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Abstract 

Background There are approximately 8,000 different rare diseases that affect roughly 400 million people worldwide. 
Many of them suffer from delayed diagnosis. Ciliopathies are rare monogenic disorders characterized by a significant 
phenotypic and genetic heterogeneity that raises an important challenge for clinical diagnosis. Diagnosis support 
systems (DSS) applied to electronic health record (EHR) data may help identify undiagnosed patients, which is of para‑
mount importance to improve patients’ care. Our objective was to evaluate three online‑accessible rare disease DSSs 
using phenotypes derived from EHRs for the diagnosis of ciliopathies.

Methods Two datasets of ciliopathy cases, either proven or suspected, and two datasets of controls were used 
to evaluate the DSSs. Patient phenotypes were automatically extracted from their EHRs and converted to Human Phe‑
notype Ontology terms. We tested the ability of the DSSs to diagnose cases in contrast to controls based on Orphanet 
ontology.

Results A total of 79 cases and 38 controls were selected. Performances of the DSSs on ciliopathy real world data 
(best DSS with area under the ROC curve = 0.72) were not as good as published performances on the test set used 
in the DSS development phase. None of these systems obtained results which could be described as “expert‑level”. 
Patients with multisystemic symptoms were generally easier to diagnose than patients with isolated symptoms. 
Diseases easily confused with ciliopathy generally affected multiple organs and had overlapping phenotypes. Four 
challenges need to be considered to improve the performances: to make the DSSs interoperable with EHR systems, 
to validate the performances in real‑life settings, to deal with data quality, and to leverage methods and resources 
for rare and complex diseases.

Conclusion Our study provides insights into the complexities of diagnosing highly heterogenous rare diseases 
and offers lessons derived from evaluation existing DSSs in real‑world settings. These insights are not only benefi‑
cial for ciliopathy diagnosis but also hold relevance for the enhancement of DSS for various complex rare disorders, 
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Background
There are approximately 8,000 rare diseases that affect 
about 400  million people worldwide. Most clinicians 
have limited knowledge about these diseases [1]. More-
over, several of them are characterized by a very high 
clinical and genetic heterogeneity. All these factors lead 
to underdiagnosis, misdiagnosis or delayed diagnosis of 
rare diseases. In order to accelerate the diagnosis process, 
which is of major importance so that patients can have 
access to appropriate support, personalized care and can 
benefit from treatments, one solution consists in auto-
matically extracting phenotypes from patients’ electronic 
health records (EHRs) [2] and developing algorithms to 
diagnose them based on their phenotypes. It has been 
shown that narrative documents are mainly used by clini-
cians to report symptoms and comorbidities [3, 4]. This 
is even more important for rare diseases where patients’ 
clinical histories are reported by clinicians in text, as 
illustrated recently for Myrhe [5] and Dravet [6, 7] syn-
dromes. More generally, recent studies showed that text 
reports provide much more phenotypic information 
[8–10] than structured data for models predicting diag-
nosis. Considering this unstructured information within 
text reports for diagnosis purpose is of major importance 
for rare diseases as early diagnosis can improve the man-
agement and progression of the disease [8]. In a recent 
review [11], we showed that several efforts have been 
made to develop diagnosis support systems (DSSs) for 
rare diseases, which can be categorized into three groups 
based on the number of targeted diseases: one specific 
disease, a group of diseases and the whole spectrum of 
rare or genetic diseases. Until 2019, almost all systems 
relying on phenotypes were disease recommendation 
systems dedicated to all rare diseases that work as fol-
lows: (1) each rare disease is described by a set of pheno-
type concepts that correspond to the signs and symptoms 
of the disease, generally encoded with the Human Phe-
notype Ontology (HPO) [12]; (2) Possible diagnoses of 
a new patient are then scored by comparing the pheno-
typic description of the patient to such knowledge using 
similarity metrics; (3) The system then returns a list of 
diseases ranked by the similarity score for each patient. 
By consequence, the use of such a system is based on the 
assumption that the tested patient has a rare disease, and 
the objective is to identify the correct one. These systems 
can be used in clinical practice to provide diagnostic 

support to non-expert clinicians in simple cases or to 
help domain experts select patients of interest for further 
investigation in complex cases. However, such systems 
were not designed for automated large-scale detection, 
and their performances in the context of complex dis-
eases with rapidly evolving and incomplete knowledge 
bases are unclear. Since 2020, systems using machine 
learning and targeting a single disease have started to 
be developed [13–20]. In contrast with the disease rec-
ommendation systems, these approaches consider large 
scale clinical databases containing both rare and com-
mon diseases and they rely on machine learning to derive 
models from the data and classify patients.

Among rare diseases, ciliopathies perfectly illustrate 
the potential value and issues raised by patient data 
availability to improve diagnosis accuracy. Ciliopathies, 
notably those due to defects in the primary cilium, are 
an expanding group of severe and rare monogenic disor-
ders with an estimated prevalence of 1/2000. So far, more 
than 50 ciliary disorders linked to variants in about 180 
established ciliopathy-associated genes implying both 
phenotypic and genetic overlaps have been reported 
[21]. As primary cilia are ubiquitous cellular organelles, 
their dysfunction can lead to a large spectrum of mani-
festations [22] affecting mainly the kidneys, eyes, brain, 
liver and bone [23], among which kidney dysfunction 
leading to end stage kidney disease is a major cause of 
morbidity and mortality. Moreover, recent studies have 
demonstrated that renal ciliopathies are largely underdi-
agnosed [24]. Indeed, the rarity of the disease combined 
with the important phenotypic and genetic heterogene-
ity [25] make ciliopathies easy to confuse with other rare 
and common diseases and very difficult to diagnose by 
non-specialized clinicians. Being able to diagnose cili-
opathy patients as early as possible is of major impor-
tance, so that they can benefit from appropriate support 
and potential future treatments. For example, a potential 
treatment for renal ciliopathies has been recently inves-
tigated with promising results [26]. Considering DSSs to 
help clinicians for the diagnosis of ciliopathies by taking 
advantage of all the information buried in textual reports 
could be a way to find undiagnosed ciliopathy patients 
and alleviate diagnosis wandering.

In the present study, our objective is to test exist-
ing DSSs with patient phenotypic data derived from 
their EHRs from an academic children’s hospital and to 

by guiding the development of more clinically relevant rare disease DSSs, that could support early diagnosis 
and finally make more patients eligible for treatment.
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evaluation, Human phenotype ontology, Early diagnosis, Patient similarity
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assess their performances for the detection of ciliopathy 
patients. As no system has been developed yet for cili-
opathies, we focus on the generic disease recommenda-
tion systems dedicated to all rare diseases. The challenges 
met through our analysis will be analyzed and discussed 
in the “Discussion” section, with the objective to derive 
lessons that could be of help for the design and develop-
ment of future dedicated systems for rare diseases taking 
advantage of large-scale clinical databases. We rely on the 
framework provided by the American Medical Associa-
tion in 2022 [27] to address issues like population repre-
sentativeness through the inclusion of cases and controls, 
data quality, and explicitness. Such criteria are not only 
beneficial for ciliopathy diagnosis but also hold relevance 
for the wider biomedical informatics community, aid-
ing in the enhancement of DSS for various complex rare 
disorders.

Methods
Databases and data encoding
The Necker Children’s Hospital is a French reference 
center for rare and undiagnosed diseases that hosts 
the Imagine Institute, a research center specializing in 
genetic diseases. The clinical data warehouse developed 
by Necker/Imagine, named Dr Warehouse [28], contains 
more than 9 million documents from more than 800,000 
patients from Necker hospital. Within EHRs, unstruc-
tured clinical notes are used by clinicians to describe 
clinical signs and detailed histories of their rare disease 
patients and, therefore, they provide valuable resources 
for diagnosis purposes [29]. The high-throughput pheno-
typing module of Dr. Warehouse enables the automatic 
extraction of all types of clinical entities from EHRs, 
including phenotypes and diseases based on the Unified 
Medical Language System (UMLS) [30].

Additionally, a database dedicated to ciliopathies, 
named Cilio-base, aggregates structured curated infor-
mation for ciliopathy patients from different clinical 
departments of Necker Hospital and/or genetic depart-
ments of Imagine research Institute, including diagno-
ses (coded by experts from Necker/Imagine using the 
Orphanet nomenclature) and causal genes. More than 
1800 patients with proven or suspected ciliopathy disor-
ders are included, and 1100 of them have bi-allelic vari-
ants in one causative gene identified. 215 patients from 
the Cilio-base were followed at Necker Children’s Hospi-
tal, i.e., had clinical records in Dr Warehouse. We focused 
on these 215 patients.

Patient selection
Ciliopathies are pleiotropic diseases and causal genes 
remain unknown for a significant number of cases. 
Only half of the Cilio-base patients were completely 

characterized with an identified causative gene and a 
precise clinical diagnosis, and this proportion remained 
the same when considering only the 215 patients from 
Cilio-base with EHRs in Dr Warehouse. For this reason, 
two datasets of cases were considered: (1) cilio_clear, for 
patients with a proven ciliopathy (identified pathogenic 
variants and a precise diagnosis) and (2) cilio_fuzzy, for 
patients with a suspected ciliopathy, i.e., with clinical 
features compatible with a ciliopathy but without patho-
genic variant identified. For both datasets, patients were 
randomly selected, with the additional constraint for 
cilio_clear to cover all ciliopathy diagnoses present in 
patients followed at Necker hospital.

To assess the ability of the DSSs to differentiate cili-
opathy patients from other patients, we included con-
trol patients from Dr Warehouse. We did not simply 
take a random sample of non-ciliopathy patients from 
Dr Warehouse, because testing the capacity of the DSSs 
to differentiate ciliopathy patients from patients who are 
completely different from ciliopathy is pointless in real-
world clinical settings. As a common morbidity across 
several ciliopathies is renal function deterioration, we 
defined control patients as patients who exhibited some 
overlapping phenotypes with ciliopathy patients, namely, 
kidney defects. We reused the set of 10,462 “other-
nephropathy” patients in Dr Warehouse defined in our 
previous study [31], i.e., nonciliopathy patients having at 
least one automatically extracted UMLS phenotype con-
cept subsumed by the term kidney diseases ([C0022658]) 
in their EHRs.

We selected from this collection of control patients 
with nephrology related signs:

– a first control dataset (named control_random) of 
randomly selected patients matched on age (at the 
date of the most recent EHR file) and number of 
HPO phenotypes with selected cases.

– a second set of patients found similar with ciliopathy 
patients based on the patient-patient similarity meth-
ods developed in previous studies [31, 32]: the top 
30 patients from the “other-nephropathy” patients 
who were the most similar with ciliopathy patients 
were reviewed by experts, and among them a total 
of 11 patients who were confirmed as non-ciliopa-
thy patients were integrated into this second dataset 
(named control_similar).

All patient profiles were reviewed by ciliopathy experts 
from Necker/Imagine (SS, MZ, KB, FP, LH, TA-B) to vali-
date their respective categories.

For each patient, the UMLS phenotype concepts 
extracted from his/her EHR via Dr Warehouse were con-
verted to HPO terms using the mapping provided by the 
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HPO consortium (HPO format-version: 1.2; data-version: 
releases/2019-11-08; downloaded on 2020-02-11). Phe-
notypes that could not be automatically converted were 
discarded. Before conversion to HPO, concepts directly 
associated with ciliopathy diagnosis (e.g., nephronoph-
thisis) or genes (e.g., NPHP1) were removed. To ensure 
that each tested patient was followed at Necker Hospital 
with sufficient information in his/her EHR to character-
ize his/her condition, we focused on patients with at least 
4 HPO concepts.

Characteristics of the DSSs
Most systems dedicated to rare diseases [11] use pheno-
type concepts encoded with HPO [12], a patient-disease 
similarity-based method and return a ranked list of pos-
sible diseases. With a restriction to online accessibility 
and functionalities allowing the easy export of the results, 
three systems were considered for testing: Phenomizer 
[33], Genetic Diseases Diagnosis based on Phenotypes 
[34] (GDDP) and PubCaseFinder [35].

For Phenomizer, the authors developed a statistical 
model assigning p values to the resulting similarity scores 
between a patient and a disease, which is then used to 
rank the candidate diseases. Phenomizer was evalu-
ated on a simulated cohort considering different levels 
of noise. GDDP proposed new methods to prioritize 
diseases based on semantic similarities and ontological 
overlap. Performance was evaluated considering the cor-
rect diagnosis rate within the top k using different ranges 
of cut-off value k (e.g., top 10) on simulated patients and 
medical records. PubCaseFinder provides a disease rank-
ing based on disease-phenotype associations extracted 
from both PubMed and Orphanet using a similarity 
measure based on Information Content. The system was 
evaluated on medical records by measuring the correct 
diagnosis rate within the top k.

The versions of the systems and websites used for 
this analysis are those publicly available in June 2020. 
For GDDP, for each patient, we entered the HPO terms 
manually as free text and they were translated into HPO 
codes by the system. For Phenomizer, for each patient, 
each HPO term was manually entered and validated by 
using the autocomplete algorithm provided by the sys-
tem. For PubCaseFinder, for each patient, we imported 
a file containing the HPO codes. For output, all three 
tools allow the automatic export of ranking diagnoses 
encoded in Orphanet [36] (PubCaseFinder), OMIM [37] 
(PubCaseFinder, GDDP), or both (Phenomizer). As Pub-
CaseFinder independently returns Orphanet- or OMIM-
encoded lists of ranked diagnoses, we tested the two 
systems separately, referred to as PubCaseFinder_Orpha 
and PubCaseFinder_OMIM, respectively, in the following 

sections. Default parameters were used to assess the 
patients.

Evaluation
We re-used patients’ EHR data to assess the ability of the 
disease recommendation systems to differentiate ciliop-
athy cases from controls. A list of ciliopathies based on 
Orphanet (version 2.9.1) was established with all diseases 
that are descendants of the following Orphanet nodes: 
Ciliopathy (ORPHA:363,250), Ciliopathies with major 
skeletal involvement (ORPHA:93,426), and Joubert syn-
drome and related disorders (ORPHA:140,874). This list 
contains 72 distinct Orphanet codes mapped to 373 dis-
tinct OMIM codes and will be referred to as CIL-ORPHA 
(Additional Table 1) in the following text.

The three DSSs were evaluated in previous studies 
considering only rare disease patients with the objective 
to have the correct diagnosis of each patient as highly 
ranked as possible (i.e., measure of the overall correct 
diagnosis rate within the top k). Here, the situation is 
different: we included some control patients, and we are 
only interested in the diagnosis of one rare disease, i.e., 
ciliopathies. Consequently, the good performance of our 
tested DSSs is measured by:

– the ability to rank CIL-ORPHA diagnoses as high as 
possible for ciliopathy patients AND.

– the ability to rank CIL-ORPHA diagnoses as low as 
possible for control patients.

We considered a classification with the ranked list pro-
vided by each DSS using the following decision criterion: 
given a cutoff value k, a patient was classified as positive if 
a CIL-ORPHA diagnosis was found within the top k and 
as negative otherwise.

Individual results at the patient level were then aggre-
gated per group and DSS, and several synthetic scores 
were computed.

As our primary objective was to detect ciliopathy 
patients, we first computed the true positive rate at rank 
k (TPR@k), or sensitivity at rank k, defined as the pro-
portion of ciliopathy cases classified as positive. We then 
assessed the specificity of the DSS by computing the false 
positive rate at rank k (FPR@k), defined as the proportion 
of controls classified as positive. We eventually plotted 
the receiver operating characteristic (ROC) curve, which 
synthesizes these two indicators.

Statistics and implementation
Associations between age, the number of HPO pheno-
types and the rank of the target diagnosis were assessed 
with the Spearman correlation coefficient. The distri-
butions of the rank of the target diagnosis for men and 
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women were compared by performing the Kolmogorov-
Smirnov test. All analyses were implemented using the R 
platform [38] with the tidyverse and ROCR packages.

Results
Datasets
The patient selection process and the corresponding 
numbers of patients are summarized in Fig. 1.

A total of 158 patients from Cilio-base had at least 4 
HPO-encoded phenotypes in their EHRs, among whom 
78 patients had a confirmed clinical and molecular diag-
nosis covering eleven distinct Orphanet codes of cili-
opathy disorders. Among these 78 confirmed cases, we 
extracted a set of 60 patients covering all 11 ciliopathy 
Orphanet codes to build the cilio_clear data set. The 
distribution of diagnoses per database is provided in 
Additional Fig.  1. Regarding the cilio_fuzzy dataset, 30 
patients were randomly selected from the 80/158 patients 
with suspected ciliopathies.

For the control groups, 30 patients were randomly 
selected as control_random matched for age and number 
of phenotypes with the cases. The eleven patients pre-
viously identified similar with ciliopathy patients were 
selected for the control_similar dataset.

An in-depth manual review by an expert was per-
formed in order to keep only typical profiles in each 
class: four patients were excluded from cilio_clear, seven 
patients from cilio_fuzzy, and three patients from con-
trol_random (Fig. 1a), resulting in 79 ciliopathy patients 
and 38 controls.

The characteristics of the four datasets are shown in 
Fig. 1b. 86% of cases had renal impairment. 70% (55/79) 
of ciliopathy patients had multisystemic defects. For phe-
notype representation, patients in this study were asso-
ciated with 1883 distinct UMLS phenotypes, and each 
patient was described with 64 terms on average. After 
conversion to the HPO, patients were associated with 
792 distinct HPO terms, and each patient was described 
by 30 terms on average. UMLS terms that could not be 
mapped to HPO were either physiological characteristics 
that were not phenotypes in the HPO (e.g., systemic arte-
rial pressure), or terms that were not sufficiently precise 
to be converted to HPO terms (e.g., cyst, fibrosis, hyper-
trophy). Ciliopathy patients and control_similar datasets 
had on average more than 50% of their HPO phenotypes 
associated with at least one CIL-ORPHA disease in the 
HPO, while patients in control_random had only 42% 
CIL-ORPHA-related HPO phenotypes. The most fre-
quent HPO terms in all datasets were renal (e.g., renal 
insufficiency, proteinuria) and general (e.g., pain, fatigue) 
symptoms. Numerous neurological and skeletal disor-
ders were found in control_similar. Disorders related to 
tubulointerstitial morphology were more frequent among 

cases than controls, and some features (e.g., polydipsia, 
cone-rod dystrophy) were specific to cases.

Diagnosis performances
The general performances are summarized in Fig.  2. 
Regardless of the DSS, the rank of the first CIL-ORPHA 
diagnosis was influenced neither by age nor by the num-
ber of phenotypes. We first compared the TPRs and FPRs 
for values of k ranging from 1 to 20 (Fig.  2a., Fig.  2b.). 
PubCaseFinder_OMIM obtained the best TPRs but mod-
erate specificity, while Phenomizer had the best specific-
ity (lowest FPRs) but very low sensitivity. The synthesis 
of these two indicators, as obtained by the ROC curve 
(Fig. 2c.), showed that PubCaseFinder_OMIM exhibited 
the best area under the ROC curve (AUC) (0.72), fol-
lowed by Phenomizer (0.68). We compared the distri-
butions of the ranks between cases and controls for the 
four DSSs (Fig. 2d.) by applying the Kolmogorov-Smirnov 
test. The rank of the first CIL-ORPHA diagnosis was 
significantly lower for cases than for controls for Pub-
CaseFinder_OMIM and Phenomizer but not for Pub-
CaseFinder_Orpha and GDDP.

We identified five situations where all DSSs failed to 
select a CIL-ORPHA diagnosis:

1. Patients presenting with isolated symptoms were 
more difficult to diagnose than patients presenting 
with multisystemic symptoms (median rank = 12.5 
vs. 5 for PubCaseFinder_OMIM).

2. Situations where some key phenotypes were missing 
or imprecise in the EHRs (e.g., “renal insufficiency” 
instead of “progressive renal insufficiency”).

3. Situations where some noisy phenotypes were pre-
sent, and associated with incidental events (infection, 
diarrhea, fever, etc.).

4. Situations where the phenotyping algorithm only 
provided generic UMLS concepts without anatomi-
cal localization, such as “cyst” (C0010709) rather 
than the precise phenotypes, such as “renal cyst” 
(C3887499).

5. Some mappings between the UMLS and HPO were 
absent in the HPO source, e.g., for the UMLS term 
“Chronic kidney failure” (C0022661).

Table 1 provides a more detailed evaluation of the per-
formances for the two DSSs with the best AUC, i.e., Pub-
CaseFinder_OMIM and Phenomizer. Regarding cases, 
the TPRs were in general slightly better for cilio_clear 
than cilio_fuzzy with both the DSSs. PubCaseFinder_
OMIM had the best TPR for k = 5, k = 10 and k = 20 for 
both datasets, and the performances for cilio_fuzzy were 
almost identical to those for cilio_clear (TPR@20 = 70% 
vs. 75%), showing that the system was able to detect 
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Fig. 1 Case and control datasets: pipeline and description. a Schematic overview of the patient selection process. b Description of the datasets. 
For each patient, age corresponds to the age at the date of the most recent EHR file. For each dataset, the three most frequent HPO terms per class 
of disorders using the HPO hierarchy are presented. IQR, Interquartile range; CD & CRD, Cone/cone‑rod dystrophy; PPK, Palmoplantar hyperkeratosis. 
*CIL-ORPHA-related HPO phenotypes. †Polydipsia is classified as a nervous system disorder in the HPO but is generally associated with urine concentration 
defect in the context of renal ciliopathies 
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ciliopathy even for patients with unknown pathogenic 
variants. In other terms, a TPR equal or higher than 
70% could be achieved only with k = 20. Whatever the 
DSS, the TPR was always lower than 50% for k = 5 (rang-
ing from 17 to 48%) for both cilio_clear and cilio_fuzzy. 
Regarding controls, the FPRs for low values of k were 
slightly higher for control_similar than for control_ran-
dom. Phenomizer had lower FPRs for both datasets. As 
expected, the proportion of patients classified as ciliop-
athy was higher in the case datasets than in the control 
datasets for PubCaseFinder_OMIM and Phenomizer, 
which shows that, to some extent, these DSSs were able 
to distinguish between cases and controls, even controls 
exhibiting a high similarity score with cases. However, 
none of these systems obtained results good enough to be 
equivalent to “expert”.

Differential diagnoses
As PubCaseFinder_OMIM obtained the best perfor-
mances, especially for low values of k, we focused on 

this DSS to analyze the 10 diseases most frequently 
ranked within the top k (with k = 5) for cases and con-
trols (Table  2). Among them, six were found for both 
cases and controls. Fabry disease shares a major fea-
ture, renal dysfunction, with ciliopathies and other 
nephropathies. The five other differential diagnoses 
in common were diseases affecting multiple organs 
and associated with a very important number of HPO 
terms: these diseases belonged to the top 1% of dis-
eases in OMIM regarding the number of HPO phe-
notypes. Regarding cases, the only disease present in 
CIL-ORPHA was Alström syndrome, which was not 
represented among our study population but is also 
associated with a very high number of HPO terms. The 
other differential diagnoses for ciliopathy cases were all 
diseases with overlapping clinical features with ciliopa-
thies, i.e., nephropathic cystinosis, congenital disorder 
of glycosylation, type 1a (CDG1A), and peroxisome 
biogenesis disorder 1 A (Zellweger).

Fig. 2 General performances of the DSSs. a and b represent the proportion of patients classified as having ciliopathy with different cutoff k values 
among the cases and controls, respectively. c ROC curves and AUCs for the four DSSs. d Distribution of ranks of the first CIL‑ORPHA diagnosis 
for the four DSSs. The red dots (resp. blue) correspond to the ranks for the two datasets of cases (resp. controls). PCF, PubCaseFinder.
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Discussion
In this study, we evaluated the performance of cur-
rent DSSs on complex genetic diseases, and used the 
example of ciliopathies, a group of complex pleiotropic 
disorders caused by cilia dysfunction. As no dedicated 
DSS has been developed yet, we evaluated generic rare 
disease DSSs for the diagnosis of ciliopathies using all 
phenotypes extracted from patient EHRs. The evalua-
tion was performed in a children’s hospital specializing 
in genetic diseases but also serving as a general pediat-
ric center for the local population.

In the original paper, Phenomizer [33] outperformed 
other scores on a cohort of simulated patients, ranking 
the correct diagnosis as the first proposal in more than 
75% of the cases. GDDP [34] was compared with exist-
ing methods and outperformed them on medical records 
(top 10 diagnosis rate = ~ 32% for GDDP vs. ~ 4% for 
Phenomizer and ~ 20% for BOQA [39]). PubCaseFinder 
[35] was compared to other tools (Phenomizer and 
Orphamizer) on medical records and globally reached 
results comparable with Phenomizer. It obtained a top 
10 diagnosis rate of 57% (Phenomizer = 47%, Orpham-
izer = 31%). These results highlight the variability of per-
formance depending on the dataset under study. In the 
present study, PubCaseFinder_OMIM obtained the best 
rate of true positives for k = 20 (TPR > 70%) but the TPR 
scores dropped to 35–48% for k = 5. Moreover, it mis-
classified controls with an FPR@20 higher than 40%. 
Phenomizer obtained the lowest rate of false positives, 
but its sensitivity was not high enough to identify cili-
opathy patients. Overall, PubCaseFinder_OMIM exhib-
ited the best AUC (0.72). Not surprisingly, patients with 
multisystemic symptoms were generally easier to diag-
nose than patients with isolated symptoms. This may be 
partly because most patients with isolated symptoms had 
renal impairment, which generally presents with nonspe-
cific features [40]. To summarize, none of these systems 
obtained results good enough to be equivalent to “expert”. 
Several interrelated lessons emerged from our evaluation, 
and we have attempted to encapsulate the following four 
key lessons for the future developers and users of rare 
disease DSSs.

The first lesson learnt was that these DSSs should ide-
ally be integrated into the existing healthcare ecosystem, 
interoperable with the EHRs and capable of leveraging 
EHR data. This is of major importance because unstruc-
tured clinical notes in EHRs are unique sources of clinical 

Table 1 Performances of distribution of the ranks of the first CIL‑
ORPHA diagnosis

TPR@k, true positive rate in the top k

# Patients Performances

TPR@1 TPR@5 TPR@10 TPR@20

Cilio_clear
 PubCaseFinder_
OMIM

56 18% 48% 63% 75%

 Phenomizer 56 11% 23% 36% 52%

Cilio_fuzzy
 PubCaseFinder_
OMIM

23 9% 35% 57% 70%

 Phenomizer 23 17% 17% 17% 48%

FPR@1 FPR@5 FPR@10 FPR@20
Control_random
 PubCaseFinder_
OMIM

27 0% 4% 26% 41%

 Phenomizer 27 0% 0% 4% 26%
Control_similar
 PubCaseFinder_
OMIM

11 9% 9% 9% 36%

 Phenomizer 11 0% 9% 9% 18%

Table 2 Ten most frequent diseases for cases and controls in the top 5 for PubCaseFinder_OMIM

a disease frequently suggested in the top 5 for both cases and controls
b disease belonging to the ciliopathy group

Diseases in top 5 for cases MIM id # patients Diseases in top 5 for controls MIM id # patients

Williams‑Beuren  syndromea 194,050 40 Williams‑Beuren  syndromea 194,050 27

Alstrom  syndromeb 203,800 18 Rubinstein‑Taybi syndrome  1a 180,849 11

Cystinosis, nephropathic 219,800 16 Smith‑Lemli‑Opitz syndrome 270,400 9

Fabry  diseasea 301,500 15 Fabry  diseasea 301,500 7

CDG1A 212,065 14 Cornelia de Lange syndrome  1a 122,470 6

Rubinstein‑Taybi syndrome  1a 180,849 10 CHARGE  syndromea 214,800 5

Cornelia de Lange syndrome  1a 122,470 8 Bartter syndrome, type 2, antenatal 241,200 3

Costello  syndromea 218,040 8 Celiac disease, susceptibility to, 1 212,750 3

Zellweger syndrome 214,100 8 Coffin‑Siris syndrome 1 135,900 3

CHARGE  syndromea 214,800 7 Costello  syndromea 218,040 3
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information for diagnosis purposes, in particular for rare 
diseases [29]. Analysing the EHRs of two academic health 
institutions, Liu et  al. [41] showed that the phenotypic 
coverage was much higher in clinical notes (about 36% 
of all phenotypic concepts in HPO) than in structured 
data (4%), for phenotypes found in at least 10 individuals. 
However, they stated that the EHR were rarely explored 
yet to generate rare disease-phenotype associations [41]. 
In this study, we benefited from access to patient EHRs 
as well as to an automated pipeline in order to generate 
HPO-based phenotypic descriptions of patients. How-
ever, whatever the DSS, the data had to be entered on a 
patient-by-patient basis into the DSS, and one of the eval-
uated tools required manual input and validation of each 
phenotype for each patient. We claim that such a time-
consuming process is a major obstacle for large external 
evaluation of DSSs and hinders their large-scale use in 
clinical practice. Moreover, the disconnection from the 
EHR constraints on the use of data-driven approaches. 
The landscape of DSS has been transformed recently in 
many disciplines ranging from cancer [42, 43], to COVID 
[44] and sepsis [45], with machine learning models devel-
oped on multi-site EHR data. However, as stressed out by 
Schaaf et al. in their review of clinical DSSs for rare dis-
eases [46], machine learning has been far less developed 
for rare diseases than in other medical fields, whereas 
the availability of EHR data provides an opportunity 
for developing algorithms that identify patients having 
a high probability to have a disease from large clinical 
data warehouses [13–20]. Ciliopathies perfectly illustrate 
the potential benefits of these new approaches, as it is 
of paramount importance to identify patients with sus-
pected ciliopathies before the development of irreversible 
lesions as a potential treatment has been recently investi-
gated with promising results. However, most rare disease 
research groups do not take advantage of EHR-based 
data driven approaches and stay focused on traditional 
disease recommendation systems.

The second lesson learnt was that it is important to 
validate the performances of DSSs in real-life settings 
involving clinicians and domain experts, which can ben-
efit from the interoperability with the EHR system by 
providing cases and controls and enabling evaluators to 
test DSS in real life conditions. The American Medical 
Association recently highlighted that clinicians should 
bring critical insights on AI applications and should be 
involved in shaping AI’s role [27]. Similarly, Youssef et al. 
highlighted that real-world studies are a mandatory step 
to evaluate the deployed models’ usefulness [47]. We 
share this vision and claim that all DSSs should have 
external evaluation mimicking real-life, like in the stud-
ies from Weber et  al. [44] or Adam et  al. [45]. Indeed, 
the global performance of a system may be much lower 

in real-world settings than the scores achieved in the test 
set, as shown for example for common skin diseases [48, 
49] and rare cardiomyopathy [14]. This is especially true 
when complex pipelines are needed to extract phenotypic 
information from EHRS. As described in our previous 
work, some tools are even only evaluated on simulated 
patients, whereas when tested on real patients some of 
them obtained performances that were much lower than 
on simulated ones [34, 50]. For example, as highlighted 
in this study, Phenomizer was tested for comparison 
with developed tools in numerous studies and obtained 
results that highly depended on the dataset under study 
[34, 35, 51–53]. This is particularly important for rare 
diseases where the question is: among the patients having 
renal symptoms, who is suspected to have ciliopathy and 
should have genetic testing, and could potentially benefit 
from treatment? In our study, cases were tested in con-
trast to carefully selected controls. In order to mimic real 
situations, the controls were patients having overlapping 
phenotypes with ciliopathy patients but not diagnosed 
with ciliopathy. We think that the inclusion of such kinds 
of controls is of major importance, as one key difficulty 
with rare diseases is to differentiate them from common 
diseases with overlapping profiles. However, until now, 
most of the generic DSSs have been evaluated only on 
rare disease patients.

The third lesson learnt was that high-quality data is 
crucial to make DSSs effective. Quality issues include 
both EHR data quality and NLP extraction quality. As 
key information may be present only as text in the EHR, 
Garcelon et al. [54] and Schaaf et al. [55] suggested devel-
oping adequate NLP methods to extract reliable and 
accurate information from unstructured text. Indeed, as 
pointed out by recent studies [56], EHR data may include 
incomplete records and inaccurate information. Missing 
or incomplete data is an obstacle to getting a comprehen-
sive view of a patient’s medical history, while imprecise 
or noisy phenotype descriptions further complicate the 
precise capture and representation of a patient’s pro-
file from clinical narratives using NLP techniques [57]. 
For example, in our study, the Named Entity Extraction 
pipeline sometimes failed at coordinating the location 
with the phenotype into a single term: it did not extract 
“renal cyst” from sentences like “the renal ultrasound 
confirmed the presence of cysts.‘’ “Renal” and “cyst” were 
extracted independently and the mapping to “renal cyst” 
(HP:0000107) was not completed. As for imprecise EHR 
phenotypes, such granularity issues may lead to inappro-
priate disease recommendations. In a recent work [58], 
we proposed a hybrid method combining a dictionary-
based method with deep learning to enrich the set of 
UMLS terms. We trained and evaluated it on a ciliopathy 
characterized by skeletal abnormalities, Jeune syndrome 
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and could strongly improve the detection of phenotypes 
from the EHRs. We plan to adapt such a method for 
other ciliopathies, starting with ciliopathies with renal 
impairment.

The fourth lesson is related to the relevance of the algo-
rithm. All the tested DSSs have leveraged medical ontol-
ogies such as HPO to address granularity issues, and use 
the associations among phenotypes, genes and diseases 
provided by OMIM and Orphanet to deliver a list of pos-
sible diseases. All three are fine-grained terminologies 
designed for rare diseases [55]. However, such knowledge 
bases do not reflect the state-of-the-art knowledge in 
many rare-diseases domains, like e.g., ciliopathies, where 
research is still very active. We think that transparency 
regarding the knowledge incorporated in the algorithm, 
e.g., in our case, the class/set of ciliopathy disorders 
defined with the algorithm, is key for the correct interpre-
tation of the algorithm results. Moreover, complex dis-
ease subtypes exhibit important phenotypic and genetic 
overlap. In our study, the analysis of the top-ranked dif-
ferential diagnoses suggested by PubCaseFinder_OMIM 
showed that several diseases, e.g., Zellweiger syndrome, 
were easily confused with ciliopathy because they also 
affect multiple organs and have overlapping phenotypes 
with ciliopathies. The poor performance of the DSSs sug-
gests that the complexity of ciliopathies requires inte-
grating more expert knowledge specific to ciliopathies 
into the model. Otherwise, we also observed among the 
top-ranked differential diagnoses an overrepresenta-
tion of diseases associated with a large number of HPO 
phenotypes, e.g., Rubinstein-Taybi and Williams-Beuren 
syndrome. This reveals the need for fine-tuning the algo-
rithms or adequate weighting/normalization in the com-
putation of patient-disease similarity to better match the 
specific characteristics of the targeted patient population. 
A step further, we believe that methods based on patient-
patient similarity [59] should be more interesting to sup-
port early diagnosis than those based on patient-disease 
similarity since the real-world patient data contain a 
wide range of complex information. Supervised machine 
learning methods are another way to leverage EHR data 
from diagnosed patients to detect undiagnosed patients, 
but they are usually limited to a single diagnosis, e.g., 
NPHP1 pathogenic variants [60], and should be extended 
to broader disease coverage through multiclass models. 
To minimize bias that may be produced by individual 
variability, unsupervised methods that allow the integra-
tion of different types of information can be considered 
beforehand to identify clusters of ciliopathy patients [61]. 
A more sophisticated solution consists in using graphs to 
represent complex systems such as interactions between 
proteins, comorbidities between diseases, or healthcare 
knowledge [62]. In the rare disease field, they have been 

used to identify patients sharing similar phenotypes [63]. 
Adapted clustering methods have been proposed to study 
the graph structure and derive information from this rep-
resentation [64, 65]. Such methods could help identify 
clusters of patients based on the graph representation. 
In order to make these change happen, the rare disease 
community will have to overcome the challenges related 
with the scarcity of the data [54, 66], utilize not only 
dedicated databases and registries but all data collected 
during routine healthcare processes – structured, narra-
tive reports, genetic, etc. and favor new digital models 
able to combine expert knowledge and machine learning 
approaches.

Conclusions
Clinicians need DSSs to support diagnosis of patients 
that have symptoms shared by both rare and common 
conditions. Existing disease recommendation systems 
do not consider common diseases, and, although they 
rely on state-of-the-art semantic methods and ontolo-
gies, their performance in diagnosing highly hetero-
geneous rare diseases does not reach expert levels. 
Challenges related to interoperability, algorithm trans-
parency, clinical validation, data quality, ontology use, 
and context of application have been highlighted in 
this study. We conclude that the effectiveness of a DSS 
is influenced by the model as well as by how it is inte-
grated within the EHR system. These lessons can guide 
the development of more effective and clinically rele-
vant rare disease DSSs, that could support earlier diag-
nosis of rare disease patients and offer new perspectives 
in patient management.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911‑ 024‑ 02538‑8.

Additional file 1: CIL‑ORPHA list. List of ciliopathy diseases used for the 
classification. The list is built based on the Orphanet hierarchy and disease 
names are encoded using the Orphanet nomenclature.

Additional file 2: Proportions of ciliopathy diagnoses per database. Propor‑
tions of diagnoses among patients with medical and genetic diagnosis for 
Cilio‑base (in red), Cilio‑base ∩ Dr. Warehouse (in purple) and cilio_clear 
patients (in yellow).

Acknowledgements
The authors acknowledge URC‑CIC Paris Centre for the implementation of 
the study. The authors thank Isabelle Perrault, Laurence Heidet, Céline Huber, 
Caroline Michot, Ilyas Challet and Corinne Antignac for their contributions.

Authors’ contributions
AB, XC, CF supported the study design. SS, KB, FP, NG, HF, MD, TAB, VCD, 
JMR contributed to the data curation, annotation and classification. CF, XC 
performed the analyses. CF, XC, AB, SS, NG, MZ, KB, FP, SL participated to the 
analysis of the results and writing of the manuscript. All authors critically 
revised and approved the manuscript.

https://doi.org/10.1186/s12911-024-02538-8
https://doi.org/10.1186/s12911-024-02538-8


Page 11 of 12Faviez et al. BMC Medical Informatics and Decision Making          (2024) 24:134  

Funding
This work was supported by state funding by The French National Research 
Agency (ANR) under the C’IL‑LICO project (ANR‑17‑RHUS‑0002) and as part 
of the “Investissements d’avenir” program (ANR‑19‑P3IA‑0001) (PRAIRIE 3IA 
Institute). FP is funded by the German Research Foundation (Deutsche 
Forschungsgemeinschaft, DFG) grant PE 3135/1–1 and project number 
49366873 ‑ MD‑LEICS.

Availability of data and materials
The clinical datasets from this study are not publicly available, as institutional 
officials expressed concern about the inability to guarantee anonymity. Aggre‑
gate data and datasets containing coarse‑grained phenotypes are available 
upon request to the corresponding author.

Declarations

Ethics approval and consent to participate
The C’IL‑LICO project and study protocol received approval from the French 
National Ethics and Scientific Committee for Research, Studies and Evalua‑
tions in the Field of Health (CESREES) under the number #2201437. The data 
processing was approved by the French Data Protection Authority (CNIL) with 
a waiver of informed consent under number DR‑2023‑017//920398v1.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université 
Paris Cité, Paris F‑75006, France. 2 HeKA, Inria Paris, Paris F‑75012, France. 3 Data 
Science Platform, Université Paris Cité, Imagine Institute, INSERM UMR 1163, 
Paris F‑75015, France. 4 Service de Néphrologie, Dialyse et Transplantation, 
Hôpital Universitaire Bicêtre, Assistance Publique‑Hôpitaux de Paris (AP‑HP), 
Kremlin Bicêtre F‑94270, France. 5 Laboratory of Renal Hereditary Diseases, 
Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris F‑75015, 
France. 6 Division of Nephrology, University of Leipzig Medical Center, Leipzig, 
Germany. 7 Laboratory of Genetics in Ophthalmology, Imagine Institute, 
INSERM UMR 1163, Université Paris Cité, Paris F‑75015, France. 8 Reference 
Centre for Constitutional Bone Diseases, laboratory of Osteochondrodyspla‑
sia, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris F‑75015, 
France. 9 Service de médecine génomique des maladies rares, Hôpital Necker‑
Enfants Malades, AP‑HP, Paris F‑75015, France. 10 Service d’Histologie‑Embry‑
ologie‑Cytogénétique, Hôpital Necker‑Enfants Malades, AP‑HP, Paris F‑75015, 
France. 11 Laboratory of Embryology and Genetics of Congenital Malforma‑
tions, INSERM UMR 1163, Imagine Institute, Paris Cité, Paris F‑75015, France. 
12 Department of Medical Informatics, Hôpital Necker‑Enfants Malades, AP‑HP, 
Paris F‑75015, France. 13 Universite Paris Cite, Paris, France. 

Received: 30 January 2024   Accepted: 17 May 2024

References
 1. RARE Disease Facts. Global Genes. https:// globa lgenes. org/ rare‑ disea se‑ 

facts/.  Cited 2022 Jul 8.
 2. Colbaugh R, Glass K, Rudolf C. Tremblay Volv Global, Lausanne, Switzer‑

land M. Learning to identify rare disease patients from electronic health 
records. AMIA Annu Symp Proc. 2018;2018:340–7.

 3. Neuraz A, Lerner I, Digan W, Paris N, Tsopra R, Rogier A, et al. Natural lan‑
guage processing for rapid response to emergent diseases: case study of 
calcium channel blockers and hypertension in the COVID‑19 pandemic. J 
Med Internet Res. 2020;22(8):e20773.

 4. Escudié JB, Rance B, Malamut G, Khater S, Burgun A, Cellier C, et al. A 
novel data‑driven workflow combining literature and electronic health 
records to estimate comorbidities burden for a specific disease: a case 

study on autoimmune comorbidities in patients with celiac disease. BMC 
Med Inf Decis Mak. 2017;17:140.

 5. Yang DD, Rio M, Michot C, Boddaert N, Yacoub W, Garcelon N, et al. Natu‑
ral history of Myhre syndrome. Orphanet J Rare Dis. 2022;17(1):304.

 6. Lo Barco T, Kuchenbuch M, Garcelon N, Neuraz A, Nabbout R. Improv‑
ing early diagnosis of rare diseases using Natural Language Processing 
in unstructured medical records: an illustration from Dravet syndrome. 
Orphanet J Rare Dis. 2021;16(1):309.

 7. Lo Barco T, Garcelon N, Neuraz A, Nabbout R. Natural history of rare 
diseases using natural language processing of narrative unstructured 
electronic health records: The example of Dravet syndrome. Epilepsia. 
2023. https:// pubmed. ncbi. nlm. nih. gov/ 38065 926/. Cited 2024 Jan 4.

 8. Zanello G, Chan CH, Pearce DA. Recommendations from the IRDiRC 
Working group on methodologies to assess the impact of diagnoses and 
therapies on rare disease patients. Orphanet J Rare Dis. 2022;17:181.

 9. Zhou S, Wang N, Wang L, Liu H, Zhang R. CancerBERT: a cancer domain‑
specific language model for extracting breast cancer phenotypes from 
electronic health records. J Am Med Inf Assoc. 2022:1208‑16.

 10. Kohane IS, Aronow BJ, Avillach P, Beaulieu‑Jones BK, Bellazzi R, Bradford 
RL, et al. What every reader should know about studies using Elec‑
tronic Health Record Data but May be afraid to ask. J Med Internet Res. 
2021;23(3):e22219.

 11. Faviez C, Chen X, Garcelon N, Neuraz A, Knebelmann B, Salomon R, et al. 
Diagnosis support systems for rare diseases: a scoping review. Orphanet J 
Rare Dis. 2020;15(1):94.

 12. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human 
phenotype ontology: a tool for annotating and analyzing human heredi‑
tary disease. Am J Hum Genet. 2008;83(5):610–5.

 13. Movaghar A, Page D, Brilliant M, Mailick M. Advancing artificial intelli‑
gence‑assisted pre‑screening for fragile X syndrome. BMC Med Inf Decis 
Mak. 2022;22(1):152.

 14. Huda A, Castaño A, Niyogi A, Schumacher J, Stewart M, Bruno M, et al. 
A machine learning model for identifying patients at risk for wild‑type 
transthyretin amyloid cardiomyopathy. Nat Commun. 2021;12(1):2725.

 15. Willis C, Watanabe AH, Hughes J, Nolen K, O’Meara J, Schepart A, et al. 
Applying diagnosis support systems in electronic health records to iden‑
tify wild‑type transthyretin amyloid cardiomyopathy risk. Future Cardiol. 
2022;18(5):367–76.

 16. Jefferies JL, Spencer AK, Lau HA, Nelson MW, Giuliano JD, Zabinski JW, 
et al. A new approach to identifying patients with elevated risk for 
fabry disease using a machine learning algorithm. Orphanet J Rare Dis. 
2021;16(1):518.

 17. Rider NL, Cahill G, Motazedi T, Wei L, Kurian A, Noroski LM, et al. PI Prob: a 
risk prediction and clinical guidance system for evaluating patients with 
recurrent infections. PLoS ONE. 2021;16(2):e0237285.

 18. García‑García E, González‑Romero GM, Martín‑Pérez EM, Zapata Cornejo 
E, de D, Escobar‑Aguilar G. Cárdenas Bonnet MF. Real‑world data and 
machine learning to predict cardiac amyloidosis. Int J Environ Res Public 
Health. 2021;18(3):908.

 19. Doyle OM, van der Laan R, Obradovic M, McMahon P, Daniels F, Pitcher A, 
et al. Identification of potentially undiagnosed patients with nontuber‑
culous mycobacterial lung disease using machine learning applied to 
primary care data in the UK. Eur Respir J. 2020;56(4):2000045.

 20. Cohen AM, Chamberlin S, Deloughery T, Nguyen M, Bedrick S, Meninger 
S, et al. Detecting rare diseases in electronic health records using 
machine learning and knowledge engineering: case study of acute 
hepatic porphyria. PLoS ONE. 2020;15(7):e0235574.

 21. Reiter JF, Leroux MR. Genes and molecular pathways underpinning 
ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533–47.

 22. Powles‑Glover N. Cilia and ciliopathies: Classic examples linking pheno‑
type and genotype—An overview. Reprod Toxicol. 2014;48:98–105.

 23. McConnachie DJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis. 
2021;77:10.

 24. Snoek R, van Setten J, Keating BJ, Israni AK, Jacobson PA, Oetting WS, et al. 
NPHP1 (Nephrocystin‑1) gene deletions cause adult‑onset ESRD. J Am 
Soc Nephrol. 2018;29(6):1772–9.

 25. Petzold F, Billot K, Chen X, Henry C, Filhol E, Martin Y, et al. The genetic 
landscape and clinical spectrum of nephronophthisis and related ciliopa‑
thies. Kidney Int. 2023;104(2):378–87.

 26. Garcia H, Serafin AS, Silbermann F, Porée E, Viau A, Mahaut C, et al. 
Agonists of prostaglandin E2 receptors as potential first in class treatment 

https://globalgenes.org/rare-disease-facts/
https://globalgenes.org/rare-disease-facts/
https://pubmed.ncbi.nlm.nih.gov/38065926/


Page 12 of 12Faviez et al. BMC Medical Informatics and Decision Making          (2024) 24:134 

for nephronophthisis and related ciliopathies. Proc Natl Acad Sci U S A. 
2022;119(18):e2115960119.

 27. Crigger E, Reinbold K, Hanson C, Kao A, Blake K, Irons M. Trustworthy 
augmented intelligence in health care. J Med Syst. 2022;46(2):12.

 28. Garcelon N, Neuraz A, Salomon R, Faour H, Benoit V, Delapalme A, et al. A 
clinician friendly data warehouse oriented toward narrative reports: Dr. 
Warehouse. J Biomed Inform. 2018;80:52–63.

 29. Morley TJ, Han L, Castro VM, Morra J, Perlis RH, Cox NJ, et al. Phenotypic 
signatures in clinical data enable systematic identification of patients for 
genetic testing. Nat Med. 2021;27(6):1097–104.

 30. Bodenreider O. The Unified Medical Language System (UMLS): integrat‑
ing biomedical terminology. Nucleic Acids Res. 2004;32(Database 
issue):D267–270.

 31. Chen X, Garcelon N, Neuraz A, Billot K, Lelarge M, Bonald T, et al. Pheno‑
typic similarity for rare disease: ciliopathy diagnoses and subtyping. J 
Biomed Inf. 2019;100:103308.

 32. Chen X, Faviez C, Vincent M, Garcelon N, Saunier S, Burgun A. Identifi‑
cation of similar patients through Medical Concept Embedding from 
electronic health records: a feasibility study for rare disease diagnosis. 
Stud Health Technol Inf. 2021;281:600–4.

 33. Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE, et al. Clinical 
diagnostics in human genetics with semantic similarity searches in 
ontologies. Am J Hum Genet. 2009;85(4):457–64.

 34. Chen J, Xu H, Jegga A, Zhang K, White PS, Zhang G. Novel pheno‑
type‑disease matching tool for rare genetic diseases. Genet Med. 
2019;21(2):339–46.

 35. Fujiwara T, Yamamoto Y, Kim JD, Buske O, Takagi T, PubCaseFinder:. A case‑
report‑based, phenotype‑driven differential‑diagnosis system for Rare 
diseases. Am J Hum Genet. 2018;06(3):389–99.

 36. [Orphanet: a European database for rare diseases]. ‑ Abstract ‑ Europe 
PMC. https:// europ epmc. org/ abstr act/ med/ 18389 888. Cited 2019 Oct 24.

 37. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online 
mendelian inheritance in man (OMIM), a knowledgebase of human 
genes and genetic disorders. Nucleic Acids Res. 2005;33(Database 
issue):D514–517.

 38. R Core Team. R: A Language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing; 2020. https:// 
www.R‑ proje ct. org/.

 39. Bauer S, Köhler S, Schulz MH, Robinson PN. Bayesian ontology query‑
ing for accurate and noise‑tolerant semantic searches. Bioinformatics. 
2012;28(19):2502–8.

 40. Arts HH, Knoers NVAM. Current insights into renal ciliopathies: what can 
genetics teach us? Pediatr Nephrol. 2013;28(6):863–74.

 41. Liu C, Ta CN, Havrilla JM, Nestor JG, Spotnitz ME, Geneslaw AS, et al. 
OARD: open annotations for rare diseases and their phenotypes based on 
real‑world data. Am J Hum Genet. 2022;109(9):1591–604.

 42. Dembrower K, Crippa A, Colón E, Eklund M, Strand F, ScreenTrustCAD trial 
consortium. artificial intelligence for breast cancer detection in screening 
mammography in Sweden: a prospective, population‑based, paired‑
reader, non‑inferiority study. Lancet Digit Health. 2023;5(10):e703–11.

 43. Lång K, Josefsson V, Larsson AM, Larsson S, Högberg C, Sartor H, et al. 
Artificial intelligence‑supported screen reading versus standard double 
reading in the Mammography screening with Artificial Intelligence 
trial (MASAI): a clinical safety analysis of a randomised, controlled, 
non‑inferiority, single‑blinded, screening accuracy study. Lancet Oncol. 
2023;24(8):936–44.

 44. Weber GM, Hong C, Xia Z, Palmer NP, Avillach P, L’Yi S, et al. International 
comparisons of laboratory values from the 4CE collaborative to predict 
COVID‑19 mortality. NPJ Digit Med. 2022;5(1):74.

 45. Adams R, Henry KE, Sridharan A, Soleimani H, Zhan A, Rawat N, et al. 
Prospective, multi‑site study of patient outcomes after implementation 
of the TREWS machine learning‑based early warning system for sepsis. 
Nat Med. 2022;28(7):1455–60.

 46. Schaaf J, Sedlmayr M, Schaefer J, Storf H. Diagnosis of Rare diseases: a 
scoping review of clinical decision support systems. Orphanet J Rare Dis. 
2020;15(1):263.

 47. Youssef A, Pencina M, Thakur A, Zhu T, Clifton D, Shah NH. External 
validation of AI models in health should be replaced with recurring local 
validation. Nat Med. 2023;29(11):2686–7.

 48. Zaar O, Larson A, Polesie S, Saleh K, Tarstedt M, Olives A, et al. Evaluation 
of the diagnostic accuracy of an online Artificial Intelligence Application 
for skin disease diagnosis. Acta Derm Venereol. 2020;100(16):adv00260.

 49. Steele L, Velazquez‑Pimentel D, Thomas BR. Do AI models recognise rare, 
aggressive skin cancers? An assessment of a direct‑to‑consumer app in 
the diagnosis of Merkel cell carcinoma and amelanotic melanoma. J Eur 
Acad Dermatol Venereol. 2021;35(12):e877–9.

 50. Zemojtel T, Köhler S, Mackenroth L, Jäger M, Hecht J, Krawitz P, et al. Effec‑
tive diagnosis of genetic disease by computational phenotype analysis of 
the disease‑associated genome. Sci Transl Med. 2014;6(252):252ra123.

 51. Ullah MZ, Aono M, Seddiqui MH. Estimating a ranked list of human 
genetic diseases by associating phenotype‑gene with gene‑disease 
bipartite graphs. ACM Trans Intell Syst Technol. 2015;6(4):56.

 52. Yang H, Robinson PN, Wang K. Phenolyzer: phenotype‑based pri‑
oritization of candidate genes for human diseases. Nat Methods. 
2015;12(9):841–3.

 53. Pinol M, Alves R, Teixido I, Mateo J, Solsona F, Vilaprinyo E. Rare disease 
discovery: an optimized disease ranking system. IEEE Trans Ind Inf. 
2017;13(3):1184–92.

 54. Garcelon N, Burgun A, Salomon R, Neuraz A. Electronic health records for 
the diagnosis of rare diseases. Kidney Int. 2020;97(4):676–86.

 55. Schaaf J, Sedlmayr M, Sedlmayr B, Storf H. User‑centred development of a 
diagnosis support system for rare diseases. dHealth. 2022;2022:11–8.

 56. Kim E, Rubinstein SM, Nead KT, Wojcieszynski AP, Gabriel PE, Warner JL. 
The evolving use of electronic health records (EHR) for research. Semin 
Radiat Oncol. 2019;29(4):354–61.

 57. Sarker A. LexExp: a system for automatically expanding concept lexicons 
for noisy biomedical texts. Bioinformatics. 2021;37(16):2499–501.

 58. Faviez C, Vincent M, Garcelon N, Michot C, Baujat G, Cormier‑Daire V, et al. 
Enriching UMLS‑based phenotyping of rare diseases using deep‑learning: 
evaluation on Jeune syndrome. Stud Health Technol Inf. 2022;294:844–8.

 59. Chen X, Faviez C, Vincent M, Briseño‑Roa L, Faour H, Annereau JP et al. 
Patient‑Patient similarity‑based screening of a clinical data warehouse to 
support ciliopathy diagnosis. frontiers in pharmacology. 2022;13. https:// 
www. front iersin. org/ artic le/https:// doi. org/ 10. 3389/ fphar. 2022. 786710.  
Cited 2022 Apr 4.

 60. Faviez C, Vincent M, Garcelon N, Boyer O, Knebelmann B, Heidet L, et al. 
Performance and clinical utility of a new supervised machine‑learning 
pipeline in detecting rare ciliopathy patients based on deep phenotyp‑
ing from electronic health records and semantic similarity. Orphanet J 
Rare Dis. 2024;19(1):55.

 61. Chen X, Faviez C, Vincent M, Saunier S, Garcelon N, Burgun A. Improving 
patient similarity using different modalities of phenotypes extracted from 
clinical narratives. Stud Health Technol Inf. 2023;302:1037–41.

 62. Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine 
and healthcare. Nat Biomed Eng. 2022;6(12):1353–69.

 63. Buphamalai P, Kokotovic T, Nagy V, Menche J. Network analysis reveals 
rare disease signatures across multiple levels of biological organization. 
Nat Commun. 2021;12(1):6306.

 64. Hu L, Pan X, Tang Z, Luo X. A fast fuzzy clustering algorithm for Complex 
Networks via a generalized momentum method. IEEE Trans Fuzzy Syst. 
2022;30(9):3473–85.

 65. Yang Y, Su X, Zhao B, Li G, Hu P, Zhang J, et al. Fuzzy‑based deep attrib‑
uted graph clustering. IEEE Trans Fuzzy Syst. 2024;32(4):1951–64.

 66. Decherchi S, Pedrini E, Mordenti M, Cavalli A, Sangiorgi L. Opportunities 
and challenges for Machine Learning in Rare diseases. Front Med (Laus‑
anne). 2021;8:747612.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://europepmc.org/abstract/med/18389888
https://www.R-project.org/
https://www.R-project.org/
https://www.frontiersin.org/article/
https://www.frontiersin.org/article/
https://doi.org/10.3389/fphar.2022.786710

	Objectivizing issues in the diagnosis of complex rare diseases: lessons learned from testing existing diagnosis support systems on ciliopathies
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Background
	Methods
	Databases and data encoding
	Patient selection
	Characteristics of the DSSs
	Evaluation
	Statistics and implementation

	Results
	Datasets
	Diagnosis performances
	Differential diagnoses

	Discussion
	Conclusions
	Acknowledgements
	References


