
Zhou et al. 
BMC Medical Informatics and Decision Making          (2024) 24:141  
https://doi.org/10.1186/s12911-024-02543-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

Federated-learning-based prognosis 
assessment model for acute pulmonary 
thromboembolism
Jun Zhou1, Xin Wang2, Yiyao Li3, Yuqing Yang1* and Juhong Shi3* 

Abstract 

Background Acute pulmonary thromboembolism (PTE) is a common cardiovascular disease and recognizing low 
prognosis risk patients with PTE accurately is significant for clinical treatment. This study evaluated the value of feder-
ated learning (FL) technology in PTE prognosis risk assessment while ensuring the security of clinical data.

Methods A retrospective dataset consisted of PTE patients from 12 hospitals were collected, and 19 physical indica-
tors of patients were included to train the FL-based prognosis assessment model to predict the 30-day death event.

Firstly, multiple machine learning methods based on FL were compared to choose the superior model. And then per-
formance of models trained on the independent (IID) and non-independent identical distributed(Non-IID) datasets 
was calculated and they were tested further on Real-world data. Besides, the optimal model was compared with pul-
monary embolism severity index (PESI), simplified PESI (sPESI), Peking Union Medical College Hospital (PUMCH).

Results The area under the receiver operating characteristic curve (AUC) of logistic regression(0.842) outperformed 
convolutional neural network (0.819) and multi layer perceptron (0.784). Under IID, AUC of model trained using 
FL(Fed) on the training, validation and test sets was 0.852 ± 0.002, 0.867 ± 0.012 and 0.829 ± 0.004. Under Real-world, 
AUC of Fed was 0.855 ± 0.005, 0.882 ± 0.003 and 0.835 ± 0.005. Under IID and Real-world, AUC of Fed surpassed 
centralization model(NonFed) (0.847 ± 0.001, 0.841 ± 0.001 and 0.811 ± 0.001). Under Non-IID, although AUC of Fed 
(0.846 ± 0.047) outperformed NonFed (0.841 ± 0.001) on validation set, it (0.821 ± 0.016 and 0.799 ± 0.031) slightly 
lagged behind NonFed (0.847 ± 0.001 and 0.811 ± 0.001) on the training and test sets.

In practice, AUC of Fed (0.853, 0.884 and 0.842) outshone PESI (0.812, 0.789 and 0.791), sPESI (0.817, 0.770 and 0.786) 
and PUMCH(0.848, 0.814 and 0.832) on the training, validation and test sets. Additionally, Fed (0.842) exhibited higher 
AUC values across test sets compared to those trained directly on the clients (0.758, 0.801, 0.783, 0.741, 0.788).

Conclusions In this study, the FL based machine learning model demonstrated commendable efficacy on PTE prog-
nostic risk prediction, rendering it well-suited for deployment in hospitals.
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Background
Pulmonary thromboembolism (PTE) refers to the dis-
ease caused by the obstruction of the pulmonary artery 
or its branches due to thrombi originating from the 
venous system or right heart. It is a common and life-
threatening cardiovascular disease, causing 60,000 to 
100,000 deaths annually. [1, 2] With advances in diag-
nostic techniques, the incidence rate of PTE increased 
notably in recent years, especially among the elderly 
patients [1, 3]. Due to its increased incidence, high 
risk of death, and substantial socioeconomic burden, 
the assessment and stratification of the prognosis risk 
in PTE patients are crucial and mandatory, providing 
basis for further disease management and treatment. 
For instance, patients with low risk could be discharged 
early or receive outpatient management with the use of 
anticoagulant medications such as heparin and warfarin, 
whereas patients with high risk may derive greater bene-
fits from thrombolytic therapy, interventional treatment 
and a more intensive surveillance in an intensive care 
setting [4]. Furthermore, the assessment of prognosis in 
PTE requires a comprehensive consideration of clinical 
symptoms, radiological features, laboratory test param-
eters, and the presence of comorbidities and complica-
tions associated with the severity of PTE [5]. Currently, 
several different models demonstrating varying perfor-
mance are available in clinical practice to help identify 
PTE patients with low prognostic risk, such as the pul-
monary embolism severity index (PESI), or its simpli-
fied version, the simplified pulmonary embolism severity 
index (sPESI), which are recommended by guidelines of 
the European Cardiology Society and Respiratory Soci-
ety, and a recently proposed model, the Peking Union 
Medical College Hospital (PUMCH) rule, which showed 
higher discriminative ability for predicting 30-day prob-
ability of PTE deaths in a Chinese dataset (Table  1) 

[5–8]. Nevertheless, research on advance of PTE prog-
nosis model performance is still in need to reduce seri-
ous disabilities, deaths, and economic losses.

In the real world, when constructing a prognos-
tic model for PTE based on patient data, the data from 
individual hospitals is typically limited, making it dif-
ficult to obtain sufficient data in one hospital to train 
artificial intelligence (AI), especially the deep learning 
models. Moreover, the patients distribution of one hos-
pital usually has its own disease spectrum, which may 
differ greatly from the data distribution of other hospi-
tals. Recently, it has been proposed that training models 
on such biased datasets that cannot represent real-world 
clinical or patient diversity (such as a dataset from a cer-
tain hospital) will bring some limitations to the appli-
cation of AI in the medical field [9–11]. Compared to 
training AI models using larger (less diverse) datasets 
from a single center, using data from multiple centers has 
shown greater potential to train more accurate and gen-
eralizable AI models [11–17].

During the process of aggregating data from multiple 
centers to build a model, the traditional multicenter mod-
eling process involves transferring data from multiple 
centers to a single hospital for processing, merging, and 
modeling. However, this approach entails the risk of data 
leakage, leading to data security concerns and compro-
mising patient privacy [18]. Most hospitals are reluctant 
to transmit raw data over the network to external sources 
especially when there are risks in their information sys-
tems. Additionally, legal and regulatory barriers increas-
ingly restrict dataset aggregation for AI model training to 
protect data privacy and prevent data from being trans-
ferred outside the region of origin [19, 20]. Therefore, in 
the process of constructing prognostic models for PTE 
based on multicenter data, it is necessary to employ more 
secure and robust methods for model development.

Table 1 Characteristics and weights of PESI, sPESI, and PUMCH scoring models

Variable PESI sPESI PUMCH rule

Age Age in years 1 point (if age > 80 years) 2 points (if age > 80 years)

Male sex 10 points 1 point

Cancer 30 points 1 point 5 points

Chronic heart failure 10 points 1 point 2 points

Chronic pulmonary disease 10 points 3 points

Pulse rate  ≥110 bpm 20 points 1 point 3 points

Systolic blood pressure < 100 mm Hg 30 points 1 point 3 points

Respiratory rate > 30 breaths per minute 20 points

Temperature < 36 °C 20 points

Altered mental status 60 points 2 points

Arterial oxyhaemoglobin saturation < 90% 20 points 1 point 1 point

Serum calcium ≤ 2.13 mmol/L 1 point
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Distributed learning allows AI models to be trained on 
multiple edge devices without the need for data to leave 
their original positions [21, 22]. In 2017, Google pro-
posed Federated Learning (FL) framework [23], which 
is divided into two parts: client and server. Assuming the 
client is a hospital, FL allows hospitals to save data locally 
without uploading local data to the server. The server will 
issue a model to the hospital, and the hospital only needs 
to upload the parameters of the model trained with local 
data to the server to benefit from it. This not only meets 
the requirement that hospitals do not want to share patient 
data, but also protects the personal privacy of patients.

In the past few years, FL has been widely adopted in 
medicine to build computer aided diagnosis model while 
ensuring the data security. For example,Jean Ogier du 
Terrail et  al. use FL to predict histological response to 
neoadjuvant chemotherapy in triple-negative breast can-
cer. They show that collaborative training of AI models 
further improves performance, on par with the best cur-
rent approaches in which AI models are trained using 
time-consuming expert annotations [24]. Ittai Dayan 
et  al. apply FL to predict clinical outcomes in patients 
with COVID-19 and the FL model provides 16% improve-
ment in average AUC measured across all participating 
sites and an average increase in generalizability of 38% 

when compared with models trained at a single site using 
that site’s data [25]. Sarthak Pati et  al. develop an accu-
rate and generalizable machine learning model using FL 
for detecting glioblastoma sub-compartment boundaries. 
They demonstrate a 33% delineation improvement for 
the surgically targetable tumor and 23% for the complete 
tumor extent, over a publicly trained model [26]. Arash 
Heidari et al. use FL to develop a new lung cancer detec-
tion method based on the chest CT images. The findings 
show that the technique delivers 99.69% accuracy with 
the smallest possible categorization error [27]. In sum-
mary, the widespread adoption of FL in medicine has 
yielded significant achievements, providing an effective 
means for constructing high-performance AI models.

Currently, there is no existing research on FL specific 
to PTE prognostic risk. In this paper, we explore the 
application of FL technology for constructing prognostic 
models for PTE on a multicenter dataset, assessing the 
feasibility of FL for assisting in PTE prognosis risk pre-
diction (Fig. 1). A detailed comparison of the impact of 
FL under independent and non-independent identically 
distributed scenarios is provided, and its performance is 
validated on real clinical data. Furthermore, a compari-
son is made with multiple clinically established PTE scor-
ing models (PESI, sPESI, PUMCH).

Fig. 1 Federated learning process diagram
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Methods
Datasets
Patients from 12 hospitals in China aged ≥ 18 who were 
diagnosed with PTE between February 2010 and June 
2020. Patients from other healthcare facilities were 
removed due to incomplete medical records. We only 
considered the first available medical record of patients 
with repeated hospitalizations due to PTE. All patients 
completed at least a 1-month follow-up and confirmed 
their survival status as of July 5, 2020. The detailed enroll-
ment criterions could be found in previous study [8].

Patients’ clinical variables, including demographic infor-
mation, medical history, related risk factors, and 30-day PTE 
all-cause mortality were primarily collected and reviewed 
by three doctors. The variables utilized in three PTE prog-
nosis prediction rules, PESI, sPESI, and the PUMCH, (age, 
sex, body temperature, pulse rate, respiratory rate, blood 
pressure[BP], cancer, chronic heart failure, chronic pulmo-
nary disease, altered mental status, arterial oxyhaemoglobin 
saturation and serum calcium level) were collected.

Considering that some of the clinical variables in 
the collected data had both continuous data and corre-
sponding discrete data, such as age and age greater than 
80, temperature and temperature lower than 36, etc. So 
a comparison experiment was conducted to investigate 
whether it was possible to use only discrete or continu-
ous data of these clinical variables.

This multicenter observational study was approved by 
the Institutional Review Board of the Peking Union Med-
ical College Hospital (PUMCH) (Ethical review number: 
I-22PJ1055) according to the Declaration of Helsinki.

Data preprocessing
Since the collected data was not complete and there were 
missing values, before using the data to train the model, 
the mean value corresponding to each feature column 
was used to fill in the positions where the feature col-
umn had missing values. Specifically, when dealing with 
missing body temperature values, we calculated the aver-
age temperature of patients with recorded temperature 
data. This involved summing up all available temperature 
readings and dividing by the total number of patients 
with temperature data. Subsequently, we assigned this 
calculated average temperature as the value for patients 
with missing temperature data. We followed a similar 
approach for other features with missing values. After 
that, considering the inconsistency of the values cor-
responding to each feature column, for example, some 
feature columns had values below 10 while others had 
values above 100, in order to make each feature column 
in the same range, standardization was employed. Stand-
ardization involves transforming the features of a dataset 
onto a common scale, typically with a mean of 0 and a 

standard deviation of 1. The process of sample standardi-
zation typically involves the following steps:

a. Compute the mean of each feature: For each feature, 
calculate the average of all sample values.

b. Compute the standard deviation of each feature: For 
each feature, calculate the standard deviation of all 
sample values.

c. Standardize all sample values for each feature: Subtract 
the mean of the feature from each sample value, and 
then divide by the standard deviation of the feature.

Dataset construction
Firstly, after filling in missing values and standardizing 
the data, several hospitals with relatively limited data 
volume were selected as the test set. Then, from the 
remaining data, 10% of the data from each hospital was 
randomly selected and summarized as the validation set. 
Finally, all remaining data was used as the training set.

In order to analyze the effect of FL under different data 
distributions, the experiment allocated the training set to 
clients according to the following three data distributions:

1. Independent Identically Distributed (IID). To simu-
late independent identically distribution of data 
between clients, positive and negative samples in the 
training set were assigned to clients in equal propor-
tions, i.e., the sample labels 0 and 1 were the same in 
the data assigned to each client.

2. Non-Independent Identically Distributed (Non-IID). 
The positive and negative samples in the training set 
were distributed to the clients in different propor-
tions, which made the amount of data and the pro-
portion of 0 and 1 in the sample labels vary greatly 
between clients when constructing the dataset.

(1)µ =

1

n

n

i=1
xi

(2)σ =

√

1

n
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(3)xstandardize =
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3. Real-world. Allocating the training set to the clients 
according to different hospital sources ensured that the 
datasets of the clients were from different hospitals.

Statistical analysis
When analyzing models without multiple sets of experi-
mental data, DeLong test was used to assess the signifi-
cance of differences among various models. For models with 
multiple experiments, exemplified by Model A and Model 
B, two-tailed t-test was employed to compare the results 
obtained from multiple experiments of Model A with those 
of Model B. This approach facilitated a more comprehensive 
analysis of the disparities between the data derived from 
multiple experiments of Model A and Model B.

AI model selection
When simulating the experiments of FL, three models were 
first compared: the logistic regression (LR) model imple-
mented using linear layers plus activation functions, convo-
lutional neural network (CNN), and multi layer perceptron 
(MLP) model. In this experiment, we used real-world data, 
where the total dataset was divided among different clients 
based on the source hospital. As shown in Fig.  2, it was 
found that at the classification threshold corresponding to 
the model, although the sensitivity of the three models was 
the same (0.882), the specificity of LR (0.681) was higher 
than that of CNN (0.557) and MLP (0.580). And the over-
all area under the receiver operating characteristic (ROC) 
curve (AUC) value of LR (0.842) was higher than CNN 
(0.819) and MLP (0.784).

Delong tests were conducted to assess the significance 
of the trained models’ performance. Models were com-
pared against LR, which exhibited the highest AUC. This 
comparison was made using prediction results from the 
test set. The results indicated significant differences with 
MLP (p = 0.006 < 0.05) models, while CNN showed no 
significant differences (p = 0.530). However, LR(0.326) 
demonstrated a higher area under the precision-recall 
curve (AUPRC) compared to CNN (0.132). This sug-
gested LR’s superior performance in capturing the trade-
off between precision and recall. Consequently, LR was 
selected as the model for the FL experiments.

Meanwhile, the performance of models trained using 
FL and centralization model were compared in the exper-
iment. Centralization model refered to training the LR 
model directly on the training set, observing its impact 
on the validation set, and finally testing it on the test set. 
In addition to this, in order to compare with the scoring 
models that are often used in medicine, three models 
were selected: PESI, sPESI and PUMCH.

FL process
The feasibility of deploying FL in five hospitals was exper-
imentally studied, which protected data privacy during 
model training. In this FL scheme, the central server first 
initializes a global model randomly and then distribute 
it to five hospitals. Then, during each round of FL model 
updates, the central server first aggregates all local mod-
els and then uses the Federated Averaging (FedAvg) Algo-
rithm [23] to update the global model parameters. The 
updated model parameters are generated by weighted 

Fig. 2 Receiver operating characteristic (ROC) curves of the three models trained using FL on the test set, the points marked in three colors 
in the figure are the corresponding classification thresholds of the three models
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averaging the parameters of all local models, which are 
proportional to the size of the local data provided by the 
hospital to the central server. Next the central server dis-
tributes the updated global model to each hospital, and 
then each hospital continues to make local updates based 
on the updated global model and its local data. After a 
round, each hospital sends the updated parameters to the 
central server for the next round of updates. This process 
is repeated until the global model converges. The detailed 
process of FedAvg is shown in Algorithm 1.

 Algorithm 1. Federated Averaging. The K clients ar indexed by; B is the local minibatch size, E is the number of local epochs and η is the learning rate.

Formally, suppose that there are K (K=5 in the experiment) hospitals performing the above FL scheme, where nk is 
the amount of data for client k. In the t-th round of federated training, the central server firstly sends the global 
model parameters ωt to each hospital, and then each hospital optimizes the received model locally with its own 

dataset for E epochs, and then uploads the updated local 
model parameters ω to the server. Once the updates of 
all hospitals’ local models have been accepted, the server 
assigns weights to the local model parameters of hospi-
tal k based on the value of nk/n during server aggrega-
tion, where n is the total data volume of all hospitals. The 
process of these is repeated until the global model con-
verges. Note that in this scenario, each hospital needs to 
upload the sample size of its local dataset to the server 
for weighted aggregation of the model on the server side.

The FedML [28] platform is used in the experiment to 
simulate FL, which is a research-oriented FL library and 
benchmark. FedML promotes diverse algorithmic research 
with flexible and generic API design and comprehensive 

reference baseline implementations [28]. With FedML, 
developers can easily deploy FL code to both the client and 
server side, making it easier to implement FL process.

Model evaluation
During the experiment, data was distributed to five 
clients according to the three distributions mentioned 
above. And ten random experiments were conducted 
under each distribution. The accuracy, precision, 
recall, F1-score and AUC values of the model were 

recorded in ten experiments, and their mean and 
standard deviation were calculated as the final evalu-
ation indicators for the model. It should be noted that 
considering the significant difference in the number of 
positive and negative samples in the PTE dataset, in 
order to improve the accuracy of the model in predict-
ing positive samples, the classification threshold of the 
model was set to 0.3.

Results
Baseline information
The data used in the experiment came from a total of 
3997 patients. The data was obtained from 12 hospitals 
and contained 19 physical indicators of the patients and 
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the survival status of the patients during the 30  days 
of follow-up. A total of 176 patients died during the 
30  days of follow-up, resulting in a mortality rate of 
4.40% (176/3997). Specific information on the data is 
shown in Table 2.

Among the 19 physical indicators, some had both dis-
crete and continuous values. Therefore, in the compara-
tive experiment, all data were divided into three groups: 
group A contained only discrete data for these indica-
tors; group B contained only continuous data for these 
indicators; and group C contained both discrete and 

continuous data for these indicators. The experimental 
results are shown in Fig. 3.

On the training, validation and test sets, AUC of model 
trained using group C(0.853, 0.884 and 0.842) are supe-
rior to that of model trained using group A (0.846, 0.839 
and 0.828) and B (0.847, 0.856 and 0.830). Therefore, in 
subsequent experiments, both continuous data and cor-
responding discrete data were used simultaneously.

Model assessment
In the experiment, three scenarios of FL were simulated: 
IID, Non-IID, and Real-world, as well as centralization 

Table 2 Patients demographic and clinical characteristics on the collected data

Abbreviation: BP blood pressure

Variable name All patients (n = 3997) Missing value ratio

Age 68

Age > 80 15.01% (600/3997)

Male sex 49.91% (1995/3997)

Altered mental status 13.31% (532/3997)

Chronic heart failure 13.5% (473/3504) 12.33% (493/3997)

Chronic pulmonary disease 14.19% (567/3997)

Cancer 15.44% (617/3997)

Systolic BP (mm Hg) 121 0.7% (29/3997)

Systolic BP < 100 mm Hg 12.56% (502/3997)

Pulse rate (bpm) 82 0.5% (20/3997)

Pulse rate ≥ 110 bpm 11.36% (454/3997)

Temperature(°C) 36.5 1% (40/3997)

Temperature < 36 °C 1.6% (64/3997)

Respiratory rate 19 1.45% (58/3997)

Respiratory rate > 30 2.33% (93/3997)

Serum calcium(mmol/L) 2.2 1.5% (60/3997)

Serum calcium ≤ 2.13 32.15% (1285/3997)

Arterial oxyhaemoglobin saturation 95 16.11% (644/3997)

Arterial oxyhaemoglobin
Saturation < 90

13.71% (548/3997)

Fig. 3 The results of the comparison experiments on the three groups, where the red curve corresponds to the experimental results on the group 
A, and the magenta curve and blue curve correspond to the experimental results on the group B and C, respectively. The points marked with three 
colors in the figure are the corresponding classification thresholds of the models trained on the three groups
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model. The results of the experiment are shown in Fig. 4, 
and the specific values obtained from the experiment are 
recorded in Table 3.

On the training set, AUC of model trained using FL 
in the context of IID (0.852 ± 0.002) and Real-world 
(0.855 ± 0.005) surpass AUC of centralization model 

(0.847 ± 0.001). In the scenario of Non-IID, AUC of model 
trained using FL (0.821 ± 0.016) slightly lags behind that 
of centralization model.

On the validation set, for the IID, Non-IID and 
Real-world settings, AUC of model trained using 
FL (0.867 ± 0.012, 0.846 ± 0.047 and 0.882 ± 0.003, 

Fig. 4 The ROC curves of the models trained using FL and centralization model on the training, validation and test sets. The curve in the figure 
is the average result of the curves obtained from ten experiments. The blue curve in the figure corresponds to the ROC curve of model 
trained using FL in Real-world, the red curve corresponds to IID, the magenta curve corresponds to Non-IID and the yellow curve corresponds 
to centralization model

Table 3 Models trained using FL and centralization model under three distributions

In the table, Actual corresponds to model trained using FL in Real-world, IID corresponds to model trained using FL under IID, NonIID corresponds to model trained 
using FL under Non-IID and NonFed corresponds to centralization model. Two-tailed T-tests were conducted to assess the significance of the FL models’ performance 
compared to NonFed, based on predictions from the test set. The specific values in the table are composed of mean and standard deviation, which are calculated from 
the results of ten experiments

Abbreviations: AUC  Area under the curve, AUPRC Area under the precision-recall curve

Characteristic Actual IID NonIID NonFed

Train set

     AUC 0.855 ± 0.005 0.852 ± 0.002 0.821 ± 0.016 0.847 ± 0.001

     AUPRC 0.316 ± 0.015 0.395 ± 0.009 0.327 ± 0.027 0.382 ± 0.002

     Accuracy 0.953 ± 0.001 0.957 ± 0.001 0.886 ± 0.157 0.839 ± 0.034

     Precision 0.522 ± 0.030 0.587 ± 0.023 0.366 ± 0.152 0.188 ± 0.037

     Recall 0.117 ± 0.019 0.327 ± 0.020 0.435 ± 0.204 0.679 ± 0.044

     F1-score 0.191 ± 0.024 0.419 ± 0.016 0.339 ± 0.082 0.292 ± 0.037

Validation set

     AUC 0.882 ± 0.003 0.867 ± 0.012 0.846 ± 0.047 0.841 ± 0.001

     AUPRC 0.204 ± 0.032 0.355 ± 0.038 0.296 ± 0.096 0.294 ± 0.029

     Accuracy 0.969 ± 0.003 0.965 ± 0.004 0.882 ± 0.172 0.821 ± 0.040

     Precision 0.283 ± 0.137 0.333 ± 0.046 0.192 ± 0.096 0.089 ± 0.023

     Recall 0.133 ± 0.070 0.333 ± 0 0.455 ± 0.225 0.600 ± 0.057

     F1-score 0.201 ± 0.070 0.337 ± 0.022 0.240 ± 0.089 0.154 ± 0.032

Test set

     AUC 0.835 ± 0.005 0.829 ± 0.004 0.799 ± 0.031 0.811 ± 0.001

     AUPRC 0.311 ± 0.011 0.323 ± 0.010 0.226 ± 0.071 0.291 ± 0.002

     Accuracy 0.970 ± 0.002 0.961 ± 0.003 0.876 ± 0.162 0.810 ± 0.040

     Precision 0.792 ± 0.158 0.413 ± 0.065 0.175 ± 0.120 0.109 ± 0.014

     Recall 0.176 ± 0.028 0.235 ± 0 0.312 ± 0.260 0.606 ± 0.092

     F1-score 0.287 ± 0.040 0.298 ± 0.017 0.178 ± 0.079 0.183 ± 0.014

p-value p < 0.001 p < 0.001 p = 0.242 ––––
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respectively) outperform the centralization model 
(0.841 ± 0.001). On the test set, in both IID and Real-
world scenarios, AUC of model trained using FL 
(0.829 ± 0.004, p < 0.001 and 0.835 ± 0.005, p < 0.001) are 
superior to centralization model (0.811 ± 0.001). In the 
scenario of Non-IID, AUC of model trained using FL 
(0.799 ± 0.031, p = 0.242) shows a slight reduction com-
pared to centralization model.

Analysis of Table 3 reveals that across the test set, when 
compared to the centralization model (0.291 ± 0.002, and 
0.810 + 0.040), the model trained using FL consistently 
demonstrates superior AUPRC and accuracy under the 
conditions of IID (0.323 ± 0.010 and 0.961 ± 0.003) and 
Real-world (0.311 + 0.011 and 0.970 + 0.002). However, 
it is noteworthy that in the context of Non-IID, model 
trained using FL (0.226 + 0.071 and 0.876 + 0.162) lags 
behind the centralization model.

Comparing to medical scoring model
In the experiment, the performance of models that exhib-
ited the best performance in the previous ten trials using 
FL in the real-world scenario was also compared with 
PESI, sPESI, and PUMCH models. The results of the 
experiments are shown in Fig. 5, and the specific results 
are recorded in Table 4.

On the training, validation and test sets, AUC of model 
trained using FL (0.853, 0.884 and 0.842) consistently 
outshines PESI (0.812, 0.789 and 0.791), sPESI (0.817, 
0.770 and 0.786) and PUMCH (0.848, 0.814 and 0.832).

From Table 4, it can be seen that on the test set, while 
the AUPRC, accuracy, precision and F1-score of model 
trained using FL(0.326, 0.972, 1.0 and 0.300) outperform 
PESI (0.169, 0.493, 0.060 and 0.113), sPESI (0.102, 0.430, 
0.051 and 0.096) and PUMCH (0.214, 0.509, 0.066 and 
0.123), its recall (0.176) lags behind PESI (0.941), sPESI 
(0.882), and PUMCH (1.0).

Comparing to models trained separately at each client
In this experiment, the best-performing trial among ten 
real-world experiments was chosen. In this particular 
trial, the performance of the model trained using FL was 
compared with models trained individually on five cli-
ents. The results are depicted in Fig. 6.

Based on Fig.  6, it’s evident that the models trained 
using FL (0.853, 0.884, 0.842) exhibited superior 
AUC values across the training, validation, and test 

Fig. 5 ROC curves on training, validation, and test sets using FL and medical scoring models in Real-world. The blue curve in the figure corresponds 
to using FL, the red curve corresponds to PESI, the magenta curve corresponds to sPESI and the black curve corresponds to PUMCH

Table 4 The FL model and medical scoring models in Real-world

Fed in the table means model trained using FL in Real-world

Abbreviations: PESI Pulmonary embolism severity index, sPESI Simplified PESI, 
PUMCH Peking Union Medical College Hospital, AUC  Area under the curve, 
AUPRC Area under the precision-recall curve

Characteristic Fed PESI sPESI PUMCH

Train set

     AUC 0.853 0.812 0.817 0.848

     AUPRC 0.316 0.266 0.277 0.301

     Accuracy 0.953 0.474 0.462 0.568

     Precision 0.522 0.075 0.076 0.093

     Recall 0.107 0.893 0.920 0.920

     F1_score 0.179 0.139 0.140 0.168

Validation set

     AUC 0.884 0.789 0.770 0.814

     AUPRC 0.216 0.222 0.203 0.254

     Accuracy 0.971 0.478 0.490 0.583

     Precision 0.333 0.048 0.044 0.053

     Recall 0.111 1.0 0.889 0.889

     F1_score 0.167 0.091 0.083 0.100

Test set

     AUC 0.842 0.791 0.786 0.832

     AUPRC 0.326 0.169 0.102 0.214

     Accuracy 0.972 0.493 0.430 0.509

     Precision 1.0 0.060 0.051 0.066

     Recall 0.176 0.941 0.882 1.0

     F1_score 0.300 0.113 0.096 0.123
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sets compared to those trained directly on the clients 
(0.784, 0.862, 0.758 for client_1, 0.780, 0.786, 0.801 for 
client_2, 0.818, 0.744, 0.783 for client_3, 0.712, 0.666, 
0.741 for client_4, 0.818, 0.860, 0.788 for client_5). 
Delong tests were employed to evaluate the statisti-
cal significance of the performance of the client mod-
els compared to FL, which demonstrated the highest 
AUC, utilizing prediction results from the test set. It 
was observed that significant differences exist among 
client_1 (p = 0.049 < 0.05), client_2 (p = 0.032 < 0.05), 
and client_5 (p = 0.018 < 0.05), while no significant dif-
ferences were observed between client_3 (p = 0.200) 
and client_4 (p = 0.094). However, FL (0.326) exhibited 
higher AUPRC compared to client_3 (0.289) and cli-
ent_4 (0.218), indicating its superior performance in 
balancing precision and recall.

Discussion
This study is the first to apply FL to prognostic risk 
assessment of PTE and demonstrate the feasibility of 
using FL that can combine data from multiple hospitals 
in a privacy-preserving manner to predict PTE prognos-
tic risk. In reality, FL, a decentralized training strategy, is 
likely to be a key driving force for the application of arti-
ficial intelligence in the field of healthcare, as hospitals 
may be reluctant to share patient data, and patients are 
increasingly concerned about preserving their personal 
privacy. When the amount of corresponding data in hos-
pitals is relatively limited and the labels in corresponding 
patient data are extremely unbalanced (e.g., only 4.40% of 
the PTE data in this study are positive), the effectiveness 
of using FL remains uncertain. The experimental results 
indicate that the use of FL can improve the generalization 
performance of the model to some extent, reflecting suc-
cessful decentralized optimization with diverse distribu-
tions of training data.

From the information provided by Fig. 2, the LR model 
trained using FL can be used to detect the prognostic 

risk of PTE. In Fig. 2, the predictive performance of LR, 
CNN, and MLP was compared, and it was found that 
when the data volume was tiny and the sample labels 
were extremely imbalanced, sufficient information could 
not be provided for CNN and MLP to extract meaningful 
features. This disparity results in the LR (0.842) outper-
forming both the CNN(0.819) and MLP(0.784) in terms 
of AUC value.

Figure  7 depicted the data distribution among dif-
ferent clients under three scenarios in the experiment: 
Real-world, IID and Non-IID. It was evident that under 
Real-world and Non-IID scenarios, the distribution 
among different clients showed significant discrepan-
cies (both in total data volume and the ratio of positive to 
negative samples), whereas in the IID scenario, the differ-
ences were relatively minor.

In the IID (0.829 ± 0.004; p < 0.001) and Real-world, the 
models trained using FL (0.835 ± 0.005; p < 0.001) out-
performed centralization model (0.811 ± 0.001) on the 
test set. This indicated that, in both of the above situa-
tions, training models individually at each hospital and 
then aggregating the results yielded better performance 
than training a model on the pooled data from all hos-
pitals. In the Non-IID scenario, due to the large differ-
ences in data between clients, AUC of the model trained 
using FL (0.799 ± 0.031) exhibited a marginal decrease 
compared to centralization model (0.811 ± 0.001) on the 
test set. This observation indicated that the FedAvg algo-
rithm was not particularly well-suited for scenarios with 
substantial disparities in client data. However, compared 
to centralization model, the p-value for the FL model is 
0.242. This indicates that even under Non-IID, FL can 
achieve similar performance to the centralization model.

As illustrated in Table  3, when the model was set to 
the same classification threshold (0.3), in the context of 
IID (0.235 ± 0), Non-IID (0.312 ± 0.260) and Real-world 
(0.176 ± 0.028), the recall of model trained using FL lagged 
behind that of the centralization mode l(0.606 ± 0.092) on 

Fig. 6 The ROC curves of the model trained using FL (fed) and models independently trained at each individual client on the training, validation 
and test sets
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the test set. It may be because when solving the problem of 
having too few positive samples in the data, model trained 
using FL may not be able to effectively learn the features 
of positive samples, resulting in lower predictive perfor-
mance on positive samples compared to centralization 
model. However, while centralization model achieved a 
higher recall, its precision (0.109 ± 0.014) fell below model 
trained using FL (0.413 ± 0.065 for IID, 0.175 ± 0.120 for 
Non-IID and 0.792 ± 0.158 for Real-world) on the test set, 
meaning that many negative samples were predicted as 
positive samples. If the model trained using FL wants to 
achieve the same effect, the classification threshold of the 
model trained using FL needs to be set lower than that of 
centralization model.

In Fig.  5, the performance of the model trained using 
FL in the Real-world was also compared with the per-
formance of three medical scoring models: PESI, sPESI, 
and PUMCH. Table  4 revealed that the model trained 
using FL(0.842) outperformed PESI (0.791), sPESI 
(0.786) and PUMCH (0.832) on the test set. At the same 
time, it was found that the recall of model trained using 
FL(0.176) lagged behind PESI(0.941), sPESI(0.882), and 
PUMCH(1.0) on the test set. This indicated that the 
model trained using FL had poor classification ability 
for positive samples when there was a significant differ-
ence in the number of positive and negative samples. This 
phenomenon could be attributed to the limited number 
of positive samples, posing a challenge for the model to 
learn meaningful features. In the experiment, a strategic 
approach to enhance the recall rate involves adjusting the 
model’s classification threshold. After reducing the clas-
sification threshold of the model, using FL is also a fea-
sible option for deployment in hospital environments, 
as it (0.842) surpasses PESI (0.791), sPESI (0.786) and 
PUMCH (0.832) in terms of generalization.

Figure  6 illustrated the comparison between models 
trained using FL and those trained directly on data from 
five individual clients. The AUC values across the test set 
were notably higher for models trained using FL (0.842) 
compared to those trained directly on the clients’ data 
(0.758, 0.801, 0.783, 0.741, 0.788). This is because in the 
training process, FL effectively utilizes datasets from all 
clients, while each client only uses its local dataset to 
train the model. This underscores the advantage of FL.

In Fig. 8, the performance of the FedAvg algorithm was 
compared with two optimization algorithms for FL, Fed-
prox and FedBN, addressing Non-IID data, across the 
training, validation, and test sets. It was observed that 
while FedAvg exhibited similar performance to Fedprox 
[29] and FedBN [30] on the training and validation sets, 
its generalization performance (0.842) on the test set sur-
passed that of Fedprox (0.816) and FedBN (0.796). This 
discrepancy stemmed from the fact that existing FL algo-
rithms designed to handle Non-IID data may not have 
adequately addressed the specific Non-IID characteris-
tics present in our dataset. Additionally, as the FedAvg 
algorithm is a classic algorithm in FL, it may have been 
more robust and generally applicable in certain scenarios.

Although this study proves that there are some advan-
tages of using FL to predict PTE prognostic risk, there are 
some limitations in this study. In the Non-IID scenario, 
the performance of the model trained using FL will be 
degraded, which may be caused by three parts of the fac-
tors. First, the amount of data in the hospitals themselves 
in the experiments is too limited, and there is a large dif-
ference in the distribution of the data in each hospital. 
Second, the number of patients who are positive in the 
data of the hospitals is slight, and the class imbalance of 
labels has a certain impact on the experimental results. 
Third, the FedAvg algorithm employed in the experiments 
aggregates models based on a simple weighted average of 

Fig. 7 In the bar charts, two components are depicted: the red section represents the number of positive samples for each client, and the magenta 
section represents the number of negative samples. The sum of these two sections represents the total data volume for each client. The numbers 
displayed above the bar charts indicate the ratio of positive to negative samples for each client. The three charts, labeled as "Actual," "IID," 
and "NonIID," respectively, correspond to the data distributions of five clients in the best-performing experiment out of ten simulated experiments 
under Real-world, IID, and Non-IID
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data volumes at each hospital, which doesn’t effectively 
address the disparities in data distributions among differ-
ent hospitals. In addition, due to limitations of the dataset, 
only a 30-day follow-up period could be considered in this 
experiment.

The current study is retrospective, with plans for future 
prospective, multicenter validation, encompassing a 
broader patient cohort and incorporating follow-up data 
at 60/90/180 days. Additionally, since current experiment 
only utilizes the FedAvg algorithm of FL, the focus will 
be on designing aggregation algorithms that can improve 
model performance when the data differences between 
clients are relatively large. Furthermore, subsequent 
research can include a larger volume of patient data and a 
more extensive number of hospitals, enhancing the gen-
eralization capabilities of the model trained using FL.

Conclusions
Based on experimental results on real clinical data from 
multiple centers, this study demonstrates that FL can be 
used to construct a prognostic risk prediction model for 
PTE, and it is suitable for deployment in hospitals, which 
is helpful for clinical practice.
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