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Abstract
Background  Accurate segmentation of critical anatomical structures in fetal four-chamber view images is 
essential for the early detection of congenital heart defects. Current prenatal screening methods rely on manual 
measurements, which are time-consuming and prone to inter-observer variability. This study develops an AI-based 
model using the state-of-the-art nnU-NetV2 architecture for automatic segmentation and measurement of key 
anatomical structures in fetal four-chamber view images.

Methods  A dataset, consisting of 1,083 high-quality fetal four-chamber view images, was annotated with 15 
critical anatomical labels and divided into training/validation (867 images) and test (216 images) sets. An AI-based 
model using the nnU-NetV2 architecture was trained on the annotated images and evaluated using the mean Dice 
coefficient (mDice) and mean intersection over union (mIoU) metrics. The model’s performance in automatically 
computing the cardiac axis (CAx) and cardiothoracic ratio (CTR) was compared with measurements from 
sonographers with varying levels of experience.

Results  The AI-based model achieved a mDice coefficient of 87.11% and an mIoU of 77.68% for the segmentation 
of critical anatomical structures. The model’s automated CAx and CTR measurements showed strong agreement with 
those of experienced sonographers, with respective intraclass correlation coefficients (ICCs) of 0.83 and 0.81. Bland–
Altman analysis further confirmed the high agreement between the model and experienced sonographers.

Conclusion  We developed an AI-based model using the nnU-NetV2 architecture for accurate segmentation 
and automated measurement of critical anatomical structures in fetal four-chamber view images. Our model 
demonstrated high segmentation accuracy and strong agreement with experienced sonographers in computing 
clinically relevant parameters. This approach has the potential to improve the efficiency and reliability of prenatal 
cardiac screening, ultimately contributing to the early detection of congenital heart defects.

Keywords  Ultrasound, Deep learning, Fetal, Four-chamber view

Automatic segmentation of 15 critical 
anatomical labels and measurements 
of cardiac axis and cardiothoracic ratio in fetal 
four chambers using nnU-NetV2
Bocheng Liang1, Fengfeng Peng2, Dandan Luo1, Qing Zeng1, Huaxuan Wen1, Bowen Zheng2, Zhiying Zou1, 
Liting An1, Huiying Wen1, Xin Wen1, Yimei Liao1, Ying Yuan1 and Shengli Li1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02527-x&domain=pdf&date_stamp=2024-5-17


Page 2 of 13Liang et al. BMC Medical Informatics and Decision Making          (2024) 24:128 

Introduction
Fetal echocardiography is a crucial tool in prenatal care, 
allowing for the assessment of fetal cardiac anatomy and 
function [1]. The four-chamber view is one of the most 
important in fetal echocardiography, providing valuable 
information for the detection of congenital heart defects 
(CHDs) [2]. Current guidelines recommend the use of the 
fetal cardiac axis (CAx) and cardiothoracic ratio (CTR) 
as key metrics for evaluating cardiac position and func-
tion [3, 4]. The CAx is determined by drawing a line from 
the spine to the anterior chest wall, bisecting the tho-
rax into symmetrical right and left sections, and draw-
ing another line along the interventricular septum. The 
CAx is defined as the angle at the intersection of these 
two lines. The CTR is quantified using electronic cali-
pers to measure the areas of the heart and thoracic cavity, 
and is calculated as the ratio of these two areas (Fig. 1). 
An abnormal CAx may be associated with various fetal 
conditions, such as cardiac outflow tract anomalies, dia-
phragmatic hernia, pulmonary hypoplasia, gastroschi-
sis, and omphalocele [5]. The CTR serves as a diagnostic 
indicator of fetal cardiovascular status in conditions like 
twin-to-twin transfusion syndrome and anemia, aiding 
prenatal sonographers in detecting abnormalities and 
guiding clinical decision-making [6].

However, the accuracy and reproducibility of CAx and 
CTR measurements heavily depend on the sonographer’s 
expertise and skill level, with inter-sonographer variabil-
ity being a significant concern. In clinical practice, the 
CAx and CTR are often evaluated longitudinally across 
different hospitals by sonographers of varying experience, 
which can introduce substantial inter-observer vari-
ability, which increases the sonographer’s workload, and 
may lead to heightened patient anxiety and potentially 

misguided clinical decisions, with serious consequences 
[7].

Recent advancements in deep learning and medical 
image processing technologies have propelled artifi-
cial intelligence (AI), with significant progress in such 
fields as neuroscience, fetal diagnostics and therapeu-
tics, human emotion recognition, and the classification 
and quality enhancement of thyroid and breast medical 
images [8–25]. In the context of prenatal ultrasonogra-
phy, Arnaout et al. [26] employed a U-net architecture 
to segment the fetal four-chamber view and calculate 
cardiac parameters, such as the CTR, CAx, and cardiac 
area change ratio, based on segmentation results [26, 27].
This approach demonstrated the potential for automated 
computation of crucial cardiac parameters. However, 
the aforementioned study primarily focused on model 
performance, which was not compared to sonographer 
measurements, thus highlighting the need for further 
validation of its clinical utility. Furthermore, most studies 
integrating deep learning with prenatal ultrasonography 
remain at the experimental stage, lacking comparisons 
with sonographer measurements to establish their clini-
cal value [2, 28–30].

The present study develops an AI-based model built 
on nnU-NetV2, which can automatically segment the 
fetal four-chamber view and measure the CAx and CTR 
[31]. It is expected that the model will reach the senior 
sonographer level, to assist junior sonographers and 
those in underdeveloped regions with routine screen-
ing duties. This AI-based model will not only reduce the 
daily workload of sonographers, but will also be able to 
teach inexperienced sonographers how to make proper 
measurements.

Fig. 1  Example illustrating manual delineation measurements. (a) Cardiac axis measurement: the angle between red lines denotes the cardiac axis; (b) 
Cardiothoracic ratio measurement: the yellow dashed area signifies the cardiac area, the blue dashed area indicates the thoracic region, and the ratio of 
the heart area to the chest area is the cardiothoracic ratio. *LV: left ventricle; LA: left atrium; RA: right atrium; RV: right ventricle; DAO: descending aorta; 
SP: spine
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Methods
Ultrasound Imaging
The fetal four-chamber view dataset was acquired using 
ultrasound equipment from different manufacturers (e.g., 
Samsung, GE, and Philips) at our hospital. The inclu-
sion criteria for pregnant women were a gestational age 
between 18 and 32 weeks and a singleton pregnancy. The 
exclusion criteria were suspected or known fetal congeni-
tal heart disease, declined participation, and maternal 
BMI ≥ 25 kg/m2. All fetal four-chamber view images met 
the image quality control requirements of ISUOG [4]. 
All collected images were anonymized to protect patient 
privacy.

Image annotation
Eligible fetal four-chamber views were screened by three 
sonographers with more than 5 years of clinical experi-
ence in fetal cardiac screening. Thirteen critical struc-
tures and cardiac and thoracic areas (Table  1) were 
accurately labeled using UltraSonic Multi-Label (version 
1.0) annotation software, which was co-developed by our 
team. This software facilitates the classification of image 
categories and bounding box detection or pixel-level seg-
mentation of critical anatomical labels.

Model training
In the present study, we employed the recently proposed 
nnU-NetV2 framework (version 2.0), which is an updated 
version of the original nnU-Net architecture [31], spe-
cifically designed for medical image segmentation. The 
nnU-NetV2 framework was implemented using PyTorch 
(version 2.1.0) and Python (version 3.9.0). The hyperpa-
rameters used by nnUNetv2 are shown in Table 2.

The nnU-NetV2 model has a U-shaped architecture 
designed to seamlessly integrate high-level semantic fea-
tures with low-level detailed features:

	 f = Unet1 (I) ,� (1)

	 f ′ = Crop (f ) , � (2)

	 Mask = Unet2 (f
′) , � (3)

where I ∈ RH×W×C  is an input image, and Crop  is a 
function used to crop an image [31]. Given an input 
image I, Unet1  produces features. After cropping the 
segmentation region from input image I  according to 
the segmentation result, the cropped image is trained 
on Unet2  for further refinement, and the final segmen-
tation result is obtained. Figure 2 shows the nnU-NetV2 
architecture.

The training process combined Dice loss and cross-
entropy loss, balancing between pixel-wise accuracy and 
region-based similarity, which is crucial for segmenta-
tion tasks. By leveraging the complementary strengths of 
these two loss functions, the aim was to achieve superior 
segmentation performance.

To further validate our approach, we conducted com-
prehensive quantitative and visual comparisons against 
four established semantic segmentation methods: U-Net, 
U-Net++, DeepLabV3+, and SAN [32–35].

The experiment was conducted on NVIDIA P100 
GPUs with the PyTorch framework. Stochastic gradient 
descent (SGD) was utilized to optimize network perfor-
mance, initiating training with a learning rate of 0.01 and 
a batch size of 12.

We trained nnU-NetV2 from scratch, without relying 
on pretrained weights, allowing tailoring to the dataset. 
The dataset was divided into training and validation sets 

Table 1  Critical anatomical labels for fetal four-chamber view
Label
Left Atrium Left Ventricle
Right Atrium Right Ventricle
Interventricular Septum Interatrial Septum
Left Ventricular Wall Right Ventricular Wall
Left Lung Right Lung
Descending Aorta Spine
RIB Heart Area

Thorax Area

Table 2  Hyperparameter settings in experiment
Initial learning 1e-2
Weight decay 3e-5
Oversample foreground percent 0.33
Epoch 100

Fig. 2  Architecture of nnU-NetV2 model
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at an 8:2 ratio. To ensure reliable, generalizable findings, 
the model was evaluated using a rigorous fivefold cross-
validation approach on the training and validation sets, 
assessing model performance across various data subsets, 
for a comprehensive understanding of their predictive 
capabilities.

Given the challenge of training extensive neural net-
works with limited data, various data augmentation 
techniques were dynamically incorporated during train-
ing to mitigate the risk of overfitting. These included 
random rotations, random scaling adjustments, gamma 
correction for enhanced visual clarity, and mirroring. 
However, medical images require careful consideration 
of structural integrity. Hence, we avoided augmentation 
methods such as random elastic deformation, cutout, or 
other techniques potentially compromising the image 
structure.

Postprocessing methods
CAx measurement
This study determined CAx through nnU-NetV2 seg-
mentation masks and advanced digital image processing 
techniques. Specifically, the CAx was derived by fitting 

the interventricular septum’s long axis to the fetal tho-
rax’s anterior-posterior axis.

A skeleton line algorithm was used to accurately 
determine the long axis of the interventricular septum, 
enabling the extraction of a set of points representing 
the median axis of the septum. Subsequently, a straight 
line was fit through these points using the least squares 
method, ensuring a robust and accurate representation of 
the long axis.

The anterior-posterior axis of the thoracic cavity was 
determined using a different approach. The centers of 
mass lines were calculated for the thoracic and spine 
masks, which allowed for the precise determination of 
the orientation and position of the anterior-posterior 
axis within the thoracic cavity. The combination of these 
two axes established a comprehensive understanding of 
the CAx, which is crucial for further cardiac analysis and 
diagnosis. The integration of nnU-NetV2 segmentation 
masks and advanced digital image processing techniques 
has proven to be a powerful tool for enhancing the accu-
racy and reliability of CAx determination. The results are 
shown in Fig. 3.

Measurement of cardiothoracic ratio
The CTR can be calculated from cardiac and thoracic 
masks, as shown in Fig. 4.

	 Ec = F (mc) , � (4)

	 Et = F (mt) ,� (5)

	
Ratio =

A (Ec)

A (Et)
,� (6)

where mc  and mt  refer to the heart mask map and chest 
mask map, respectively. Within these masks, a pixel value 
of 1 signifies the presence of an object, while a value of 
0 denotes the background. F represents the fitting of 
the ellipse of the mask, and A represents the area of the 
ellipse.

Contour points are extracted to refine the mask image. 
The fitEllipse method of OpenCV (version 4.8.0) is then 

Fig. 4  Measurement of cardiothoracic area ratio. (a) Original image; (b) Extraction of heart and chest masks; yellow: heart; green: chest; (c) Fitting ellipse 
and calculating CRT; yellow: heart; green: thoracic cavity

 

Fig. 3  Result of cardiac axis measurement. Blue line: long axis of interven-
tricular septum; red line: anteroposterior axis of thorax
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used to obtain the ellipse center coordinates, major and 
minor axis lengths, and rotation angle. The fitEllipse 
method utilizes least squares to minimize the sum of dis-
tances from all contour points to the ellipse, thereby fit-
ting the optimal ellipse. The CTR is then calculated based 
on the ratio of the areas of the two ellipses.

Clinical validation
Three sonographers with varying levels of clinical experi-
ence—junior (1 year of prenatal screening), intermediate 
(5 years), and senior (10 years)—executed manual mea-
surements on 100 randomly selected fetal four-chamber 
view ultrasound images from the test set, utilizing man-
ual tracing techniques. The parameters measured were 
CAx and CTR. These ultrasound images were input to 
our trained AI model for automated computations with 
identical parameters. Manual sonographers and auto-
mated AI measurements were archived to enable com-
parative analysis.

Statistical analysis
The mean Dice coefficient (mDice) and mean Intersec-
tion over Union (mIoU) are widely used and accepted 
in the field of medical image segmentation, and were 
employed to evaluate the accuracy of the fetal four-
chamber view segmentation model.

We use mDice—which provides a measure of the 
spatial correspondence as well as the overlap between 
model-predicted and ground-truth segmentation—to 
compare region similarity in sample spaces. It is defined 
as twice the size of the overlapping area between the pre-
dicted and accurate segmentation divided by the total 
size of both segmented regions:

	
mDice =

(
1

n

)
∗
∑n

i=1

2× |xi ∩ yi|
|xi| + |yi|

, � (7)

where n  is the number of classes, xi represents the pre-
dicted segmentation for the i  class, and yi represents 
corresponding ground-truth segmentation. The Dice 
coefficient ranges from 0 to 1, with a value closer to 1 
indicating higher segmentation quality.

The mIoU is used to evaluate image segmentation 
quality. It is the average ratio of the intersection over 
the union between the predicted and ground-truth 
segmented regions, particularly useful for multiclass 
segmentation tasks because it calculates the average seg-
mentation score across all classes, offering a balanced 
assessment of the model’s performance. It is calculated as

	
mIoU =

(
1

n

)
∗

n∑

i=1

(
|Xi ∩ Yi|
|Xi ∪ Yi|

)
, � (8)

where n  is the number of classes, Xi  is the segmentation 
for the i  class predicted by the model, and Yi  is the cor-
responding ground-truth segmentation. The mIoU values 
range from 0 to 1, with larger values indicating higher 
overall segmentation accuracy.

These metrics are particularly suitable for evaluating 
the accuracy of our fetal four-chamber view segmenta-
tion model, as they consider both true- and false-positive 
predictions, and provide a comprehensive assessment of 
a model’s performance across multiple anatomical struc-
tures. Moreover, these widely adopted metrics enable 
direct comparison of our model with other methods.

The normality of the measured values from physi-
cians with differing years of experience and the AI-based 
model was assessed using the Shapiro‒Wilk test. For data 
conforming to a normal distribution (P > 0.05), a paired 
sample t test was used to analyze the mean differences 
between physician and AI measurements. For non-nor-
mally distributed data (P ≤ 0.05), the Wilcoxon signed-
rank test was employed to evaluate the differences.

To quantify the agreement between manual measure-
ments obtained by expert sonographers and automated 
measurements obtained by the AI-based model, the 
intraclass correlation coefficient (ICC) and Bland‒Alt-
man plots were used for statistical analysis. The ICC 
assesses reproducibility by determining the correlation 
between measurements. Bland–Altman plots graphi-
cally represent the agreement between two quantitative 
measurements by plotting the difference between the two 
measurements against their mean.

All statistical analyses were conducted using R lan-
guage scripts in RStudio (version 4.3.2) and Python (ver-
sion 3.9.0), with a significance level of α = 0.05.

Results
General results
A total of 1,442 fetal four-chamber views were obtained, 
359 of which were excluded owing to inadequate image 
quality or incomplete fetal four-chamber views. The 
remaining 1,083 images revealed a mean gestational age 
of 25 ± 4 weeks (18–32 weeks). The remaining images 
were divided into training/validation and test sets at an 
8:2 ratio. The training/validation set included 867 images 
for model development, and the test set comprised 216 
images, which were used to assess model performance 
(Table 3). From this test set, 100 images were randomly 
selected for clinical validation by sonographers.

Segmentation results
The nnU-NetV2, as developed in this study, attained an 
mDice value of 87.11, and mIoU was 77.68 (Table 4).
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Visualization results
The nnU-NetV2 effectively segmented all labels, with 
smooth contours and the absence of jagged edges (Fig. 5). 
Its visual segmentation is much closer to the ground-
truth, as detailed in Fig. 6, where yellow ellipses highlight 
visible differences between the other models and the 
ground-truth.

Expert vs. AI-based model measurement concordance 
analysis
Table 5 presents the CAx and CTR measurements 
obtained by the AI-based model and the three sonogra-
phers. Statistical analysis revealed significant differences 
in CAx measurements between the AI-based model and 
the sonographers (P < 0.05), while no significant differ-
ences were observed in CTR measurements (P > 0.05). 
AI-based model measurements of cardiac CAx and CTR 
visualization at different locations are shown in Fig.  7. 
The ICCs between the senior sonographers and the 
AI-based model were 0.83 for CAx, and 0.81 for CTR. 
The ICCs between intermediate sonographers and the 
AI-based model were 0.73 for CAx, and 0.81 for CTR. 
ICCs between junior sonographers and the AI-based 
model were 0.68 and 0.75 for CAx and CTR, respectively 
(Table 6).

Bland–Altman analysis was utilized to evaluate the 
concordance between the AI-based model and sonogra-
phers with varying levels of clinical experience in CAx 
measurements. The senior sonographer exhibited a mean 
bias of 1.15° with 95% confidence intervals (CIs) of 0.25–
2.06° and 95% limits of agreement (LoA) from − 7.97 to 
10.28°. The intermediate sonographer had a mean bias 
of 2.01° (95% CI: 0.80 to 3.21°), with a 95% LoA between 
− 10.18 and 14.19°. The junior sonographer’s mean bias 
was 3.83° (95% CI: 2.67°-4.98°), with a 95% LoA ranging 
from − 7.87 to 15.52°. For CTR measurements, the Bland–
Altman plots indicated the following levels of agreement 
between the AI-based model and sonographers with 
various levels of clinical experience. The senior sonogra-
pher exhibited a mean bias of 0.0012 (95% CI: −0.0040 to 
0.0064) and a 95% LoA ranging from − 0.0515 to 0.0538. 
The intermediate sonographer had a mean bias of 0.0032 

(95% CI: −0.0017 to 0.0082), with a 95% LoA between 
− 0.0466 and 0.0530. The junior sonographer’s mean bias 
was 0.0060 (95% CI: −0.0004 to 0.0124), with a 95% LoA 
ranging from − 0.0588 to 0.0708 (Fig. 8).

Discussion
In recent years, the use of artificial intelligence to auto-
mate prenatal ultrasound measurements has been an 
active research area [8, 28]. As early as 2008, deep learn-
ing was used to automatically measure multiple fetal ana-
tomical parameters, including the biparietal diameter, 
head circumference, and long bone length, achieving 
comparable measurements to those of skilled sonogra-
phers, and reducing the workload by approximately 75% 
[36]. Most related studies still focus on automating these 
conventional parameters, with remarkable progress [2, 
29, 30]. However, research on quantifying fetal cardiac 
parameters has been relatively limited [1, 26].

The four-chamber view is the most critical plane in 
fetal echocardiography screening; in this view, authori-
tative guidelines emphasize evaluating the CAx and 
cardiothoracic area ratio [37]. Moreover, CAx and CTR 
measurements depend heavily on the sonographer’s 
expertise and experience. In busy hospitals, assessments 
are often performed by sonographers of varying skill lev-
els [38]. Significant measurement errors increase sonog-
rapher workloads, waste resources, prompt unnecessary 
examinations, escalate maternal anxiety, and can lead to 
missed diagnoses [2].Research on automating cardiac 
parameter quantification is indispensable and clinically 
valuable, which is the motivation for this study.

The accurate segmentation of the fetal four-chamber 
view achieved by our AI-based method lays the founda-
tion for further analysis of images and the development 
of advanced diagnostic tools. By enabling the automated 
measurement of critical cardiac parameters, such as the 
CAx and cardiothoracic ratio, our approach provides 
valuable insights into fetal cardiac health, and facilitates 
the detection of potential abnormalities. Moreover, the 
segmentation masks generated by our method can serve 
as starting points for the extraction of additional cardiac 

Table 3  Numbers of labels included in training and test sets
Label Training/Validation Test Label Training/Validation Test
LA 867 216 LV 867 216
RA 867 216 RV 867 216
IVS 867 216 IAS 867 216
LVW 867 216 RVW 867 216
LL 867 216 RL 867 216
DAO 867 216 SP 867 216
RIB 1644 351 HA 867 216

TA 867 216
*LV: left ventricle; LA: left atrium; RA: right atrium; RV: right ventricle; IVS: interventricular septum; IAS: interatrial septum; LVW: left ventricular wall; RVW: right 
ventricular wall; LL: left lung; RL: right lung; DAO: descending aorta; SP: spine; RIB: rib; HA: heart area; TA: thorax area
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features and the development of comprehensive diagnos-
tic models. The integration of these advanced features 
with machine learning algorithms holds promise for the 
early detection and risk stratification of congenital heart 
defects. Furthermore, our method’s segmentation capa-
bilities open possibilities for the creation of intelligent 
tools that can assist clinicians in decision-making, treat-
ment planning, and patient communication. The poten-
tial for integration with other imaging modalities further 
enhances the appropriateness of our method for a holis-
tic assessment of fetal cardiac health.

The optimal gestational age for fetal echocardiog-
raphy is 18–22 weeks [4]. However, evaluation of the 
four-chamber view may be needed for up to 30 weeks’ 
gestation in clinical practice. Therefore, the gestational 
ages of fetuses used to develop our model spanned from 
18 to 32 weeks. Notably, the rib training/validation 
set had 1,644 images, and the test set had 351 images 
because the collected views varied, showing one, two, or 
incomplete ribs. All images were counted and annotated 
despite having the largest training dataset in the label 
we trained the model on; Dice and IoU for ribs were still 
suboptimal due to variability in rib presentation.

This study demonstrates an AI-based model that uses 
the nnUnet-V2 architecture for fetal four-chamber sec-
tion segmentation. The results show that the AI-based 
model accurately identifies and segments 15 key ana-
tomical landmarks, and that its performance is closer to 
that of a sonographer’s manual annotation with nnUnet-
V2 than with four state-of-the-art semantic segmentation 
models. In addition, the nnUnet-V2-based model auto-
matically calculates CAx and CRT in fetal four-cham-
ber views, highlighting the potential of deep learning in 
clinical practice. Whether in apical, parasternal, or basal 
views, the model effectively segments and measures the 
results.

We quantitatively compared nnU-NetV2 with four 
state-of-the-art semantic segmentation methods, includ-
ing the latest SAN methods, which were consistently 
outperformed by nnU-netV2 in most evaluated classes. 
Notably, for LV, SAN had a Dice score and an IoU of 
91.21 and 83.83%, respectively, but nnU-netV2 achieved 
a slightly lower yet competitive Dice score and an IoU 
of 90.12 and 82.01%, respectively. Impressively, in the 
RL category, nnU-netV2 had a Dice score and an IoU of 
93.23 and 87.32%, respectively, exceeding SAN at 92.86 
and 86.68%, respectively. Across all classes, nnU-netV2 
showed a significant improvement, with an mDice score 
and mIoU of 87.11 and of 77.68%, respectively, compared 
to that of SAN’s 82.33 and 71.98%, respectively. The anal-
ysis explores each class in detail, particularly emphasizing 
nnU-netV2’s superior performance in segmenting com-
plex anatomical structures. Notable improvements were 
observed for IAS and LA, with Dice score enhancements Ta
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of 8.02% and 0.64%, respectively, compared to the SAN. 
These results suggest that nnU-netV2 is particularly 
effective at segmenting intricate anatomical features.

In light of the above, sonographers must manually 
segment structures such as the spine, septum, ribs, and 
thorax when measuring CAx and CRT prenatally [3, 4]. 
Identifying these boundaries can be challenging for nov-
ices. Factors such as fetal position, amniotic fluid volume, 

and movement further complicate measurements [39]. 
Moreover, nnU-netV2 can measure the CAx and CRT in 
fetal four-chamber views at different positions, as shown 
in Fig.  7. Computing CRT requires separate heart and 
thorax delineation, often requiring 2–3 min to obtain sat-
isfactory results. Computation can be much faster using 
the nnU-NetV2 model, and the clinical application of this 
approach could reduce the workload of sonographers, 

Fig. 6  Visualization comparison. Yellow ellipses mark obvious differences between other models and ground-truth

 

Fig. 5  Visualization of segmentation results, showing original, manually annotated, and automatically segmented images for apical fetal four-chamber 
view, parasternal fetal four-chamber view, and basal fetal four-chamber view
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give doctors more time with patients, and potentially 
mitigate doctor-patient conflicts.

There were no statistically significant differences in 
the CTR (P > 0.05) between the three sonographers 
with different levels of clinical experience and the AI-
based model. This indicates that the overall measure-
ment accuracy of the AI-based model was comparable 
to that of physicians. ICC analysis revealed consistency 
levels. The senior (ICC = 0.81) as well as the intermedi-
ate (ICC = 0.81) sonographers demonstrated good con-
sistency with the AI-based model. The junior radiologist 
had slightly lower consistency (ICC = 0.75), but was still 
within the acceptable range. Despite different clinical 

experiences, the sonographers’ CTR measurements were 
consistent with those of the AI-based model. Bland–Alt-
man analysis further validated the minor differences in 
the CTR between the AI model and sonographers. The 
senior sonographer had a slight mean deviation (0.0012), 
and the 95% CI (− 0.0040 to 0.0064) and LoA (− 0.0515 to 
0.0538) indicated that most deviations were within a tiny 
range. The intermediate sonographer exhibited a similar 
pattern, with a mean deviation of 0.0032 and good con-
sistency. The junior sonographer had a slightly larger 
mean deviation (0.0060). Although the 95% CI was zero, 
indicating no statistically significant difference from the 
AI-based model, the range of disagreements was slightly 
broader than that of the senior and intermediate sonog-
raphers, showing a slightly lower consistency.

When analyzing CAx measurements, the AI-based 
model showed statistically significant differences com-
pared to sonographers with varying degrees of clini-
cal experience (P < 0.05). The measurement consistency 
was highest between the senior sonographer and AI 
(ICC = 0.83), followed by the intermediate sonographer 
(ICC = 0.73) and the junior sonographer (ICC = 0.68). This 

Table 5  Cardiac axis and cardiothoracic ratios measured by 
sonographers with different levels of clinical experience and by 
AI
Operator CAx

M ± SD RANGE Normality 
test

Vs. AI

Senior 33.19°±7.99° 7.9°∼ 54.6° P = 0.2106 P = 0.01397
Intermediate 34.04°±9.34° 8.6°∼ 62.2° P = 0.1401 P = 0.001526
Junior 35.86°±8.76° 5.7°∼ 57.1° P = 0.01056 P*= 

3.364e-08
AI 32.03°±8.19° 10.2°∼ 50.9° P = 0.2726

CTR
Senior 0.31 ± 0.05 0.21 ∼ 0.43 P = 0.05688 P*= 0.8565
Intermediate 0.31 ± 0.04 0.22 ∼ 0.42 P = 0.05167 P*= 0.148
Junior 0.31 ± 0.05 0.19 ∼ 0.44 P = 0.4415 P*= 0.09368
AI 0.31 ± 0.04 0.23 ∼ 0.45 P = 0.01863
*: Wilcoxon signed-rank test

Table 6  Intra-observer variability (ICC) between sonographers of 
varying experience levels and AI.
Operator CAX

ICC (95%CI)
CTR
ICC (95%CI)

Senior 0.83(0.75 ∼ 0.88) 0.81(0.74 ∼ 0.87)
Intermediate 0.73(0.61 ∼ 0.82) 0.81(0.73 ∼ 0.87)
Junior 0.68(0.39 ∼ 0.82) 0.75(0.66 ∼ 0.83)

Fig. 7  AI-based model measurements of cardiac parameters from various positions. (a)–(c) Apical fetal four-chamber view; (d)–(f) Parasternal fetal four-
chamber view; (g)–(i) Basal fetal four-chamber view
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reflects greater consistency between AI and more expe-
rienced sonographers for CAx. Bland–Altman analysis 
also showed that the AI-based model had the most minor 
mean deviation from the senior sonographer (1.15°), 
indicating the best consistency. Furthermore, the inter-
mediate sonographer had a 2.01° mean deviation, show-
ing intermediate consistency. The junior sonographer 
had the most significant deviation (3.83°), indicating the 
worst consistency. Despite systematic bias, the overall 
consistency of AI with more experienced sonographers 
was greater for CAx measurements.

A noteworthy innovation of the present study was the 
development of an AI-based model using the nnU-NetV2 
architecture to enable automated segmentation and 
measurement of fetal four-chamber views in mid-to-late 
gestation. This approach facilitated accurate quantifica-
tion of CAx and CTR, which had not been previously 
automated. The model showed robust agreement with 
manual measurements by experienced sonographers. 
The application of this technology could improve clini-
cal workflow efficiency while maintaining diagnostic 
accuracy. However, limitations exist regarding model 

Fig. 8  Bland–Altman plots exhibiting intra-observer variability for cardiac axis (CAx) and cardiothoracic ratio (CTR) measurements. Blue dotted line: mean 
difference; red dotted line: 95% limits of agreement. (a) CAx measurements by senior sonographer; (b) CTR measurements by senior sonographer; (c) 
CAx measurements by intermediate sonographer; (d) CTR measurements by intermediate sonographer; (e) CAx measurements by junior sonographer; 
(f) CTR measurements by junior sonographer
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validation with constrained sample sizes and the need 
for multicenter assessments. Although the current train-
ing dataset supported preliminary model development, 
future studies leveraging larger multicenter sample sizes 
are imperative to validate the generalizability and expan-
sive clinical utility of the model. This will be an important 
step in advancing automated echocardiographic analysis, 
providing more precise and standardized screening and 
diagnostic tools for fetal cardiac abnormalities.

Conclusion
In this study, we developed an AI-based model using 
the nnU-NetV2 architecture for automatic segmenta-
tion of the fetal four-chamber view and measurement 
of CAx and CTR. The model successfully identified and 
segmented 15 critical anatomical labels in fetal four-
chamber views, enabling the automated computation of 
CAx and CTR. The model’s performance was excellent, 
with mDice and mIoU of 87.11 and 77.68%, respectively, 
which indicated accurate recognition of anatomical 
structures. The measurements obtained by the AI-based 
model demonstrated strong agreement with those of 
sonographers, thereby highlighting its potential diagnos-
tic value.

Our findings suggested that the AI-based model could 
provide meaningful diagnostic support to sonographers 
with varying levels of expertise. In addition, the model 
could serve as a robust training and mentoring tool for 
less experienced sonographers, helping them to improve 
their fetal echocardiography skills. The model could help 
reduce the workload of experienced sonographers and 
increase productivity by providing accurate and consis-
tent measurements. As such, integrating this technology 
into clinical practice could enhance the standardization 
of prenatal cardiac screening and facilitate earlier detec-
tion and treatment of abnormalities.

The AI-based model developed in this study could have 
numerous applications. By leveraging the segmentation 
model, additional cardiac parameters could be mea-
sured to comprehensively evaluate fetal cardiac health. 
Furthermore, the highly scalable nature of the model 
enables the development of customized models for differ-
ent cardiac planes and the identification and analysis of 
plane-specific structures, ultimately improving diagnos-
tic capabilities.

Despite the promising results, this study had certain 
limitations. First, the dataset used for training may not 
fully represent the entire spectrum of anatomical varia-
tions and pathologies encountered in clinical practice. 
Expanding the dataset to include a more diverse range of 
cases could enhance the model’s robustness and gener-
alizability. Second, the model’s decision-making process 
may not be easily interpretable by clinicians, which could 
hinder its adoption in clinical settings. Incorporating 

techniques for explainable AI could help improve the 
transparency and trustworthiness of the model. Third, 
because the current implementation focused on offline 
analysis, adapting the model for real-time performance 
during live ultrasound examinations would require fur-
ther optimization and integration with ultrasound sys-
tems. Finally, our model was specifically designed for the 
analysis of the fetal four-chamber view and the measure-
ment of CAx and CTR; therefore, extending the model’s 
capabilities to other cardiac views and additional mea-
surements would provide a more comprehensive evalua-
tion of fetal cardiac health.

In the future, our goal is to harness the power of arti-
ficial intelligence to streamline and standardize the 
screening and diagnosis of congenital heart defects. By 
improving the accuracy of early detection, we aim to 
enhance patient outcomes through timely intervention. 
The integration of AI-driven models into routine prena-
tal care could revolutionize fetal echocardiography, mak-
ing it more intelligent and standardized across various 
healthcare settings. This could ensure consistent, high-
quality fetal cardiac care, regardless of geographic loca-
tion or practitioner expertise.

Our study demonstrated the successful development 
of an AI-based model for automatic segmentation and 
measurement of fetal four-chamber views. The model 
achieved excellent performance, with mDice and mIoU 
of 87.11 and 77.68%, respectively, in addition to show-
ing strong agreement with sonographer measurements. 
These findings highlighted the model’s potential to pro-
vide meaningful diagnostic support across different lev-
els of expertise, standardize prenatal cardiac screening, 
and improve early detection of abnormalities. Despite 
limitations, the integration of this technology into clini-
cal practice could ultimately enhance patient outcomes. 
Future research should address these limitations, fur-
ther validate the model, explore additional applications, 
and develop customized models for different cardiac 
planes to maximize its diagnostic capabilities and clinical 
impact.
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