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Abstract 

Objective This study aimed to develop and validate a quantitative index system for evaluating the data quality 
of Electronic Medical Records (EMR) in disease risk prediction using Machine Learning (ML).

Materials and methods The index system was developed in four steps: (1) a preliminary index system was outlined 
based on literature review; (2) we utilized the Delphi method to structure the indicators at all levels; (3) the weights 
of these indicators were determined using the Analytic Hierarchy Process (AHP) method; and (4) the developed index 
system was empirically validated using real-world EMR data in a ML-based disease risk prediction task.

Results The synthesis of review findings and the expert consultations led to the formulation of a three-level 
index system with four first-level, 11 second-level, and 33 third-level indicators. The weights of these indicators 
were obtained through the AHP method. Results from the empirical analysis illustrated a positive relationship 
between the scores assigned by the proposed index system and the predictive performances of the datasets.

Discussion The proposed index system for evaluating EMR data quality is grounded in extensive literature analysis 
and expert consultation. Moreover, the system’s high reliability and suitability has been affirmed through empirical 
validation.

Conclusion The novel index system offers a robust framework for assessing the quality and suitability of EMR data 
in ML-based disease risk predictions. It can serve as a guide in building EMR databases, improving EMR data quality 
control, and generating reliable real-world evidence.
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Introduction
The onset of the digital health era has led to a paradigm 
shift in health management, transitioning from a focus 
on reactive treatment to proactive prevention [1]. Dis-
ease risk intelligent prediction has become a vital strat-
egy in proactive health management, aiming to identify 
potential risk factors and prevent the progression of dis-
eases. By harnessing the capabilities of Artificial Intel-
ligence (AI) technologies and Machine Learning (ML) 
approaches, healthcare professionals can gain valuable 
insights into diseases, enabling the development of more 
effective preventive treatment plans [2, 3].
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Johnson [4] applied four different ML-based models to 
predict subsequent deaths or cardiovascular events in a 
cohort of 6,892 patients. The study found that the ML-
based model had superior discrimination ability com-
pared to traditional coronary Computed Tomography 
(CT) scores in identifying patients at risk of adverse car-
diovascular events. Electronic medical records (EMR) 
data, as a valuable real-world data source, plays a critical 
role in disease risk prediction using ML techniques [4]. 
An EMR refers to a digital version of a patient’s medical 
record, encompassing medical history, medications, test 
results, and other relevant information [5, 6]. Health-
care providers commonly utilize EMRs to document and 
track patient information, enabling comprehensive deci-
sion-making regarding patient care. Furthermore, clinical 
researchers can leverage de-identified EMR data to study 
disease patterns, develop novel treatments, and advance 
medical knowledge. The integration of ML with EMRs 
has recently shown significant improvements in predict-
ing patient outcomes, such as identifying individuals with 
suspected coronary artery disease [7] or forecasting the 
likelihood of open-heart surgery [8]. These advancements 
highlight the potential of ML in enhancing the efficiency 
of clinical decision-making [9].

Nevertheless, several studies have raised concerns 
about the quality of EMRs in clinical research, empha-
sizing issues such as lack of data standardization, incom-
plete or missing clinical data, and discrepancies in data 
types and element representations [10, 11]. Ensuring 
the quality of EMR data is crucial, as it forms the bed-
rock for effective utilization of EMRs. High-quality EMR 
data not only supplies robust evidence, but also acceler-
ates the clinical research process, shortens its timeline, 
and reduces associated risks. Therefore, controlling and 
evaluating EMR data quality are pivotal in upholding the 
overall quality and integrity of clinical research.

Despite numerous studies investigating the assessment 
of EMR data quality in clinical research, it is noteworthy 
that the body of literature evaluating EMR data quality 
is growing [12, 13]. However, publicly published clinical 
studies employing ML techniques and utilizing EMR data 
frequently overlook data quality or implement methods 
lacking expert knowledge or evidential support. While 
methods for data quality evaluation have been described 
in the informatics literature, researchers without special-
ized knowledge in this field may find difficulty choosing 
the appropriate evaluation method in line with the avail-
able data and research problems [14]. Furthermore, the 
existing quality assessment framework primarily relies on 
qualitative approaches, making objective measurement of 
quality and suability challenging.

In this paper, we aim to develop and validate a quan-
titative index system for evaluating the quality of EMR 

in disease risk prediction using ML. The proposed 
index system is intended to provide guidance for utiliz-
ing EMR data in research, enhance the quality of EMR 
data within a Hospital Information System (HIS), and 
facilitate the implementation of clinical decision-making 
research based on EMR data. By applying the proposed 
index system, researchers and healthcare profession-
als can make knowledgeable decisions regarding the use 
of EMR data for ML-based disease prediction research, 
ultimately improving patient care and advancing medical 
knowledge.

Materials and methods
In this paper, we present the development of a quantita-
tive index system, depicted in Fig. 1, designed to ensure 
the quality control of EMR data in disease prediction 
models. The development process incorporated the use 
of the Delphi method and the analytic hierarchy process 
(AHP). In addition, an empirical study was undertaken 
to validate the effectiveness of the developed index sys-
tem using real-world EMR data in disease risk intelligent 
prediction.

Sketching the preliminary index system
Preliminary indicator identification, definition, 
and organization
The initial set of indicators was determined through a 
comprehensive literature review of studies published 
before September 27, 2021, obtained from the PubMed 
database. The search query used was “(machine learning) 
AND (electronic medical records) AND (disease predic-
tion)”, which resulted in 549 papers. The inclusion crite-
ria required that the research data be related to EMR or 
HIS and that disease risk was predicted using ML tech-
niques. Review articles and papers deemed to have low 
relevance were excluded, leading to the removal of 225 
papers based on the fulfillment of the exclusion criteria 
after reading abstracts.

Further screening was conducted by reading the full 
papers to eliminate studies that did not involve EMR or 
HIS data or utilized disease prediction methods other 
than machine learning. Additionally, 18 relevant papers 
were included by examining the reference lists of the 
selected studies. Ultimately, a total of 229 papers were 
retained for the development of the preliminary index 
system. The detailed process of paper screening is illus-
trated in Fig. 2.

Upon analyzing the review results, we formulated an 
initial multi-level index system consisting of four first-
level, 11  second-level, and 33 third-level indicators. The 
first-level indicators represent broad dimensions of data 
quality, while the second-level indicators correspond to 
the general dimensions specifically for EMR data quality. 



Page 3 of 11Zhou et al. BMC Medical Informatics and Decision Making          (2024) 24:178  

The third-level indicators capture specific dimensions 
relevant to EMR-based disease prediction models.

Calculation methods
We utilized the AHP method to determine the 
weights of the first- and second-level indicators in the 

three-level index system. The weights of the third-level 
indicators were calculated using percentages or binary 
values according to their definitions. The calculation 
formulas of these third-level indicators will be assessed 
in the forthcoming Delphi consultation.

Fig. 1 Workflow of the study

Fig. 2 Flowchart of paper screening
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Developing a three‑level index system using the Delphi 
method
Questionnaire compilation and expert consultation
We conducted a Delphi consultation to gather feedback 
from experts based on the preliminary index system. The 
consultation questionnaire, provided in Additional file 1, 
consists of four parts: experts’ basic information (see 
Table S1), familiarity and judgment basis with AI-based 
disease prediction (see Table  S2-S3), evaluation tables 
for the preliminary index system (see Table  S4-S6), and 
an evaluation table for the calculation formulas of the 
third-level indicators (see Table  S7). The importance of 
the preliminary indicators was measured using a 5-point 
Likert scale, ranging from “very unimportant” to “very 
important”. To ensure the extensibility of the preliminary 
index system, three additional options were included: 
delete, modify, and new indicator(s). For the calculation 
formulas part, experts were asked to provide a yes or no 
response, and if the answer was no, a suggestion for mod-
ification was requested.

A total of twenty experts specializing in healthcare/
EMR data governance and medical AI were selected for 
the Delphi consultation. The inclusion criteria for the 
selection were as follows: (1) holding a Ph.D. degree or 
being a senior technical associate; (2) possessing more 
than two years of research experience in related fields; 
(3) being familiar with the construction and evaluation of 
EMR data; and (4) being able to give feedback in a timely 
manner. We conducted a single-round consultation since 
the nature of our consulting panel was relatively small 
and homogeneous [15].

Key coefficients and statistical analyses
To achieve relatively consistent and reliable feedback 
from the questionnaire, we calculated four metrics: the 
experts’ positive coefficients, expert authority coefficients 
(Cr), coefficient of variation (CV), and Kendall’s coef-
ficient of concordance. The experts’ positive coefficients 
were determined based on the response rate to the ques-
tionnaire. A response rate of 70% or higher is considered 
satisfactory [16]. The Cr was calculated as the average of 
the familiarity coefficient (Cs) and the judgment coeffi-
cient (Ca), reflecting the reliability of the expert consulta-
tion. A Cr value of 0.7 or above is considered acceptable. 
The CV measures the consistency of indicators on the 
same level. A CV value less than 0.25 is expected, indi-
cating a high level of consistency [17]. Kendall’s coeffi-
cient of concordance evaluates the overall consistency of 
all indicators in the system. It ranges from zero to one, 
with a value greater than 0.2 considered acceptable [18]. 
All statistical analyses were performed using Microsoft 
Excel/IBM SPSS 25.0.

Using the AHP method for weight assignment
We applied the AHP method to determine the weights of 
indicators at each level, which is a well-known technique 
in multiple criteria decision-making [19]. AHP enables 
the quantification of criteria and opinions that are dif-
ficult to measure numerically, and its outcomes are free 
from subjective influence due to its use of pairwise com-
parisons and eigenvalues [20].

In this study, our AHP method was conducted in 
three steps. First, we obtained the importance ratings of 
experts for each indicator. Then, we averaged these rat-
ings for each indicator and performed pairwise compari-
sons among indicators at the same level that belong to 
the same upper level. This step allowed us to construct 
multiple judgment matrices based on their ratios.

Second, we calculated the eigenvectors of each indi-
cator by normalizing the judgement matrix. A larger 
eigenvector for an indicator represents a higher relative 
importance. The relative weights of indicators at the same 
level were determined by standardizing the eigenvec-
tors. For the first-level indicators, their relative weights 
were equal to their absolute weights. For the second- and 
third-level indicators, their absolute weights were calcu-
lated by multiplying their relative weights with the abso-
lute weight of the upper level.

Third, we performed a consistency test using the con-
sistency ratio (CR) to evaluate the consistency of the 
judgment matrices. A CR below 0.1 indicated that the 
judgment matrices were consistent and that the obtained 
weights were considered valid [21]. The steps of the AHP 
method are illustrated in Fig. 3.

Evaluating the index system through prediction tasks
To further validate the suitability of the proposed index 
system, an empirical study was conducted using real-
world EMR data for disease risk prediction.

Dataset construction
To ensure a fair assessment, we opted to generate multi-
ple datasets from a single EMR data resource. The chosen 
data resource needed to be large-scale, open-access, and 
regularly updated. Once the data resource was identi-
fied, we constructed several datasets with varying sample 
types but maintaining the same set of attributes.

For each dataset, we computed the scores of 33 third-
level indicators using the established calculation for-
mulas. The weights of the proposed index system were 
applied to obtain weighted scores for all indicators within 
each dataset. The overall score of a dataset was subse-
quently computed by summing the scores of the first-
level indicators.
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Predictive modeling
In the context of disease risk prediction, we consid-
ered three widely used ML models: logistic regression 
(LR), support vector machine (SVM), and random for-
est (RF). LR is a traditional classification algorithm 
used to estimate the probability of an event occurring 
[22]. SVM, a nonlinear classifier, employs a kernel func-
tion to transform input data into a higher-dimensional 
space, making it effective in handling complex relation-
ships and nonlinear patterns [23]. RF is an ensemble 
method that combines the predictions from multiple 
decision trees. It has shown great success in disease risk 
prediction tasks by reducing overfitting and improving 
predictive accuracy [24]. For our analysis, we used the 
scikit-learn python library [25] to implement LR, SVM, 
and RF.

Reliability analysis
In our study, we conducted reliability analysis to exam-
ine the relationship between the scores obtained from 
our constructed datasets and the performance of predic-
tive models. we applied Pearson correlation for assessing 
linear relationships [26] and Spearman correlation for 
nonlinearity [27]. The Pearson correlation coefficient was 
calculated using the formula:

Here, xi and yi represent individual data points from the 
two respective datasets, while x and y denote the mean 
values of these datasets. A Pearson correlation coefficient 
near 1 or -1 indicates a strong linear relationship between 
dataset scores and model performance, whereas a value 
close to 0 suggests a very weak linear relationship.

Similarly, the Spearman correlation coefficient was cal-
culated using the formula:

Here, di represents the difference in rank between the 
two datasets for the i-th observation, and n denotes the 
total number of observations. A Spearman correlation 
coefficient near 1 or -1 indicates a strong nonlinear rela-
tionship, while a value close to 0 suggests a very weak 
relationship.

In both analyses, statistical significance was estab-
lished with a p-value less than 0.05. This finding indi-
cates a significant correlation between the scores of our 
constructed datasets and the performance of predic-
tive models. Thus, this statistically significant outcome 

(1)r =
n
i=1(xi − x)(yi − y)

n
i=1(xi − x)2 n

i=1(yi − y)2

(2)ρ = 1−
6
∑

d2i
n
(

n2 − 1
)

Fig. 3 Flowchart of the AHP method
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supports the reliability of our proposed index system in 
evaluating the data quality of EMR for intelligent disease 
risk prediction.

Results
The characteristics of the experts
In the Delphi consultation, a total of twenty experts 
were invited, of which 17 actively participated, yielding 
a response rate of 85.0%. Out of the 17 experts, 16 pro-
vided feedback that met the credibility criteria for a Del-
phi study, resulting in an effective response rate of 94.1%. 
These response rates reflect a high degree of expert 
engagement.

Most of the participating experts were male, held Ph.D. 
degrees, and specialized in medical informatics or medi-
cal AI. Over half of the experts were aged between 40 and 
50 years, and 62.5% had between 10 and 20 years of work 
experience. Moreover, 68.7% of the experts occupied sen-
ior associate positions or higher. For detailed informa-
tion, see Table S8 in Additional file 3.

The key coefficients of the Delphi method
The degree of expert authority (Cr) is defined by two fac-
tors: the expert’s familiarity with the consultation content 
(Cs) and the basis of expert judgment (Ca). Of the 16 par-
ticipating experts, 7 were found to be very familiar with 
the content, while 9 were relatively familiar. This indi-
cates an overall sound understanding of the field among 
the experts. Only two experts exhibited a low judgment 
basis, suggesting that the majority of the experts were 
well-equipped to offer informed judgment. Details of 
expert familiarity and judgment basis can be found in 
Table S9 in Additional file 3.

Cr was calculated to be 0.89, with Cs and Ca values of 
0.88 and 0.90, respectively. These values indicate a high 
level of expert authority and reliability in the consulta-
tion results. The CV values for the first-level indicators 
were less than 0.16, for the second-level indicators were 
less than 0.20, and for the third-level indicators were no 
more than 0.25. These low CV values indicate a high level 
of consistency among experts’ scores for the preliminary 
indicators at each level. Kendall’s coefficients of concord-
ance for all three levels were greater than 0.30, indicating 
a substantial level of agreement among the experts. Addi-
tionally, the p-values for the preliminary second- and 
third-level indicators were very small, further confirming 
the consistency of experts’ scores for each preliminary 
indicator. Overall, the results demonstrate a high level of 
consistency and reliability in the experts’ assessments for 
each preliminary indicator.

The final weighted three‑level index system
Experts’ comments focused on changes to the defini-
tion of indicators. After further discussions with experts, 
all preliminary indicators were included in the final 
weighted three-level index system, as shown in Table 1. 
No new indicators were added to the system. The index 
system comprises four first-level indicators, 11  sec-
ond-level indicators, and 33 third-level indicators, with 
the weights determined using the AHP method and 
percentages.

The first-level indicators represent a series of data qual-
ity characteristics that determine the suitability of EMR 
data for disease risk intelligent prediction research. The 
second-level indicators provide a concrete representation 
or evaluation of the first-level indicators, making it eas-
ier for users to understand their extension or evaluation. 
The third-level indicators further specify the second-level 
indicators, providing clear quality requirements for dif-
ferent levels of granularity in the EMR dataset, such as 
data records, data elements, and data element values. 
This facilitates users in understanding the evaluation 
needs and contents more clearly. For detailed informa-
tion on the indicators, please see Additional file 2.

Data preprocessing
In this empirical study, the MIMIC-III clinical database 
was chosen as the representative real-world EMR data 
resource. MIMIC-III1 is an extensive and freely accessi-
ble database that contains comprehensive health-related 
data from more than 46,000 patients admitted to inten-
sive care unit (ICU) at the Beth Israel Deaconess Medi-
cal Center between 2001 and 2012 [28]. For this study, 
we utilized MIMIC-III v1.4, which is the latest version 
released in 2016 [29] and ensures effective control over 
EMR data.

Sepsis is a leading cause of mortality among ICU 
patients, highlighting the importance of accurate sepsis 
risk prediction for precise treatments in the ICU [30]. 
Hence, we selected sepsis as the disease prediction task 
using the MIMIC-III database. Potential predictors were 
extracted from the records of vital signs, routine blood 
examinations [31], liver function tests [32] and demo-
graphic information. The outcome variable for the pre-
diction task is the occurrence of sepsis. Furthermore, we 
obtained five different populations of ICU patients with 
a high risk of sepsis from the MIMIC-III database. The 
number of patients in each population, categorized as 
elderly (> 80 years old), long-stay (> 30 days of length of 
stay, LLOS), ischemic stroke, acute renal failure (ARF), 

1 https:// physi onet. org/ conte nt/ mimic iii/1. 4/

https://physionet.org/content/mimiciii/1.4/


Page 7 of 11Zhou et al. BMC Medical Informatics and Decision Making          (2024) 24:178  

and cirrhosis (CIR), is presented in Table  S10 in Addi-
tional file 3.

Scoring datasets
According to the proposed index system, we evaluated 
the five datasets and assigned scores to each indica-
tor based on their respective weights in the system. The 
detailed list of scores of divergent indicators for each 
dataset can be found in Table S11 in Additional file 3. In 
Table 2, we present the scores of first-level indicators. It is 
important to note that the scores for the operability indi-
cator were consistent across all five datasets, with a value 

of 0.251. This is because these datasets were obtained 
from a single resource.

When considering the overall scores, the LLOS dataset 
achieved the highest score of 0.966, indicating a higher 
level of quality, while the ARF dataset obtained the low-
est score of 0.907. These scores provide an assessment of 
the datasets’ suitability and quality for disease risk pre-
diction using the proposed index system.

Experimental results
Additional data processing was conducted to pre-
pare the datasets for training ML models. To address 
the missing values, median imputation was applied to 

Table 1 The final weighted three-level index system

First‑Level Indicators 
name (weight)

Second‑Level Indicators name (weight) Third‑Level Indicators name (weight)

Operability (0.251) Integrability (0.091) Ratio of mapping the primary key (0.032)

Ratio of mapping data elements (0.030)

Ratio of interconvertible data elements (0.029)

Portability (0.082) Reliable data migration (0.082)

Selectivity (0.078) Sufficient data elements as inputs for feature engineering (0.020)

Sufficient data elements as outputs for feature engineering (0.019)

Measurement selectivity in data inputs for feature engineering (0.020)

Measurement selectivity in data outputs for feature engineering (0.019)

Completeness (0.254) Integrity of data elements (0.066) Integrity of data elements as inputs in predictive modeling (0.017)

Integrity of data elements as outputs in predictive modeling (0.016)

Integrity of data values as inputs in predictive modeling (0.017)

Integrity of data values as outputs in predictive modeling (0.016)

Integrity of temporal information (0.062) Integrity of timestamps as creating data (0.032)

Integrity of timestamps as creating values with data (0.031)

Integrity of data state (0.063) Integrity of data state in available (0.063)

Data balance (0.063) Adequate data (0.020)

Balance of input data (0.021)

Balance of output data (0.022)

Correctness (0.264) Data accuracy (0.087) Accurate data formats (0.013)

Accurate data types (0.015)

Right level of granularity (0.015)

Accurate measurement of data (0.015)

Unambiguity of data elements (0.015)

Unambiguity of measurement of data (0.014)

Data consistency (0.089) Consistent measurement of data (0.031)

Consistent metric calculations (0.030)

Consistent metric units (0.028)

Data compliance (0.089) Data elements for compliance (0.023)

Data measurement for compliance (0.022)

Standard timestamps for compliance (0.022)

Standard time logs for compliance (0.023)

Timeliness (0.231) Data timeliness (0.231) Timeliness on recording data (0.113)

Frequency on recording data (0.118)
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predictors with a small proportion of missing values 
in each dataset. To mitigate potential bias arising from 
imbalanced datasets, we applied undersampling on the 
majority class to achieve a balanced ratio of 1:1. Each 
dataset was then randomly split into 80% for training 
and 20% for testing. To ensure fairness in model com-
parison, the predictors were normalized, and a tenfold 
cross-validation was performed during the training 
process.

Regarding model hyperparameters, the LR model  
applied the ’ liblinear ’  solver method. The SVM model  
utilized a Radial Basis Function kernel, with a regulariza-
tion parameter (C) set to 1.0, and the gamma value was 
set to ’scale ’. For the RF model, it was constructed with 
10 trees (n_estimators = 10), a maximum tree depth 
of 7 (max_depth = 7), and optimal feature selection 
(max_features = ‘auto’).

The evaluation of model performance was based on 
accuracy (ACC), precision, and area under the curve 
(AUC). Accuracy represents the proportion of correct 
predictions made by a model among all predictions. Pre-
cision measures the proportion of true positive predic-
tions among all positive predictions made by a model. 
AUC, also known as the area under the receiver operat-
ing characteristic curve, is a metric used to evaluate the 
performance of binary classification models [33].

Table  3 displays the model performance on the five 
datasets. Among the three models, LLOS achieved the 
highest performance across all three evaluation metrics. 

On the other hand, ARF had the lowest performance in 
most cases, except for precision in the LR model.

Association analysis
The relationships between the scores of datasets and the 
performance metrics of the models were analyzed as 
follows. First, a normality test was conducted on each 
pair of scores. If the scores passed the normality test, a 
Pearson correlation analysis was performed. Otherwise, 
a Spearman correlation analysis was conducted. Table 4 
shows that all correlations, except for LR-Precision, were 
strongly positive and statistically significant. The SVM-
Precision correlation showed the strongest effect among 
them.

Table 2 Overall scores of the five datasets

Dataset Results

Operability
(0.251)

Completeness
(0.254)

Correctness
(0.264)

Timeliness
(0.231)

Total Score
(Up to 1)

Elderly 0.251 0.250 0.260 0.174 0.935

LLOS 0.251 0.227 0.264 0.224 0.966
Stroke 0.251 0.250 0.263 0.177 0.941

ARF 0.251 0.230 0.263 0.163 0.907

CIR 0.251 0.231 0.264 0.183 0.929

Table 3 Model performance on the five datasets

Dataset RF SVM LR

ACC Precision AUC ACC Precision AUC ACC Precision AUC 

Elderly 0.699 0.671 0.645 0.712 0.661 0.650 0.698 0.647 0.634

LLOS 0.858 0.927 0.855 0.869 0.908 0.855 0.884 0.935 0.866
Stroke 0.805 0.730 0.703 0.829 0.735 0.716 0.800 0.625 0.666

ARF 0.630 0.646 0.619 0.559 0.622 0.547 0.606 0.694 0.596

CIR 0.767 0.800 0.737 0.837 0.688 0.737 0.767 0.733 0.670

Table 4 Correlation results of each dataset

* Correlation is significant at the 0.05 level (right-tailed)

Combination Correlation Coefficient P‑value

RF-Accuracy 0.907* 0.017

RF-Precision 0.825* 0.043

RF-AUC 0.866* 0.029

SVM-Accuracy 0.819* 0.045

SVM-Precision 0.933* 0.010

SVM-AUC 0.924* 0.012

LR-Accuracy 0.932* 0.010

LR-Precision 0.639 0.123

LR-AUC 0.905* 0.017
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Discussion
We have developed a quantitative evaluation index sys-
tem to assess the suitability of EMRs in disease risk intel-
ligent prediction research. The proposed index system 
was validated through an empirical study using MIMIC-
III datasets for predicting sepsis. Three popular ML 
models were performed, and the predictive results dem-
onstrated that datasets with higher scores achieved bet-
ter performance across three ML models. Our result is 
consistent with a previous study that showed the impact 
of data quality on prediction performance [34]. Addition-
ally, the association analyses revealed a strong positive 
relationship between the scores of datasets and the com-
bination of the ML model and evaluation metric. These 
findings confirm that the proposed index system was 
effective in evaluating the quality of EMR data in disease 
risk prediction using ML techniques.

Compared to the general framework for evaluating 
EMR data quality, our proposed index system was con-
structed by incorporating both the quality characteristics 
of EMR data and the specific research activities in ML-
based disease risk prediction. It differs from the frame-
works developed by Johnson [35] and Lv [36], which 
focused on summarizing literature on general medi-
cal data rather than specifically on EMR data. Although 
Weiskopf [37] specified EMR data as a required condi-
tion for a literature search, they did not explicitly address 
the situation of using EMR data in their development. 
The proposed index system considers not only the prac-
tical foundation of EMR data but also the data process-
ing operations and operational objectives of EMRs at 
different stages of prediction model construction. This 
approach makes the evaluation index system more 
focused on its research purpose and enhances its explan-
atory power.

Another significant contribution of the proposed index 
system is the quantitative evaluation of EMR data qual-
ity in disease risk prediction. This provides research-
ers with guidance or standards for quantifying the EMR 
datasets for specific research purposes. Most current 
EMR data quality evaluation systems for clinical research 
rely on qualitative indicators [38]. Qualitative indicators 
are often based on typical cases, statements, and sup-
porting materials, which may lack objectivity. While the 
study of Weiskopf [37] incorporated quantitative evalua-
tion, it still relied on subjective scoring of each dimension 
by experts to calculate the mean value. The evaluation 
model proposed by Zan [39] utilized objective measure-
ment indicators, but it primarily focused on binary clas-
sification and only included first-level indicators.

The proposed three-level index system was devel-
oped using a combination of qualitative and quantitative 
approaches. The naming and definition of all three levels 

of indicators were constructed through an extensive lit-
erature review and expert consultation. The first-level 
indicators correspond to the core qualitative aspects of 
evaluating EMR data quality in ML-based disease risk 
prediction. The second-level indicators serve as a refine-
ment of the first-level qualitative indicators. The third-
level indicators are quantitative in nature and can be 
obtained through objective quantitative calculations, 
such as assessing the coverage bias of the outcome varia-
bles in the integrity of the third-level indicators. Through 
the AHP method, the weights of the first- and second-
level indicators can be obtained by the weights of third-
level indicators in a hierarchical way.

Our study has several limitations. First, the calculation 
of the weights for the third-level indicators was based 
on simple percentages. This calculation method may 
neglect variations in the importance of different indica-
tors. Second, the empirical study was conducted using 
the MIMIC-3 v1.4 database. Although the MIMIC-3 
dataset is a widely used resource in research, the use of 
a single data resource may restrict the generalizability 
of our findings. Certain indicators for comparing data 
resources may be hard to validate without diverse EMR 
data resources. Hence, future validation studies using 
another data resource should be conducted to ensure the 
robustness of the proposed index system.

Conclusion
In this paper, we developed a quantitative three-level 
index system, which included four first-level, 11 second-
level, and 33 third-level indicators, to evaluate the EMR 
data quality in ML-based disease risk prediction. The 
reliability of the proposed index system has been verified 
through an empirical study with real-world data.

The proposed index system can benefit both EMR 
users for research and data managers. For EMR users 
for research, the proposed index system could provide 
them with a measurement for the suitability of EMR 
data in ML-based disease risk predictions. For EMR data 
managers, it could guide the direction of EMR database 
construction and improve the EMR data quality control. 
Eventually, we hope that the proposed index system can 
promote the generation of real-world evidence from reli-
able real-world EMR data.
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