown 
by Lamproudis et  al. [53], this allows them to converge 
faster when compared to pre-training from randomly 
initialized weights. This is beneficial from a resource per-
spective, as pre-training is both time and energy consum-
ing. It can also have positive benefits for privacy, as the 
models have been trained using both sensitive and non-
sensitive corpora.

While there are benefits to initializing the models from 
an already capable general-domain model, this decision 
is also a possible limitation of our methodology. While 
the previous study by Lamproudis et  al. showed that 
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domain-adapted models and models pre-trained from 
scratch eventually converge, they did not look at whether 
pseudonymization may affect this result. Although PII 
constitutes a very small portion of the total data [68], it 
is plausible that pseudonymization introduces variability 
to the pre-training corpora. This added variability could 
make it easier or harder to learn. Whether pseudonymiz-
ing the pre-training corpora has any substantial impact 
on the rate of convergence or the final quality of a model 
trained from scratch is an interesting idea for future 
research.

Identifying PII in clinical text
The effectiveness of end-to-end pseudonymization as a 
privacy-preserving technique depends largely on the abil-
ity to accurately identify PII in the corpora used for pre-
training and fine-tuning the clinical language models. In 
this study, a manually annotated PII corpus [42] was used 
to fine-tune clinical BERT models to identify PII. The 
performance of these models – estimated through eval-
uations on held-out test data from the Stockholm EPR 
PHI Corpus – is reported in Table  2 and 3. While both 
precision and recall are fairly high for most PII classes, 
we have not evaluated the performance of the model to 
identify PII in the downstream task corpora, nor in the 
pre-training corpus. A previous study showed that the 
performance of a CRF model trained on this PII corpus 
performed worse when applied to other types of clinical 
notes and that the performance varied quite considerably 
across different types of clinical notes, i.e. produced in 
different clinical specialties, written by persons in differ-
ent professional roles, and under different headings [69]. 
In part, this may also be explained by the fact that the 
prevalence of PII varies across different types of clinical 
notes. While the overall PII density8 was estimated to be 
around 1.57%, it was estimated to be as low as 0.97% for 
notes written by physiotherapists and as high as 2.19% in 
discharge notes [68].

The results of this study show that the utility of the 
models was not negatively affected by being trained on 
pseudonymized data compared to using the original sen-
sitive data, allowing privacy risks to be reduced without 
sacrificing predictive performance. However, the utility 
would likely, at some point, be reduced if a pseudonymi-
zation system with poor precision substantially distorted 
the data. Here, two pseudonymizers with different per-
formance levels were evaluated and the results did not 
indicate any significant difference in terms of their impact 
on data utility for fine-tuning clinical BERT models. 

However, previous work evaluating the impact of pseu-
donymization on the performance of clinical NER tasks 
showed that training pseudonymizers with higher recall 
at the expense of lower precision does eventually harm 
data utility [48]. In future work, it would be interesting to 
determine at what point – e.g., at a certain level of preci-
sion – that data utility starts to be significantly impacted. 
However, this tolerance threshold would likely need to be 
determined separately for different downstream tasks.

Sharing data and models
The clinical language model SweDeClin-BERT and the 
Stockholm EPR Gastro ICD-10 Pseudo Corpus are avail-
able for academic use worldwide9. Based on the results 
of this study, we plan to make the other pseudonymized 
corpora used in this study available as well. However, this 
requires supplementary ethical approval from the Swed-
ish Ethical Review Authority. Moving forward, an inter-
esting issue is whether it is also possible to make these 
pseudonymized clinical corpora and language models 
available to industry. This would enable commercial 
applications that could be used in real clinical settings. 
The benefits of sharing data and models must also be bal-
anced against the privacy risks of doing so. From a legal 
standpoint, sharing data among academics can be justi-
fied due to the explicit provisions that the GDPR makes 
for research. These provisions do not apply to commer-
cial use, making sharing data with commercial partners 
difficult.

As noted earlier in the discussion, there is no consen-
sus regarding how privacy should be quantified when 
dealing with NLP models. The current flora of PLMs is 
heterogeneous, including both masked language models 
like BERT and generative models such as the GPT family. 
Risk assessments should likely be done on a per-model 
basis, given the vast differences between models in terms 
of architectures, the scale of their pre-training data, their 
number of parameters, and what privacy-preserving 
techniques have been applied. The models used in this 
study are based on the modestly-sized BERTBASE model, 
a non-generative model composed of approximately 110 
million parameters. Although there have been several 
studies on the matter [24–27], there are no known exam-
ples of successful training data extraction attacks target-
ing BERT models.

It is important to note that the performance measures 
attained in this study do not necessarily hold for other 
sets of hospitals. All models and datasets use data from 
the Health Bank research infrastructure, which come 

8  Defined as the number of PII-labeled tokens divided by the total number 
of tokens.

9  Contact the authors for details on how to gain access to the data and mod-
els.
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from a specific set of medical clinical units. It is well-
known that models trained on one set of data sources 
may perform worse when confronted with novel data 
[37]. Indeed, as noted in the previous section, perfor-
mance can vary even within a set of data sources. Further 
complicating the situation, the clinical domain gener-
ally struggles with the many restrictions on sharing data. 
While understandable and justified from a privacy per-
spective, these restrictions make it difficult to evaluate 
models and datasets cross-institutionally. Nevertheless, 
two studies applying SweDeClin-BERT to new data have 
been carried out [70, 71], with encouraging results.

Conclusion
This study evaluates the impact of pre-training and 
fine-tuning using automatically pseudonymized train-
ing data. Two clinical BERT models, one trained on 
real data and one trained on pseudonymized data, are 
evaluated on five clinical downstream tasks. The data-
sets for these tasks are used both in unaltered form and 
in pseudonymized versions. The results from evaluating 
all different configurations of models and datasets are 
tested using Mann-Whitney U tests.

The analysis of the statistically significant tests finds 
limited evidence supporting that, in some cases, fine-
tuning non-pseudonymized PLMs may work better if 
using non-pseudonymized data. Such an effect, if real, 
is small. Furthermore, we find no cases where pre-
training and fine-tuning using pseudonymized data 
end-to-end harms utility. This demonstrates that pseu-
donymization can decrease the privacy risks of using 
clinical data for NLP without harming the utility of the 
machine learning models.
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