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Abstract 

Background  Machine learning (ML) has emerged as the predominant computational paradigm for analyzing large-
scale datasets across diverse domains. The assessment of dataset quality stands as a pivotal precursor to the success-
ful deployment of ML models. In this study, we introduce DREAMER (Data REAdiness for MachinE learning Research), 
an algorithmic framework leveraging supervised and unsupervised machine learning techniques to autonomously 
evaluate the suitability of tabular datasets for ML model development. DREAMER is openly accessible as a tool 
on GitHub and Docker, facilitating its adoption and further refinement within the research community..

Results  The proposed model in this study was applied to three distinct tabular datasets, resulting in notable 
enhancements in their quality with respect to readiness for ML tasks, as assessed through established data quality 
metrics. Our findings demonstrate the efficacy of the framework in substantially augmenting the original dataset 
quality, achieved through the elimination of extraneous features and rows. This refinement yielded improved accu-
racy across both supervised and unsupervised learning methodologies.

Conclusion  Our software presents an automated framework for data readiness, aimed at enhancing the integrity 
of raw datasets to facilitate robust utilization within ML pipelines. Through our proposed framework, we streamline 
the original dataset, resulting in enhanced accuracy and efficiency within the associated ML algorithms.
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Background
The proliferation of machine learning (ML)-based tech-
nologies across scientific and industrial domains under-
scores the importance of developing sophisticated and 
precise ML pipelines. Despite advancements in this area, 
there remains a dearth of comprehensive research aimed 
at assessing the readiness of data inputs to such pipe-
lines, a crucial step towards constructing effective and 
broadly applicable models [1, 2]. Data scientists report-
edly expend a significant portion of their efforts, approxi-
mately 80%, on iterative pre-processing tasks such as data 
cleansing, validation, and transformation prior to model 
construction. While data utilization varies among users 
and contexts, challenges related to data readiness persist 
across diverse stakeholders [3–5]. Given the data-inten-
sive nature of most ML models, which often necessitate 
sizable datasets, the quality of the input data directly 
impacts the efficacy of models produced through various 
ML frameworks. Consequently, there has been a growing 
call within the data science community to assess dataset 
quality and ascertain its suitability for ML model devel-
opment. Thus, investigating dataset readiness emerges as 
a critical research area, underscored by the pressing need 
for computational tools capable of systematically evaluat-
ing ML data readiness [6, 7].

Previous research has identified a range of metrics 
designed to instill user confidence in data integrity and 
facilitate interpretability across various dimensions of 
data quality. Notable among these metrics are Class 
Overlap, Label Purity, Class Parity, Feature Relevance, 
Data Homogeneity, Data Fairness, Correlation Detec-
tion, Data Completeness, Outlier Detection, and Data 
Duplicates (Supplementary Notes 1). Additionally, sev-
eral tools have been proposed in prior literature to assess 
data readiness, including but not limited to AutoML [8], 
Datasheets [9], Data Statements [10], FactSheets [11], 
Dataset Nutrition Label [12], Model Cards [13], Data-
maid [14], Codebook [15], IBM Data Quality Toolkit [16], 
and Data Readiness Report [17] (Supplementary Notes 
2). While these tools offer considerable flexibility in eval-
uating data quality, their primary focus has not been on 
assessing data readiness in conjunction with enhancing 
the efficacy of subsequent ML model development using 
the same datasets. We contend that by integrating data 
readiness assessment with the downstream ML task, an 
opportunity arises to enhance the reliability of ML model 
research [18, 19].

The central premise of the proposed framework 
extends beyond the utilization of conventional data 
quality measures solely to elevate the readiness level of 
datasets for integration into ML pipelines. Instead, it 
leverages ML concepts to dynamically adjust data qual-
ity measures to suit the specific characteristics of each 

dataset. Unlike existing data readiness methodologies, 
the proposed framework adopts a dataset-dependent 
approach, wherein the significance of individual data 
quality metrics is tailored to the intrinsic attributes of the 
corresponding dataset. In this study, both supervised and 
unsupervised approaches are employed to delineate the 
relative importance of each data quality metric within a 
given dataset.

Implementation
In this study, we present a computational framework 
designed to facilitate automated assessment of data read-
iness for machine learning applications (Fig.  1). While 
various methodologies exist for constructing such frame-
works, we have developed a framework that evaluates 
data readiness by integrating a spectrum of quality met-
rics with the dataset’s capacity for precise classification 
and clustering. Termed DREAMER ((DataREAdiness for 
MachinE learning Research)), our framework is intro-
duced as an open-source tool for researchers, represent-
ing its initial version. To evaluate its efficacy, we applied 
DREAMER to assess tabularly curated data sourced 
from three prominent datasets: the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) [20], the Framingham 
Heart Study (FHS) [21], and Wisconsin Diagnosis Breast 
Cancer (WDBC) [22]. Our analysis demonstrates that 
DREAMER effectively evaluates ML readiness across 
these datasets, elucidating the combination of person-
level features and instances conducive to optimal ML-
driven outcomes. Notably, the original data for each 
dataset was sourced directly from the respective cohorts 
in tabular format.

Given our framework’s focus on assessing readiness 
with a view to enhancing ML performance, each data-
set (referred to as the master table D) comprises a vari-
ety of input features columns alongside a single column 
dedicated to the output label of interest. Our automated 
framework takes the master table D, composed of M col-
umns (inclusive of the specified output label column) and 
N rows, as input for assessing its readiness for ML tasks. 
A key aspect of our strategy involves the identification 
of a sub-table T* within D boasting the highest quality 
score (represented by f̃). This approach entails random 
sampling of a set of sub-tables Ti [Ni, Mi], followed by the 
computation of quality metrics for each.

Supervised and unsupervised algorithms are subse-
quently trained on each sub-table, utilizing Ni rows, Mi 
features and the output label, with the average accuracy 
derived from the algorithms forming a discrete space 
S. The optimization objective revolves around explor-
ing this space to pinpoint T* with the highest quality. 
Notably, the search space S is vast, encompassing 2N × 
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2M points, thereby rendering the search strategy akin 
to a subset sum problem [23], recognized for its NP-
Complete nature and intractable exponential runtime. 
Consequently, identifying an optimal sub-table emerges 
as a computationally daunting task necessitating the 
development of efficient algorithms and optimization 
strategies. Our proposed DREAMER framework repre-
sents an empirical approach to identify T*, with results 
obtained from the FHS, ADNI, and WDBC datasets 
serving as a proof-of-principle for the efficacy of our 
automated framework in evaluating their ML readiness.

Study population
Clinical, genetic, demographic, and neuropsychologi-
cal assessments, along with functional evaluations, 
were acquired from ADNI and FHS datasets. Addition-
ally, digitized images were examined from WDBC data-
set. These datasets were subsequently processed and 
organized into tabular formats, as depicted in Table  1. 
The ADNI study, a longitudinal multicenter endeavor, 
is dedicated to the development of biomarkers aimed 
at early detection and monitoring of Alzheimer’s dis-
ease. The FHS, a longitudinal community cohort inves-
tigation spanning multiple generations, has amassed a 

Fig. 1  DREAMER framework. a The DREAMER architecture workflow delineates the process for evaluating the readiness of a tabular dataset 
for machine learning. Input to DREAMER comprises the tabular dataset under scrutiny, which undergoes a sequence of automated procedures, 
culminating in the generation of a structured tabular dataset conducive to machine learning analysis. b The transformation of the data space 
D into data readiness space D’ involves constructing a new dataset from the master dataset. The master dataset dimension is denoted as N×M, 
while the data readiness dataset assumes dimensions of d×k, where d represents the number of random sub-tables and k indicates the number 
of data quality measures. c The process involves learning the weights of data quality measures from dataset D’ utilizing regression methodology. 
The average accuracy of clustering and classification serves as the target value for the regression algorithm. Subsequently, weighted total quality 
of sub-tables is computed post-weight learning to ascertain the best sub-table boasting the highest data quality. d The search space of DREAMER 
scales proportionally with the size of the master dataset (both in terms of rows and columns). We execute DREAMER R times to identify the best 
sub-table of each run as local maximum, subsequently selecting the sub-table exhibiting the highest data quality as a potential global maximum
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comprehensive repository of data concerning cardio-
vascular health, with subsequent expansions to inves-
tigate factors influencing cognitive decline, dementia, 
and Alzheimer’s disease. The WDBC dataset comprises 
numerical data derived from digitized fine needle aspi-
rate (FNA) images of breast masses, specifically gathered 
for breast cancer diagnosis purposes.

In our study, we utilized data from the ADNI dataset, 
specifically focusing on the ADNIMERGE table com-
prising 2,376 participants and 52 features. These fea-
tures encompassed 44 baseline factors, six demographic 
features, one genetic feature (APOE4), and one diagno-
sis class feature at baseline (DX_bl). The DX_bl feature 
encompassed five categories—cognitively normal (CN), 
late mild cognitive impairment (LMCI), early mild cog-
nitive impairment (EMCI), significant memory concern 
(SMC), and Alzheimer’s disease (AD)—reflecting diag-
nosis groups at baseline. Our experiment incorporated 
all 44 baseline features, alongside participant education 
status (PTEDUCAT) and the DX_bl class feature, total-
ing 46 columns of data. Furthermore, the Framingham 
Heart Study (FHS) dataset comprised 5,209 rows and 
82 columns, encompassing demographic information, 
anthropometric measurements, smoking status, blood 
test results, neuropsychological assessments, and veri-
fied outcomes of dementia. All features were collected 

statically during participants’ initial visits, with the out-
come represented by a binary measure indicating prob-
able dementia presence. Lastly, the Wisconsin Diagnosis 
Breast Cancer (WDBC) dataset included 569 participants 
and 30 features, with no missing values. All features were 
numerical, with the class feature “Diagnosis” represent-
ing a categorical variable with two values: “Benign” 
indicating non-cancerous conditions and “Malignant” 
indicating cancerous conditions (Supplementary Fig. 1).

Computational framework
Our study applied the proposed model to the ADNI, 
FHS, and WDBC datasets, with the objective of deriv-
ing the most refined table characterized by optimal data 
quality achieved through the exclusion of less pertinent 
rows and columns. The algorithm was executed ten 
times, varying the number of sub-tables from 1000 to one 
million, to iteratively identify the most cleansed dataset. 
The resultant cleansed dataset exhibits the capability to 
effectively differentiate individuals based on diagnostic 
groups—specifically, five diagnosis groups in the ADNI 
dataset (CN, LMCI, EMCI, SMC, and AD), two diagno-
sis groups in the FHS dataset (Probable Dementia and No 
Dementia), and two diagnosis groups in the WDBC data-
set (Cancerous and Not Cancerous). Consequently, this 
refined dataset stands poised for utilization in AI tasks 

Table 1  Study population of FHS, ADNI, and WDBC datasets and their characteristics

Dataset FHS (n = 5209) ADNI (n = 2376) WDBC (n = 569)

Classification 
feature

Probable dementia present Dementia diagnosis at baseline Breast cancer diagnosis

Labels charac-
teristic

No Dementia
(n = 1245)

Probable 
Dementia
(n = 1220)

CN
(n = 534)

LMCI
(n = 672)

EMCI
(n = 411)

SMC
(n = 325)

AD
(n = 407)

Benign (not 
cancerous)
(n = 357)

Malignant 
(cancerous)
(n = 212)

Age 44.3 ± 8.3
[29, 62]

43 ± 8
[29, 62]

73.4 ± 6.2
[55, 89]

73.7 ± 7.5
[54, 91]

71.2 ± 7.4
[55, 89]

71 ± 6.4
[56, 90]

74.8 ± 7.9
[55, 90]

Gender, male 
(%)

607 (48.7%) 384 (31.4%) 252 (47.1%) 411 (61.1%) 227 (55.2%) 126 (38.7%) 230 (56.5%)

Education 4.9 ± 2.9
[0, 10]

5 ± 2.3
[0, 10]

16.4 ± 2.6
 [6, 20]

15.9 ± 2.8
 [4, 20]

16 ± 2.6
 [10, 20]

16.7 ± 2.3
 [8, 20]

15.1 ± 2.9
 [4, 20]

Data quality 
scores

PC = 0.7674
Spearman correlation = 0.7363
Missing values = 0.2689
Outliers = 1.0
Class overlap = 0.8071
Total weighted quality = 0.6481

PC = 0.7466
Spearman correlation = 0.7312
Missing values = 0.7497
Outliers = 0.1347
Class overlap = 0.1654
Total weighted quality = 0.4656

PC = 0.6052
Spearman correla-
tion = 0.5782
Missing values = 1
Outliers = 0.0875
Class overlap = 0.9315
Total weighted qual-
ity = 0.6335

Classification 
/ Clustering 
accuracy

Classification accuracy = 0.8594
Clustering accuracy = 0.4332

Classification accuracy = 0.5134
Clustering accuracy = 0.6012

Classification accu-
racy = 0.4804
Clustering accu-
racy = 0.5792

Number of fea-
tures

81 45 30
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aimed at knowledge discovery and prediction, leveraging 
both supervised and unsupervised approaches.

Within the realm of data readiness, we delineated five 
key data quality measures: Pearson Correlation (PC), 
Spearman Correlation, Missing Values, Outliers, and 
Class Overlap. All measures underwent normalization 
within the range [0, 1], with values nearing one signifying 
heightened data quality within a sub-table. Thresholds for 
the RER and CER were established at 0.2 and 0.5, respec-
tively. Consequently, the proposed algorithm is poised to 
exclude a maximum of 20% of rows and 50% of columns 
from datasets to generate random sub-tables. Proper-
ties of each run’s sub-tables are preserved as individual 
CSV files, with specification of the optimal sub-table 
exhibiting the highest  f̃  score saved in a separate CSV 
file. Furthermore, a TXT file captures the details of the 
top-performing CSV sub-table among all runs, including 
the indices of selected columns and rows from the mas-
ter dataset. This CSV file represents the refined version 
of the master dataset, indicative of the global optimum 
point, encapsulating the best sub-table T* with the high-
est total quality score  f̃   f̃*.

Given a raw dataset D [N×M] comprising N rows and 
M columns denoted as c1, c2, …, cM, we derive d random 
sub-tables, Ti, each comprising Ni rows and Mi columns 
such that ∀i Ni⊆ N and Mi⊆ M. The selection of rows and 
columns within these sub-tables follows a uniform distri-
bution. Subsequently, we compute k data quality metrics 
denoted as F = {f1, f2, …, fk} for all sub-tables. Based on 
this, we define d sub-table instances and k corresponding 
quality metrics, thereby delineating the data readiness 
space as D’[d×k]. The primary objective is to identify the 
optimal sub-table T*[N*×M*] within the original data-
set D, characterized by the highest level of data quality 
denoted by  f̃  . The value of data quality  f  is derived from 
k data quality measures within the data readiness space 
D’, expressed as:

where data quality measure is represented by fi, each 
assigned a weight denoted by wi. Within each iteration, 
classification and clustering algorithms are implemented 
on the respective sub-tables, employing a designated 
feature as the class label. Subsequently, classification 
accuracy is determined utilizing the 10-fold Cross Valida-
tion method across all d sub-tables. This process yields 
a new dataset comprising d samples, each representing 
a distinct sub-table, incorporating k data quality features 
alongside the average classification and clustering accu-
racies. Random forest regression analysis is then applied 
to ascertain the weight vector W = (w1, …, wk) for features 

f̃ =
∑k

i=1
wifi

F = (f1, …, fk). Finally, the mean value of all R weight vec-
tors across iterations, denoted as W* = mean (W1, …, 
WR), serves as the weights for the data quality features F 
in computing the value of f̃  for the sub-tables.

Within the data readiness space D’, each sub-table 
Ti[Ni, Mi] represents a subset of rows and columns 
derived from the original dataset D. Our objective is to 
identify the sub-table T* within D’ exhibiting the high-
est  f̃  value, constituting an optimization challenge within 
the search space S in D’. This task involves navigating a 
discrete search space comprising 2N × 2M points, with 
each point associated with a corresponding  f̃  value. The 
optimization strategy is directed towards pinpointing the 
point T* boasting the highest f̃  score. Notably, this opti-
mization problem mirrors the subset sum problem, rec-
ognized as an NP-Complete problem characterized by 
intractable exponential running time.

To comprehensively explore the search space S, an 
effective heuristic approach is essential to streamline the 
search process and identify the global optimum of S in a 
pragmatic manner. In pursuit of this objective, we imple-
ment the random restart strategy, wherein, during each 
iteration, d sub-tables are randomly selected from the 
original dataset D, encompassing a randomized subset of 
rows and columns. To mitigate the risks of overfitting and 
underfitting inherent in machine learning algorithms, 
we define maximum threshold values for the Columns 
Exclusion Ratio (CER) and Rows Exclusion Ratio (RER). 
These thresholds dictate that the proportion of columns 
and rows excluded from D to construct sub-tables within 
D’ should not surpass the specified CER and RER thresh-
olds, respectively. Notably, the rows of D’ correspond to 
sub-tables Ti[Ni×Mi] extracted from the primary dataset 
D[N×M], while the columns encompass the data qual-
ity features F = {f1, f2, …, fk}, alongside the total quality 
score  f̃  . The algorithm is executed R times, employing a 
randomized subset selection strategy to ensure thorough 
exploration of the search space.

Each run is executed on an independent CPU core 
utilizing the Python multiprocessing pool method, ena-
bling the full utilization of multiple processors avail-
able on the system. Leveraging the pooling method 
facilitates the parallel execution of R runs, effectively 
distributing the input data across concurrent processes. 
The optimum point of the ith run, denoted as T ∗

i  , along 
with its corresponding total quality score f̃i , is identi-
fied. Through R iterations, the dataset D is transformed 
into the data readiness space D’, with each run select-
ing the optimal sub-table. Ultimately, the best optimum 
point T* is chosen from among all R optimum points 
{ T ∗

1
 , T ∗

2
 , …, T ∗

R }, representing the global optimum point 
with the highest total quality score  f̃ *. The pseudocode 
outlining the proposed algorithm is presented below 
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as Algorithm 1,  where the input is the dataset D serv-
ing as the master dataset, and the output is a sub-table 
T* exhibiting the highest data quality, representing the 
cleansed version of D.

Algorithm 1. DREAMER v1.0 (Dataset D)

Quality metrics
A comprehensive set of established quality metrics was 
computed for each sub-table derived from the original 
dataset, subsequently serving as features indicative of the 
data readiness space. These metrics encompass Average 
Pearson Correlation (PC), Average Spearman Correla-
tion, Missing Values, Outliers, and Class Overlap. The 
average PC measure is derived by computing the mean 
value of the PC coefficients across all feature pairs within 
the corresponding subset of features. The PC measure 
is defined within the range [-1, + 1] and is calculated as 
follows:

We regarded 1 – PC as a data quality metric for each 
sub-table. In quantifying the prevalence of missing values 
within a sub-table, we computed the Missing Values (MV) 

PC =

∑
(xi−

−
x)(yi−

−
y)√

∑(
xi−

−
x
)2∑

(yi−
−
y)

2

as the proportion of missing values, utilizing 1 – MV as 
an indicator of data quality. The PC score denotes a lin-
ear correlation among features. To evaluate the presence 
of non-linear correlations among features, we employed 

the average Spearman Correlation (ρ) measure, calculated 
according to the following formula:

In the aforementioned formula, di represents the dis-
parity between the two ranks within each sample, with n 
denoting the total number of samples in the dataset. We 
adopt the score 1 – ρ as a data quality metric for a given 
sub-table. To quantify the presence of outliers within a 
dataset, we computed the Median Absolute Deviation 
(MAD), leveraging a univariate approach to outlier detec-
tion. The test statistic for the MAD method is computed 
analogously to the z-score method, as illustrated by the 
following formula:

ρ = 1−
6
∑

d2i
n(n2 − 1)

MAD = median
(∣∣xi −median(X)

∣∣)
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For each data point xi, if the absolute value of 
xi−median(X)

MAD  exceeds 3, it is identified as an outlier. Con-
sistent with prior methodology, we employed 1 – MAD 
as the data quality metric for each sub-table. The MAD 
method exhibits greater robustness compared to the 
z-score method due to its reduced sensitivity to out-
lier influence; outliers exert a diminished impact on the 
median relative to the mean. Conversely, the z-score 
method, reliant on mean and standard deviation, is sig-
nificantly influenced by outliers. Thus, the MAD method 
represents a robust approach for detecting outlier data 
within non-normally distributed datasets.

The Class Overlap measure is determined by the R 
value, as proposed by Oh [24], predicated on the prem-
ise that a sample from a class Cl is considered to be over-
lapped with other samples if the count of samples within 
its k nearest neighbors (kNN) that pertain to a class other 
than Cl exceeds a predefined threshold. The R value is 
computed using the following formula:

In the provided formula, D represents the dataset compris-
ing N samples distributed among n classes denoted as C1, 
C2, …, Cn. The variable xli denotes the ith sample within the 
class Cl. The set kNN(xli ,D − Cl ) refers to the collection of 
samples in the k nearest neighbors of xli that belong to classes 
other than Cl. The function λ(x) operates as a binary func-
tion, returning 1 when x > 0 and 0 otherwise. The threshold 
value θ is confined to the interval [0, k/2]. The time complex-
ity for calculating the R value across N samples is O (N2). 
The R value ranges from 0 to 1, with the value 1-R serving 
as a data quality metric for a given sub-table. Within this 
study, parameter settings for k and θ are designated as k = 7 
and θ = 3, respectively. With these parameters, a sample is 
deemed to be within the overlapping region if at least four of 
its seven nearest neighbors belong to a different class.

In the context of computing correlation, identifying out-
liers, and assessing class overlap, necessitating numerical 
values, we excluded five non-numerical features, along 
with the genetic feature APOE4, from the 52 static features 
within the ADNI dataset for sub-table construction. Spe-
cifically, the omitted features encompass AGE, PTGEN-
DER, PTETHCAT, PTRA​CCA​T, PTMARRY, and APOE4. 
For the generation of random sub-tables, we considered 45 
static features of the ADNI dataset and utilized the DX_bl 
variable as the class feature. Similarly, within the FHS data-
set, 81 features were utilized alongside the DEMRV046 
class feature for generating random sub-tables. Lastly, for 
the WDBC dataset, we considered all 30 features, as they 
are numerical, and utilized the class feature DIAGNO-
SIS  to generate random sub-tables. Although the total 

R =
1

N

∑n
l=1

∑|Cl |

i=1
�

(∣∣∣kNN
(
x1i , D − Cl

)∣∣∣− θ

)

number of subsets across the ADNI, FHS, and WDBC 
datasets amounts to 245, 281, and 230 respectively, our 
exploration was confined to a limited region of the com-
prehensive search space through the adoption of a random 
restart strategy. Moreover, by selecting random rows from 
the ADNI, FHS, and WDBC tables, which respectively 
comprise 2,376, 5,209, and 569 rows, the scale of this prob-
lem’s total search space escalates to an intractable magni-
tude exceeding 22376, 25209, and 2569 unique states.

To ascertain the weights of four data quality measures, we 
employed Random Forest (RF) with 20 estimators and Sto-
chastic Gradient Descent (SGD) classifiers, utilizing a 10-fold 
cross-validation to compute the accuracy of each sub-table 
classification within each run. In the realm of unsupervised 
learning, we leveraged agglomerative and k-means cluster-
ing algorithms, evaluating the accuracy of clustering for 
each sub-table through the computation of the Silhouette 
Coefficient S, determined by the following formula:

In the aforementioned equation, a represents the 
mean distance between a sample and all other samples 
within the same class, while b denotes the mean dis-
tance between a sample and all other samples in the next 
nearest cluster. The average Silhouette Coefficient (S) 
value obtained from the two clustering algorithms signi-
fies the average accuracy of clustering for the respective 
sub-table. A higher Silhouette coefficient indicates more 
well-defined clusters, with scores ranging between − 1 
for incorrect clustering and + 1 for highly dense cluster-
ing. Scores near zero suggest overlapping clusters, while 
values within the interval [0, 1] are considered as the 
accuracy measure of the clustering algorithm. We treat 
Silhouette Coefficient values within the interval [-1, 0] as 
zero. Ultimately, the average accuracy of both classifica-
tion and clustering algorithms, weighted equally, serves 
as the accuracy metric for the associated sub-table. We 
utilized Random Forest Regression with 20 estimators to 
derive the weight vector for data quality measures, with 
the accuracy of each sub-table serving as the target value 
for regression.

DREAMER has been made publicly available as a web-
based utility, catering to researchers keen on assess-
ing the readiness of their tabular datasets (referred 
to as the master table). Upon authentication via our 
integrated user management system, researchers can 
securely upload their data in CSV format and receive a 
comprehensive report outlining DREAMER’s analy-
sis of the master table’s readiness for ML applications. 
Additionally, users will receive actionable recommenda-
tions, including an ML-ready dataset, typically derived 
as a subset of the master table optimized for ML tasks. 

S =
b− a

max(a, b)
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All computational processes associated with these func-
tionalities are executed on a high-performance comput-
ing cluster (SCC) situated at the Massachusetts Green 
High Performance Computing Center. Upon completion 
of the computation, users will be promptly notified via 
email and provided with the option to download both the 
refined dataset and the quality assessment report.

Web development framework
We have developed DREAMER  as a web-based tool 
(https://​github.​com/​vkola-​lab/​DREAM​ER), which facili-
tates users in registering on our platform, uploading their 
datasets, assessing their machine learning readiness, and 
obtaining cleansed datasets as outputs. The intuitive user 
interface accommodates the uploading of a master CSV 
dataset. Upon initiation, this action initiates an Applica-
tion Programming Interface (API) connection, gener-
ating a JSON configuration file containing DREAMER 
parameters pertinent to the master dataset, subsequently 
transmitting it to our server. The backend system then 
assumes control, executing the core DREAMER pro-
cesses on the dataset, resulting in a sanitized CSV file 
accompanied by comprehensive reports and statisti-
cal analyses. Upon conclusion of the DREAMER proce-
dures, users are promptly notified via email and granted 
access to download the complete package, inclusive of 
the cleansed dataset, reports, and data readiness metrics 
(Fig. 2).

Results
The algorithm underwent ten iterations, each involv-
ing the analysis of randomly selected sub-tables ranging 
in size from 1000 to one million, to evaluate the efficacy 
of the proposed model across an expanded search space. 
The mean weight vectors derived from ten iterations 
on the ADNI, FHS, and WDBC datasets are as follows: 
W*ADNI = (0.1606, 0.1573, 0.2021, 0.0094, 0.4703), W*FHS 
= (0.2069, 0.1994, 0.2626, 0.0241, 0.3069), and W*WDBC 
= (0.1917, 0.1911, 0, 0.1990, 0.4183) for the attributes 
PC, Spearman Correlation, Missing Values, Outliers, and 
Class Overlap, respectively. Consequently, among the five 
data quality measures evaluated across all three datasets, 
Class Overlap emerged as the most significant measure 
in the ADNI, FHS, and WDBC datasets. The mean ranges 
of all data quality features across the three datasets are 
presented in Supplementary Table  1, accompanied by 
95% confidence intervals derived from the assumption of 
a normal distribution.

 Supplementary Table  2 displays the best sub-tables 
from each run for the ADNI, FHS, and WDBC datasets. 
The sub-table with the highest data quality for the ADNI 
dataset is derived from Run 10, with a total quality score 
of  f̃ * = 0.6662. This sub-table consists of 2,118 rows and 

23 columns, selected from an initial master table of 2,376 
rows and 45 columns, indicating an increase in data qual-
ity of 0.2006 compared to the ADNI master table’s qual-
ity score of 0.4656. A similar improvement was observed 
in the FHS dataset, where the best sub-table also came 
from Run 10, achieving a total quality score of  f̃ * = 
0.7232. This sub-table comprises 4,354 rows and 42 col-
umns, extracted from an original dataset of 5,209 rows 
and 81 columns, demonstrating an increase in data qual-
ity of 0.0751 compared to the FHS master table’s score 
of 0.6481. In the WDBC dataset, the optimal sub-table 
was obtained from Run 4, with a total quality score of  f̃
* = 0.843. This sub-table contains 455 rows and 15 col-
umns, compared to the original table’s 569 rows and 30 
columns, yielding a significant improvement in data qual-
ity of 0.2095 over the WDBC master table, which had a 
score of 0.6335.

Experimental outcomes from ten iterations of the 
DREAMER algorithm on the FHS, ADNI, and WDBC 
datasets are depicted in Fig.  3. The results for the FHS 
dataset indicate variability in both classification and clus-
tering accuracy as the number of sub-tables increased. In 
contrast, the ADNI dataset exhibited a slight improve-
ment in classification accuracy with more random sub-
tables, while clustering accuracy showed fluctuations 
as the number of sub-tables increased. For the WDBC 
dataset, clustering accuracy also demonstrated variabil-
ity with the number of sub-tables, whereas classification 
accuracy remained relatively stable despite increasing the 
number of sub-tables.

Our findings further reveal that in all three datasets, 
the weights and scores for data quality measures, as well 
as the total quality of the optimal sub-table, reached a 
steady state after generating approximately 100,000 sub-
tables. Additionally, the data suggest that the total data 
quality score of the best sub-tables generally tends to 
increase as the number of sub-tables grows, indicating 
that DREAMER can enhance the quality of the master 
dataset by exploring a broader range within the search 
space.

In the FHS dataset, the number of random sub-tables 
showed a positive correlation with PC, Spearman corre-
lation, Missing values scores, and the total quality of the 
optimal sub-table. However, this measure did not exhibit 
significant correlation with other data quality metrics, 
nor with classification and clustering accuracy. The num-
ber of random sub-tables also demonstrated a positive 
correlation with weights for PC, Spearman correlation, 
and Outliers, while exhibiting a negative correlation with 
weights for Missing values and Class overlap (Supple-
mentary Fig. 2a, b).

In the ADNI dataset, the number of random sub-
tables correlated positively with classification accuracy 

https://github.com/vkola-lab/DREAMER
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Fig. 2  Architecture of the DREAMER web framework. a DREAMER comprises three primary components: the front-end, API connection, 
and back-end. Within the front-end interface, users register and subsequently upload a raw CSV dataset file to the website. The API connection 
stage involves the generation of a JSON configuration file corresponding to the uploaded dataset, encompassing DREAMER parameters. 
This JSON file, along with the master dataset, is then transmitted to the server. On the back-end, the principal DREAMER process operates 
on the master dataset, resulting in the generation of a cleansed CSV file accompanied by various reports and statistical analyses. Upon 
completion of the DREAMER process, users receive email notifications and can access the cleansed dataset and reports within their profile section 
on the website. b DREAMER enhances the quality of raw datasets by elevating data quality scores and improving the accuracy of classification 
and clustering algorithms. It selectively removes correlated features and rows from the original dataset to enhance the overall quality score 
of the cleansed dataset
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but negatively with clustering accuracy. Additionally, 
a positive correlation was observed with Class over-
lap score and the total quality of the best sub-table, 

whereas negative correlations were noted with PC and 
Spearman correlation scores, with a slight negative 
correlation with Missing values. Regarding the weights 

Fig. 3  Convergence analysis of the DREAMER framework across multiple datasets. a Clustering and classification analysis in the FHS dataset 
as a function of the number of random sub-tables. b Plot showing the relationship between data quality scores and the number of random 
sub-tables in the FHS dataset. c Diagram illustrating the relationship between data quality weights and the number of random sub-tables 
in the FHS dataset. d Clustering and classification analysis in the ADNI dataset as a function of the number of random sub-tables. e Plot showing 
the relationship between data quality scores and the number of random sub-tables in the ADNI dataset. f Diagram illustrating the relationship 
between data quality weights and the number of random sub-tables in the ADNI dataset. g Clustering and classification analysis in the WDBC 
dataset as a function of the number of random sub-tables. h Plot showing the relationship between data quality scores and the number of random 
sub-tables in the WDBC dataset. i Diagram illustrating the relationship between data quality weights and the number of random sub-tables 
in the WDBC dataset
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of data quality measures, the number of random sub-
tables had a positive correlation with weights for PC, 
Spearman correlation, and Outliers, but a negative cor-
relation with weights for Missing values and Class over-
lap (Supplementary Fig. 2c, d).

For the WDBC dataset, the number of random sub-
tables exhibited a positive correlation with scores for 
PC, Spearman correlation, Outliers, Class overlap, 
clustering accuracy, and the total quality of the best 
sub-table, but showed no significant correlation with 
classification accuracy. The number of random sub-
tables was also positively correlated with weights for 
PC, Spearman correlation, and Outliers, but negatively 
correlated with the weight for Class overlap (Supple-
mentary Fig.  2e, f ). Supplementary Fig.  3 provides a 
regression analysis of the DREAMER framework on the 
FHS, ADNI, and WDBC datasets across ten iterations.

To establish a practical baseline, we used the aver-
age precision of clustering and classification tasks as 
our primary metric, allowing us to determine weights 
for the data quality measures and assess overall data 
readiness. Within this framework, we posit that a high-
quality dataset is characterized by clear cluster separa-
tion and distinct sample discrimination. The toolbox 
also provides a range of customizable features, enabling 
users to set their own objectives for identifying high-
quality datasets that align with their criteria. This user-
driven flexibility promotes the discovery of insights 
across various tabular datasets, highlighting the versa-
tility and adaptability of our proposed approach.

Our results demonstrated that the total quality of 
cleansed datasets significantly improved across all 
three datasets examined. For the FHS and WDBC 
datasets, the cleansed data showed enhanced accuracy 
in both classification and clustering compared to the 
original raw data. In the ADNI dataset, while classifica-
tion accuracy improved with data cleansing, clustering 
accuracy experienced a slight decline relative to the raw 
data (Fig.  4). This variability in outcomes underscores 
the importance of context and dataset-specific fac-
tors when evaluating the effectiveness of data quality 
enhancements.

Discussion
Our study acknowledges several limitations. First, the 
data readiness space was constructed based on a limited 
set of well-established quality measures, and our frame-
work focused exclusively on tabular datasets while tar-
geting average accuracy in classification and clustering 
tasks. Despite these constraints, this approach effectively 
demonstrated an automated methodology for assessing 
a dataset’s readiness for ML applications. It is important 
to note that the complexity of the problem escalates with 
the broadening of the data readiness space. Addition-
ally, because our framework concentrated on tabular 
datasets, its generalizability to other data types, such as 
images and text, may be limited. Computational demands 
also represent a significant challenge within our pro-
posed framework; however, our experiments suggest that 
enhanced computational resources can lead to improved 
data quality.

In our framework, each point within the state space 
represents a random sub-table generated by selectively 
omitting certain rows and columns from the original 
dataset. While it is generally infeasible to examine the 
entire state space, the dataset with the highest quality can 
be identified by generating additional sub-tables. Two 
key parameters, RER and CER, govern which regions of 
the search space can be explored. Increasing the values of 
these parameters can significantly extend the algorithm’s 
runtime. It is important to note that the weights assigned 
to data quality features vary with each dataset, meaning 
that the specific weight values derived from our study 
might differ when applied to other datasets.

In this study, we designed a toolbox to automate the 
evaluation of data readiness in tabular datasets for 
machine learning applications. Our framework can be 
likened to a knowledge discovery process, where a struc-
tured dataset was transformed into a data readiness 
space using a defined set of quality measures. Through 
a systematic exploration of this data readiness space, we 
identified high-quality sub-datasets capable of produc-
ing high-performing machine learning models. Notably, 
the search space for this problem is exceedingly large, 
with full exploration limited by computational resources. 
Our results indicate that by expanding the search space 

(See figure on next page.)
Fig. 4  DREAMER framework evaluation across multiple datasets. a Comparison of raw and cleansed data quality scores for the FHS dataset, 
illustrating the impact of DREAMER’s data cleansing. b Comparison of classification and clustering accuracies between raw and cleansed data 
for the FHS dataset, providing insights into the impact of data cleansing on these metrics. c Comparison of raw and cleansed data quality scores 
for the ADNI dataset, illustrating the impact of DREAMER’s data cleansing. d Comparison of classification and clustering accuracies between raw 
and cleansed data for the ADNI dataset, providing insights into the impact of data cleansing on these metrics. e Comparison of raw and cleansed 
data quality scores for the WDBC dataset, illustrating the impact of DREAMER’s data cleansing. f Comparison of classification and clustering 
accuracies between raw and cleansed data for the WDBC dataset, providing insights into the impact of data cleansing on these metrics
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Fig. 4  (See legend on previous page.)



Page 13 of 14Ahangaran et al. BMC Medical Informatics and Decision Making          (2024) 24:152 	

through the generation of additional random sub-tables, 
it is possible to create a cleansed dataset with higher data 
quality. Experiments on the ADNI, FHS, and WDBC 
datasets revealed that increasing the number of random 
sub-tables from one thousand to one million led to an 
improvement in the total quality of the best sub-tables, 
suggesting that DREAMER moves toward a global opti-
mum, representing the optimal cleansed dataset. This 
finding underscores that the DREAMER framework can 
enhance the quality of raw datasets, with the degree of 
improvement contingent on the computational resources 
available.

Conclusions
The experimental results indicate that DREAMER effec-
tively identifies low-quality features and records, lead-
ing to improved data quality through cleansing. This 
process creates more reliable data for ML pipelines. By 
applying DREAMER prior to ML pipeline execution, 
the accuracy of both classification and clustering tasks 
can be enhanced by eliminating noisy records and irrel-
evant features. Furthermore, reducing the master data-
set by removing non-essential rows and columns results 
in increased computational speed for the ML algorithm. 
Thus, DREAMER not only enhances the accuracy of 
ML tasks but also improves the efficiency of the corre-
sponding ML algorithms through data simplification. We 
designed DREAMER as a flexible tool with the potential 
for future extension, accommodating additional data 
quality measures, model performance metrics, and non-
tabular data types.

Availability and requirements
Computational hardware and software
Python (version 3.9) was used for software develop-
ment and plots were generated using matplotlib (ver-
sion 3.4.3) and seaborn (version 0.11.2). NumPy (version 
1.20.3) was used for vectorized numerical computation. 
Other Python libraries used to support data analysis 
include pandas (version 1.3.4), scipy (version 1.7.1), and 
scikit-learn (version 0.24.2). For model runs, we used 
the Python multi-processing pool method. The infra-
structure to perform these computations was provided 
by Boston University Shared Computing Cluster (SCC). 
Each model run was performed using 28 high-speed 
CPU cores.

Data availability
The ADNI and WDBC datasets are accessible through 
publicly available resources. The FHS dataset can be 
obtained upon request, subject to institutional approval.

Model availability
More information on the web-based tool can be found 
on GitHub  (https://​github.​com/​vkola-​lab/​DREAM​ER). 
Additionally, a Docker container for DREAMER is availa-
ble at https://​hub.​docker.​com/​repos​itory/​docker/​ahang​
ar/​dream​er_​docker.

Code availability
Python scripts and user manuals are made available on 
GitHub (https://​github.​com/​vkola-​lab/​DREAM​ER).
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