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Abstract 

The goal is to enhance an automated sleep staging system’s performance by leveraging the diverse signals captured 
through multi-modal polysomnography recordings. Three modalities of PSG signals, namely electroencephalo-
gram (EEG), electrooculogram (EOG), and electromyogram (EMG), were considered to obtain the optimal fusions 
of the PSG signals, where 63 features were extracted. These include frequency-based, time-based, statistical-based, 
entropy-based, and non-linear-based features. We adopted the ReliefF (ReF) feature selection algorithms to find 
the suitable parts for each signal and superposition of PSG signals. Twelve top features were selected while correlated 
with the extracted feature sets’ sleep stages. The selected features were fed into the AdaBoost with Random Forest 
(ADB + RF) classifier to validate the chosen segments and classify the sleep stages. This study’s experiments were 
investigated by obtaining two testing schemes: epoch-wise testing and subject-wise testing. The suggested research 
was conducted using three publicly available datasets: ISRUC-Sleep subgroup1 (ISRUC-SG1), sleep-EDF(S-EDF), Physio 
bank CAP sleep database (PB-CAPSDB), and S-EDF-78 respectively. This work demonstrated that the proposed fusion 
strategy overestimates the common individual usage of PSG signals.

Keywords Polysomnography signals, Multi-modal analysis, Sleep staging, AASM rules, Machine learning, Random 
forest, Epoch-wise analysis

Introduction
Sleep is a fundamental necessity for humans, crucial for 
maintaining physical and mental well-being [1]. Inad-
equate sleep patterns have been observed to lead to dif-
ficulties in learning, concentration, and decision-making 

and can impact social interactions. Prolonged adherence 
to such sleep behaviors may result in various sleep dis-
orders. Notably, certain sleep disorders, like obstruc-
tive sleep apnea (OSA) [2], have direct or indirect 
associations with chronic diseases, such as an increased 
risk of stroke [3]. Additionally, insomnia has been linked 
to conditions like diabetes and cardiovascular diseases 
[4]. Therefore, assessing sleep quality and employing 
proper diagnostic procedures to address diverse sleep 
issues for overall health is imperative. Two main stand-
ards, R&K and AASM guidelines, examine sleep patterns 
and their attributes. R&K rules categorize the entire sleep 
cycle into seven stages, including Wake (W), Stage1 (S1), 
Stage2 (S2), Stage3 (S3), Stage4 (S4), Rapid Eye Move-
ment (REM), and movement time. Stages S1 to S4 are 
considered non-REM sleep stages. In later research, the 
American Academy of Sleep Medicine (AASM) intro-
duced updated guidelines, consolidating the sleep cycle 
into five stages: Wakefulness (W), N1, N2, and N3, with 
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changes reflecting the measurement and treatment of S3 
and S4 as part of the N3 stage [5].

Experts commonly employ the Polysomnography (PSG) 
test to assess different types of sleep disorders in subjects. 
PSG signals typically include an electroencephalogram 
(EEG) [6], electrocardiogram (ECG) [6], electrooculo-
gram (EOG) [7], and electromyogram (EMG) [8]. These 
signals are recorded and analyzed visually by experts. The 
process involves at least two experts, one interpreting the 
signal waveforms while the other annotating them [9]. In 
the traditional diagnostic approach, manual inspection 
is used to observe and label the subject’s sleep behavior. 
However, this method often yields lower performance 
due to variations in labeling and annotation skills among 
experts [10]. Additionally, reaching a consensus on sleep 
stage labels between the two experts can be challeng-
ing. As a result, many automated sleep staging systems 

have been developed to analyze sleep stages based on 
various sleep disorders, aiming to automate the scor-
ing of sleep stages [11]. Figure 1 illustrates the EEG pat-
tern of sleep stages. The depicted sleep EEG behavior is 
from subject id-61, a 61-year-old male, sourced from the 
Physio Bank CAP Sleep (PB-CAPSD) database [12]. This 
particular subject experienced periodic limb movement 
disorder. The figure highlights distinct EEG behaviors 
associated with each sleep stage, annotated to showcase 
their waveform characteristics. The N1 stage represents 
a transitional phase between light and deep sleep. In this 
stage, the EEG predominantly contains alpha waveforms, 
constituting about 2–5% of total sleep. Moving to stage 
N2, waveforms such as sleep spindles and k-complexes 
are prevalent, covering approximately 40–60% of total 
sleep for one subject [12]. Finally, the REM stage behav-
ior closely resembles the wake stage, featuring sawtooth 

Fig. 1 EEG patterns with the different sleep stages
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waves with alpha and theta activities [13]. The inter-
connected changes in sleep behavior during transitions 
between stages play a vital role in studying mental and 
physical health. Individuals with various sleep disorders 
often deviate from a regular sleep cycle [14].

Therefore, classifying sleep stages, particularly N1 or 
an extended transition period like N2, is crucial for iden-
tifying irregularities during sleep. In routine practice, 
sleep experts traditionally manually record multiple EEG 
signals and label them with corresponding sleep stages, 
making the entire process labor-intensive, time-consum-
ing, and costly [15].

In the intersection of brainwave analysis and machine 
learning, extracting features from EEG signals plays a 
pivotal role. Wavelet transform, for instance, can analyze 
signals at multiple scales, making it valuable for detecting 
episodic events or signal changes over time. This charac-
teristic renders it suitable for identifying changes in EEG 
signals, such as sudden increases or decreases in activity, 
which may be associated with specific events. This sug-
gests a promising avenue for leveraging machine learn-
ing techniques to enhance the accuracy of sleep pattern 
analysis.

Despite the successes seen with both single and multi-
modal sleep staging methods, several notable drawbacks 
persist:

i) A generalized framework adaptable for the classifi-
cation task from the conventional five-stage to two-
stage sleep stages is lacking.

ii) Supervised classification models, while effective with 
known data, may struggle with new records and can 
misclassify significant sleep stage patterns. Addition-
ally, the features extracted from these models may 
be limited and fail to capture the complexity of the 
original signals adequately.

iii) Misclassification of several epochs as belonging to 
either N1 or REM stages has been observed, directly 
impacting the accuracy performance of sleep staging 
algorithms.

This study aims to leverage multi-modal signal fusions 
and apply them using machine learning techniques to 
overcome the limitations of traditional methods in sleep 
scoring. The objective is to enhance the consistency of 
polysomnography scoring and develop classifiers with 
high accuracy for each sleep stage.

Related research
Over the years, the researchers developed different sleep 
staging methods based on machine learning and deep 
learning techniques. Most studies can be categorized 
into i) single-channel-based and multi-channel-based 

methods. In [16] the authors analyzed the sleep char-
acteristics epochs that were pooled, then screened the 
features and selected the most suitable features based 
on relevance. In [17], the authors employed a band-pass 
filter during pre-processing to eliminate artifacts from 
the data. Their method yielded superior outcomes com-
pared to existing procedures. Specifically, their approach 
proved effective for detecting dishonesty in EEG-based 
Brain-Computer Interface (BCI) systems.

In [18], the authors employed an orthogonal convo-
lutional neural network (OCNN) to extract features 
from recorded polysomnography signals. They con-
ducted their analysis on two publicly available sleep 
datasets from UCD and MIT-BIH. The OCNN model 
achieved accuracies of 88.4% and 87.6% with the UCD 
and MIT-BIH datasets, respectively. In [19], the author 
employed multi-modal classification and decision-mak-
ing systems for sleep staging, incorporating an external 
neural network. The experimental work utilized the 
CAP sleep dataset, and the results indicated that the 
model performed well compared to an individual CNN 
model. The proposed model achieved a high accuracy 
of 95.43% for the six-class classification problem. In 
[20], the author introduced a novel approach for auto-
mated scoring of different stages of sleep using EEG 
signals collected from a single channel. This method 
utilized a unique cascaded recurrent neural network 
(RNN) architecture. The EEG data underwent pre-
processing 55 times, and frequency-domain features 
were extracted, with the most relevant features selected 
via feature reduction techniques. Overall, the model 
achieved a classification accuracy of 86.7% for the five 
stages of sleep. The primary focus of this effort was to 
improve classification performance in sleep stage N1, 
with the aim of achieving satisfactory results in the 
remaining sleep stages as well. In reference [21], a novel 
method for automatic sleep stage categorization using 
EEG information from a single channel was proposed. 
The main idea is to directly apply the raw EEG signal to 
a deep convolutional neural network (CNN), bypassing 
the traditional feature extraction and selection process 
used in previous approaches. The suggested network 
architecture consists of nine convolutional layers fol-
lowed by two fully connected layers. The proposed 
method achieved an accuracy above 90% for catego-
rizing two to six classes, representing an improvement 
over existing methods. Additionally, Cohen’s Kappa 
coefficients were reported as 0.98, 0.94, 0.90, 0.86, and 
0.89, respectively, indicating strong agreement between 
predicted and actual sleep stages. In [22], the author 
utilized the concept of a weighted undirected network 
by mapping the feature vector into it. This network’s 
various structural and spectral characteristics were 
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separated. In [23] the author used multi-scale deep 
neural architectures, in which the decomposed signals 
were input into the CNN model for further analysis of 
the sleep patterns. The model resulted in an accuracy 
of 80.7% using S-EDF and 86.5% with the MASS data-
set. In [24], the author used semi-supervised learning 
techniques for a better presentation of EEG signals 
for sleep staging. The author used two public datasets 
for this research work. The model received accuracy 
of 70.01% and 50.36% with S-EDF and ISRUC-Sleep 
datasets respectively. In [25], the author introduced a 
lightweight automated sleep staging system designed 
specifically for children, utilizing a single-channel 
EEG signal. The author combined Convolutional Neu-
ral Network (CNN) and Long Short-Term Memory 
(LSTM) models for classifying sleep stages. The experi-
ments were conducted using two datasets: a children’s 
sleep dataset and the Sleep-EDFx dataset. The system 
achieved an accuracy of 83.06% with the children’s 
sleep dataset using the F4-M1 channel and 86.41% with 
the Sleep-EDFx dataset with manual feature extraction. 
In [26], the authors used multi-branch one-dimensional 
convolutional neural networks and extracted different 
frequency domain features from single-channel EEG 
data. The model resulted from 90.31% accuracy, 95.30% 
specificity, and 65.73% F1score. In reference [26], the 
authors employed multi-branch one-dimensional con-
volutional neural networks (CNNs) and extracted 
various frequency domain features and achieved an 
accuracy of 90.31%, specificity of 95.30%, and an F1 
score of 65.73%. Some of the recent studies on sleep 
staging are presented in Table 1.

This research proposed a multi-modal machine learn-
ing model aimed at identifying changes in characteris-
tics across individual sleep stages during sleep hours. 
The model achieves this by fusing multi-modal signals to 
classify sleep patterns [36]. It has been observed that the 
EEG signal is the most effective for robust sleep staging 
analysis. However, accurately analyzing changes in sleep 
behavior across individual sleep stages remains challeng-
ing [37]. The EMG and EOG signals can be acquired and 
recorded relatively easily, and there is evidence demon-
strating a correlation between EEG, EMG, and EOG sig-
nals during sleep [38, 39]. The objective is to enhance the 
consistency in polysomnography scoring and to develop 
classifiers with high accuracy for each stage of sleep. 
Recognizing the substantial influence that various sleep 
stages exert on arousal, our research seeks to address the 
gap in existing studies by investigating different irregu-
larities [40].

The notable advancements made by this research inves-
tigation are summarized as follows:

• Development of an automated sleep staging system 
by integrating three modalities of polysomnography 
signals.

• Incorporation of subject-specific features, such as 
age, to enhance sleep staging performance. This 
addresses a gap in existing sleep studies, which often 
rely solely on traditional feature-based analyses with-
out considering subject characteristics.

• Introduction of an efficient feature selection method, 
the ReliefF feature selection algorithm is employed to 
simplify the feature selection process.

• Employing the AdaBoost algorithm with a random 
forest as a base classifier for sleep stage classification. 
This approach improves model prediction accuracy 
and resilience to overfitting and missing data issues.

• Reduction of reliance on prior knowledge in the fea-
ture extraction stage through the introduction of effi-
cient adaptive signal analysis techniques.

• Comprehensive representation of differences between 
sleep stages by leveraging multimodal sleep data.

• Evaluation of the impact of different feature selec-
tors and classifiers on the classification performance. 
Testing of the proposed methodology with hetero-
geneous signal data, demonstrating high classifica-
tion accuracy in discriminating between sleep stages 
associated with heterogeneous signal characteristics.

The complete research study is presented in six sec-
tions. In the first section, the importance of sleep is 
briefly discussed. The second section presented related 
studies on sleep staging. The third section briefly pre-
sented the proposed methodology. The fourth section 
illustrates experimental and simulation result analysis. 
The fifth section delves into the results obtained and 
compares them with existing relevant research con-
tributions. Finally, the last section concludes with this 
research work.

Materials and methodology
In our investigation, we have combined AdaBoost with 
a foundational classifier called Random Forest (RF) for 
the classification of sleep stages. RF enhances the mod-
el’s prediction variance by utilizing bootstrap sampling 
and selecting features via the ReliefF feature selection 
algorithm. Meanwhile, AdaBoost addresses the model’s 
prediction bias by optimizing residuals. Consequently, 
by leveraging the strengths of these two algorithms, 
our research aims to enhance the performance of sleep 
staging in the model. This research also investigates the 
impact of age on sleep behavior, a factor often overlooked 
in recent studies. However, it’s been noted that there 
exists a direct correlation between sleep patterns and 



Page 5 of 29Satapathy et al. BMC Medical Informatics and Decision Making          (2024) 24:119  

the age of the subject. This insight is crucial for under-
standing variations in sleep characteristics across differ-
ent stages. Recent contributions in sleep stage analysis 
have been critiqued for overlooking crucial aspects. For 
instance, they often neglect to consider the age factor 
when analyzing sleep behavior and fail to address imbal-
ances in sleep epochs across different stages. Additionally, 
many studies overlook infrequent sleep stage transitions, 
such as subjects transitioning directly from wakeful-
ness to deep sleep, particularly among healthy individu-
als [41]. The model is developed using multi-modal PSG 

signals. The complete framework of this research work is 
explained in Fig. 2.

Sleep stages classes
According to the sleep rules established by R&K 
(Rechtschaffen and Kales) and AASM (American Acad-
emy of Sleep Medicine), sleep stages can be classified into 
two to six distinct classes. Details of sleep stage classifi-
cation problems considered in this study are shown in 
Table 2.

Table 1 Recent research works carried out on automated sleep stage classification using EEG and PSG signals

Study and Year Techniques Classifier Signal Dataset Classification 
Levels

Results (%)

Micheal Dutt 2022 
[1]

Deep learning CNN-CRF EEG sleep-EDF Five 86.8%

Q. Shen 2023 [5] Asymmetric 
Siamese neural 
network (ASNN)

EEG Sleep-EDF-20, 
Sleep-EDF-78, 
SVUH-UCD

86.0%

82.3%

76.3%

Fan, J 2021 [27] Two-scale CNN EOG MASS Five 81.2%

Sleep-EDF 76.3%

Yan, Rui 2019 [28] Multi-modal 
Fusions

RF EEG + EOG + EMG + ECG CAP Sleep Data-
base

Five 86.24%

Ghimatgar, Hojat 
2019 [29]

Autoregressive (AR) 
coefficients

RF + Hidden Markov 
Model (HMM)

EEG DREAMS Subjects Five-Two 77.01%

79.12%

86.04%

95.47%

Fernandez-Bla nco, 
Enrique 2019 [30]

CNN 1D-CNN EEG S-EDF [Expanded] Five 92.66%

Shen, Huaming 
2020 [31]

Improved model-
based essence 
features

Bagged Trees EEG Dreams Subjects Five-Two 79.90% 82.08%
88.22%
96.48%

ISRUC database 81.65% 84.68% 
90.54% 96.18%

S-EDF [Expanded] 89.54%
90.98%
92.33%
94.34%
97.62%

Cooray, Navin 2019 
[32]

Multivariate pattern 
analysis

RF EEG
EOG
EMG

Montreal Archive 
of Sleep Studies 
(MASS)

Five 92%

Sun Chenglu 2019 
[33]

Hierarchical 
sequential neural 
network

recurrent neural 
network (RNN)

EOG
R-R interval (RR) signals

MASS Five 84.4%

Sleep Apnea 74.3%

Guillot, Antoine 
2020 [34]

SimpleSleepNet RNN EEG
EOG
EMG

Dreem Open Data-
set—Healthy

Five 89.9%

DOD-O (Dream 
Open
Dataset—Obstruc-
tive)

88.7%

Korkalainen, Henri 
2020 [35]

Deep learning-
based approach

RNN EEG S-EDF Five 83.7%

EEG + EOG 83.9%

76.3%
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Fig. 2 The complete layout of the proposed research work

Table 2 Description of sleep stages with AASM guidelines for this proposed work

Sleep Classes 5-Classes(5C) 4-Classes(4C) 3-Classes(3C) 2-Classes (2C)

Stages REM vs. N3 vs. N2 vs. N1 vs. WAKE REM vs. N3 N1 + N2 vs. WAKE REM vs. NREM (N1 + N2, + N3) vs. WAKE NREM + REM vs. WAKE
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Data description
ISRUC‑Sleep subgroup1 database (ISRUC‑SG1)
In this study, ISRUC-Sleep datasets were used, compris-
ing sleep recordings from subjects having distinct medi-
cal conditions and affected by various types of sleep 
issues. These recordings were collected at the Hospital of 
Coimbra University from 200 to 2013 [41]. In the present 
work, 18 subjects were considered, among which 15 are 
male subjects and 4 female subjects, having an age range 
between 22–76 years.

Sleep‑EDF database (S‑EDF)
A whole of 8 Caucasian subjects’ sleep recordings were 
collected. The collected recordings are mainly catego-
rized into SC* and ST*. The SC* contained four subject 
recordings from healthy subjects. The ST* categories had 
four subjects with mild sleep problems. One EEG signal 
(Fpz-Cz), one EOG, and one EMG signal were recorded 
for category subjects [42].

Physio Bank CAP Sleep (PB‑CAPSD) database
This dataset contained 108 polysomnographic recordings 
(CAP Sleep Database) [43]. This dataset collected EEG, 
EOG, EMG channels, and other electrophysiological sig-
nals. The detailed descriptions of this dataset were given 
in [43]. This research work retrieved PSG signals from six 
healthy subjects aged 23 to 37 years. The average period 
of sleep time for each subject is 8.5. The entire overnight 
polysomnography recordings were processed under the 
R&K rules. The number of subject recordings present in 

a particular dataset as classified into different sleep stages 
is presented in Table 3 below.

Sleep‑EDF‑78 dataset
Sleep-EDF-78 is an expanded version of Sleep-EDF-20, 
comprising 197 overnight polysomnography (PSG) 
recordings. It includes annotated sleep stage informa-
tion from 20 healthy subjects and 58 subjects experienc-
ing mild sleep difficulties. The subjects range in age from 
25 to 101 years, with 41 male and 37 female participants. 
These recordings feature various physiological signals, 
including EEG, EOG, and EMG [44].

Generally, two different types of methods are more 
popular concerning clinical data; that is subject-wise 
(Subject-Independent Test) and epoch-wise (Subject-
Dependent Test) (Fig. 3). This article uses the subject-wise 
and epoch-wise analysis methods on the ISRUC-SG1, 
S-EDF, and PB-CAPSD databases. Figure  4a-c presents 
the PSG signals recorded from the ISRUC-Sleep dataset 
of subject-5 with the 30  s of each sleep stage, including 
Wake, N1, N2, N3, and REM stages recorded on a subject 
affected by a small airway obstruction syndrome. In this 
case, the subject sleep cycle is continuously disturbed, 
and finds brief arousals in sleep, which causes the dep-
rivation of REM and N3 sleep. Similarly, Fig.  5a-c pre-
sents the subject’s sleep stages behavior recorded from 
the Sleep-EDF dataset of subject- sc4002e0, which was 
wholly healthy and controlled, with no sleep problems in 
earlier days.

Table 3 Description of distribution of sleep stages

Database ISRUC-Sleep Subgroup1
(ISRUC-SG1)

Sleep-EDF(S-EDF) PhysioBank
CAP Sleep Database

Sleep-EDF(S-EDF-78)

Number of Subjects 18 08 06 25

Gender (M/F) 15/04 04/04 04/02 14/09

Patient Age (years) 22–76 21–35 23–37 28–68

Epoch (seconds) 30 s 30 s 30 s 30 s

EEG Montage Bipolar Bipolar Bipolar Bipolar

Channel EEG:C3-A2
EOG: ROC-A1
EMG: chin EMG (X1)

EEG:C3-A2
EOG: ROC-A1
EMG: chin EMG (X1)

EEG:C3-A2
EOG: ROC-A1
EMG: chin EMG (X1)

EEG:C3-A2
EOG: ROC-A1
EMG: chin EMG (X1)

Sampling Frequency (Hz.) 100 Hz 100 Hz 100 Hz 100 Hz

Sleep Stages
Wake(W) 5103 8006(53%) 449(7%) 65,951(30%)

NREM-N1 2083 604 1405 21,522

NREM-N2 4346 3621 280 69,132

NREM-N3 2909 672 2162 13,039

REM 1767 1609 1751 25,835

Total Epochs 16,266 15,139 6047 195,479
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Preprocessing
In this research, artifacts were eliminated by employ-
ing a 10th-order Butterworth bandpass filter spanning 
frequencies from 0.5 to 49.5  Hz [45]. Generally, the 
raw signals are highly contaminated with different arti-
facts and irrelevant noises, which is difficult to process 
directly. To eliminate noise and artifacts, notch filter-
ing, a high-pass filter with a cut-off frequency of 0.3 Hz, 

and a low-pass filter with a cut-off frequency of 30 Hz 
were applied to the EEG and EOG signals [46, 47]. To 
process the EMG signal, notch filtering, a high-pass 
filter with a cutoff frequency of 10 Hz, and a low-pass 
filter with a cutoff frequency of 75 Hz were utilized [48, 
49]. All the preprocessing is performed through the 
MATLAB signal processing toolbox using digital filter-
ing techniques.

Fig. 3 Training and Testing data partitioning methods: a subject-wise, b epoch-wise
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Fig. 4 Sample recordings of the sleep-disordered subject-5 a using EEG signal b using EOG signal c using EMG signal of from ISRUC-Sleep dataset
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Fig. 5 Sample Sleep recordings of the healthy controlled subject- sc4002e0 a using EEG signal b using EOG signal c using EMG signal of subject-1 
from CAP Sleep Database
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Features extraction
Feature analysis is of utmost importance to analyze sub-
jects’ behavior to determine the parameters that signifi-
cantly decide the classified stage [50]. The characteristics 
during sleep that are strongly correlated to the location 
that a particular epoch of sleep duration belongs to can 
be observed through feature extraction, which becomes 
even more necessary when the signals are highly ran-
dom and unstable, as is the case with polysomnography 
signals [51–53]. The obtained features from different 
physiological signals are presented in Tables 4, 5, and 6, 
respectively.

Feature normalization and reduction
Feature normalization
After the feature extraction, a feature set with the 
dimensions of 16266 × 63, 15139 × 63, and 6047 × 63 for 
multi-modal PSG signals using ISRUC-SG1, S-EDF, and 
PB-CAPSD, respectively. Generally, the subject’s data for 
both the baseline and the time series information have 
different orders of magnitude. Train the ML-based clas-
sification model makes converging difficult [51, 54]. To 
confirm that every feature data has to be level of the same 
standards, feature values were standardized using the 
z-score method. Zero mean and unit variance have been 
used here, after which a normalized feature vector is gen-
erated. This, in general, boosts the system’s performance 
and helps to remove the outliers.

Feature reduction
It is also one of the critical steps during the sleep stag-
ing process. It has been found that sometimes improper 
signal fusions may degrade the model’s performance. 
For this reason, it’s essential to screen the best conveni-
ent feature, which helps discriminate the parts based 
on their characteristic changes over the individual 
sleep stages [55]. This study employs the ReliefF (ReF), 
a supervised feature weighting algorithm, to extract 

relevant features. The extracted features and their cor-
responding weights are presented in Tables 7, 8, 9, and 
10, respectively.

The AdaBoost meta-learning method is fed with 
the features from the ReF algorithm to produce base-
learner random forest classifiers for accuracy improve-
ment & mitigation of overfiring issues [56]. AdaBoost 
reinforces any base classification problem by boosting 
its accuracy. This approach is foolproof, simple, and 
convenient; it is rated much higher than its counter-
parts. Besides this, it has the added advantage of being 
non-parametric and performs much more reliably in 
figuring out the outlier information from training sam-
ples [57, 58]. One of the standout features of this algo-
rithm is that it is agnostic of the presence of any weak 
learners. Hence it finds presence across many classifica-
tion problems. The algorithm here is being fed with a 
training dataset TD which ranges over n sample values 
i.e. TD = (Xi,Yi) for i = 1, 2,…N; The variables Xi & Yi = 
{0,1,2,3,5} represent feature vector and its labels respec-
tively. The class labels 5,3,2,1 and 0 correspond to the 
REM, N3, N2, N1, and WAKE stages, respectively. Fol-
lowed by this, the base level classification models is 
called over several times. The weak hypotheses are line-
arly combined to construct the final view at each round.

Table 4 Extracted features from EEG Signal

Sl.No Feature Sl.No Feature

1 Min_Value (MinV) 10 Hjorth Complexity (HC)

2 Max_Value (MaxV) 11 75th Percentile  (75thP)

3 Std_Deviation (SD) 12 Skewness (SK)

4 Variance (VAR) 13 Kurtosis (KU)

5 Mean(M) 14 Zero crossing rate (ZCR)

6 Median (ME) 15–18 Relative Spectral Power

7 Mode (MO) 19–22 Band Power

8 Hjorth Activity (HA) 23–29 Power Ratios

9 Hjorth Mobility (HM) 30 Spectral Entropy (SE)

Table 5 Extracted features from EOG signal

Sl.No Feature Sl.No Feature

31 Minimum Value (MinV) 39 Hjorth Mobility (HM)

32 Standard Deviation (SD) 40 Hjorth Complexity (HC)

33 Variance (VAR) 41 Skewness (SK)

34 Mean(M) 42 Kurtosis (KU)

35 Median (ME) 43 Zero crossing Rate (ZCR)

36 Mode (MO) 44 Permutation Entropy (PE)

37 Hjorth Activity (HA) 45 Spectral Entropy (SE)

38 Power Spectral Density (PSD) 46 Hurst Exponent (HE)

Table 6 Extracted features from EMG signal

Sl.No Feature Sl.No Feature

47 Minimum Value (MinV) 55 Hjorth Complexity (HC)

48 Standard Deviation (SD) 56 Skewness (SK)

49 Variance (VAR) 57 Kurtosis (KU)

50 Mean(M) 58 Zero crossing rate (ZCR)

51 Median (ME) 59 Permutation Entropy (PE)

52 Hjorth Activity (HA) 60 Spectral Entropy (SE)

53 Hjorth Mobility (HM) 61 Energy (EN)

54 Spectral Edge (SPE) 62 Approximate Entropy (AE)

63 Age
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Random Forest (RF) is one of the most acceptable 
methodologies in classification, easily head-and-shoul-
ders above its compatriots. It is one of the superiors 
among the various Bagging techniques [59]. The stand-
out feature of this methodology is its ability to process 
massive datasets smartly and its capability to deal with 
large volumes of input variables without data loss and 
seamlessly characterizing the features of classification. 
Besides this, its ability to manage outliers and noise data 
are noteworthy. This algorithm is nothing but an aggre-
gation of classifiers in an efficient tree structure. Each of 
the participating trees independently contains random 
sample values [60]. This is suitable for all other trees of 
the forest as well. The predictive results are derived using 

voting at each step, and subsequently, the highest voted 
predictive effect becomes the final prediction result.

Random Forest of AdaBoost algorithm is taken as the 
base classifier to classify the sleep stage. This duo has only 
ensured higher classification accuracy for all the sleep 
stages. The below algorithm presents their correlation as 
following Algorithm 3:

Table 7 EEG features with their ReliefF weights

Weightage Order Feature No Feature Name Weight

1 30 SE 0.96

2 9 HM 0.87

3 14 ZCR 0.81

4 15 Pow_Ratio5 0.77

5 28 RSP_delta 0.61

6 24 beta_powbp 0.55

7 23 Pow_Ratio2 0.52

8 19 delta_powbp 0.48

9 22 Pow_Ratio1 0.45

10 27 alpha_powbp 0.44

11 29 Pow_Ratio7 0.42

12 17 Pow_Ratio6 0.39

13 16 RSP_alpha 0.36

14 21 RSP_theta 0.25

15 25 Pow_Ratio4 0.19

16 20 theta_powbp 0.11

17 3 SD 0.07

18 8 HA 0.05

19 4 VAR 0.04

20 11 75th P 0.04

21 12 SK 0.03

22 18 RSP_beta 0.02

23 1 MinV 0.02

24 13 KU 0.02

25 6 ME 0.01

26 5 M 0.01

27 26 Pow_Ratio4 0.01

28 10 HC 0.01

29 02 MaxV 0.01

30 07 Mode 0.01

Table 8 EOG features with their ReliefF weights

Weightage Order Feature No Feature Name Weight

1 45 SE 0.96

2 38 PSD 0.90

3 46 HE 0.89

4 43 ZCR 0.87

5 39 HM 0.78

6 44 PE 0.77

7 35 ME 0.77

8 31 MinV 0.74

9 32 SD 0.73

10 33 VAR 0.70

11 37 HA 0.69

12 34 M 0.65

13 41 SK 0.64

14 42 KU 0.56

15 40 HC 0.34

16 36 MO 0.52

Table 9 EMG features with their ReliefF weights

Weightage Order Feature No Feature Name Weight

1 54 SPE 0.96

2 60 SE 0.89

3 58 ZCR 0.82

4 62 AE 0.80

5 61 EN 0.79

6 51 ME 0.66

7 55 HC 0.48

8 50 M 0.48

9 53 HM 0.45

10 59 PE 0.44

11 48 SD 0.44

12 52 HA 0.36

13 56 SK 0.35

14 57 KU 0.32

15 49 VAR 0.29

16 47 MinV 0.27
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 Algorithm 3.  Random Forest of AdaBoost algorithm
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Experimental set-up
Only Polysomnography (PSG) signals have been consid-
ered for this work, which is a combination of the physi-
ological signals pertaining to the three channels: EEG, 
EOG, and EMG. The entire duration of these recordings 
is segmented into epochs of 30 s. This study obtained two 
different testing schemes such as epoch-wise and subject-
wise.The entire experiments were compiled and executed 
using MATLAB 2017b version.

Testing schemes
Epoch‑wise Test (Subject Dependent Test) In this test-
ing scheme, tenfold cross-validation, considers all the 
samples to be mixed to evaluate the proposed model’s 
performance. During this test procedure, both the train-
ing and testing samples were obtained from the same 
subject. So, the performance of this testing scheme may 
be overly optimistic and incomparable to the subject-
wise analysis.

Subject‑wise Test (Subject Independent Test)
During this testing method, we have obtained a cross-
validation strategy to assign one set of data is considered 
as testing data while the others are treated as training 
datasets via 10-fold cross-validation. This testing proce-
dure was repeated K times for K subjects. Each subject’s 
data is used to consider as the test in turn whereas other 
K‑1 subjects’ data are considered for training the pro-
posed classification model.

Performance evaluation metrics
In this section, the performance of the model is measured 
using five different standard metrics such as accuracy 

(ACC) [61], sensitivity (SEN), specificity (SPC) [61], 
precision (PRE) [62], F1Score (F1Sc) [63], and Cohen’s 
Kappa Score [64]. We used three public datasets such 
as ISRUC-SG1, S-EDF, and PB-CAPSDB datasets under 
AASM rules to assess the model’s efficiency better.

This proposed study executes six individual experi-
ments using multi-modal PSG signals based on two dif-
ferent testing schemes: epoch-wise and subject-wise. 
Table  10 presented the brief settings for all the experi-
ments and all the experiments based on the two-class to 
five-class sleep stages classification. A total of 63 features 
were extracted, which includes 1–30 from EEG features, 
31–46 from EOG features, and 47–62 from EMG fea-
tures, respectively.

Performance evaluation of proposed sleep staging model 
using an individual feature
To identify the impacts of the screened features of the 
EEG, EOG, and EMG signal for sleep staging, we inves-
tigate the individual features under the AASM sleep 
standards. The sleep staging performance will be ana-
lyzed on the basis of a single feature using the same 
datasets, testing schemes, and proposed classification 
model. We extracted 30 features from EEG signals (See 
Table 3), 16 features from EOG (See Table 4), and EMG 
(See Table 5) signals, respectively. Finally, the selection 
of suitable features based on the features’ weight value 
signifies more suitability. The sorted features using the 
ReF feature selection algorithm for EEG, EOG, and 
EMG signals are presented in Tables 7, 8, and 9, respec-
tively. The best top 12 extracted features from EEG, 
EOG, and EMG signals were presented in Table 10 for 
sleep staging. The selected features were fed one by one 

Table 10 Features selected from EEG, EOG, and EMG signals fusions

1–30: EEG Features; 31–46: EOG Features; 47–62: EMG Features

EEG EOG EMG EEG + EOG + EMG

Feature
No

Feature
Name

Feature No Feature_
Name

Feature No Feature
Name

Feature No Feature
Name

30 SE 45 SE 54 SPE 30 SE

9 HM 38 PSD 60 SE 42 ZCR

14 ZCR 46 HE 58 ZCR 43 PE

15 RSP_delta 43 ZCR 62 AE 62 AE

28 Pow_Ratio6 39 HM 61 EN 38 PSD

24 Pow_Ratio2 44 PE 51 ME 55 HE

23 Pow_Ratio1 35 ME 55 HE 54 SPE

19 delta_powbp 31 MinV 50 M 61 EN

22 beta_powbp 32 SD 53 HM 28 RSP_delta

27 Pow_Ratio5 33 VAR 59 PE 39 HM

29 Pow_Ratio7 37 HA 48 SD 11 75th P

17 RSP_alpha 34 M 52 HA 37 HA
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into AdaBoost with a base classifier as RF to evaluate 
the features’ effectiveness with concern to discrimina-
tion of the sleep stages. The top best 12 selected fea-
tures’ accuracy performance during sleep staging for 
five sleep states classification was conducted in both 
the testing (epoch-wise and subject-wise) schemes. The 
same individual feature accuracy results were presented 
in Tables  11, 12, and 13 concerning EEG, EOG, and 
EMG signals, respectively.

From Table 11, it has been observed that single EEG 
features using sleep staging are not performed well. 
The highest result achieved using the SE feature as 
72.79%, and the lowest performance was reported as 
38.10% using RSP_alpha based on epoch-wise testing 
scheme and similarly, the accuracy reported based on 
subject-wise for SE (69.66%) and RSP_alpha (34.76%) 
respectively.

It has been found from Table  12 that the same clas-
sification model reported the highest accuracy with the 
SE feature (74.79%) and lowest accuracy with the ME 
feature (28.10%) based on epoch-wise testing and simi-
larly SE (69.58%) and M (25.12%) based on subject-wise 
testing using the top 12 selected features of the EOG 
signal.

From Table 13, it is noted that the sleep staging per-
formance reached its peak with the SPE feature, achiev-
ing an accuracy of 44.19% and a sensitivity of 40.76% 
and lowest with the HA feature (26.77%) (24.02%) based 
on the epoch-wise and subject-wise testing schemes. 
Finally, it has been seen from Tables 10, 11, 12 that the 
performance of the sleep staging is relatively low since a 
single feature could only partially discriminate the sleep 
stages. Although single-channel and single-feature may 
experience this challenge during sleep staging, on the 

other hand, their combinations of the signals and fea-
tures may better perform.

Performance evaluation of the proposed sleep staging 
model using multi-modal signal fusions
In this section, the effectiveness of multi-modal sig-
nal fusions is analyzed during sleep staging. Six indi-
vidual experiments are performed using three widely 
accepted public datasets as ISRUC-SG1, S-EDF, and 
PB-CAPSD. The brief experiment settings are pre-
sented in Table  14, and all the experiments are based 
on the classification of the five-sleep state. Experi-
ment-1 to Experiment-3 use epoch-wise and Experi-
ment-4 to Experiment-6 use subject-wise testing 

Table 11 Overall accuracies of sleep staging using single-
selected features with the Top 12 selected features of EEG signal

Feature
Number

Selected
Feature Names

Epoch-wise
Testing (%)

Subject-wise
Testing (%)

30 SE 72.79% 69.66%

9 HM 68.43% 64.32%

14 ZCR 62.38% 56.90%

15 RSP_delta 60.07% 51.38%

28 Pow_Ratio6 56.91% 47.79%

24 Pow_Ratio2 51.11% 43.09%

23 Pow_Ratio1 43.80% 39.60%

19 delta_powbp 43.91% 38.35%

22 beta_powbp 40.36% 36.77%

27 Pow_Ratio5 38.96% 35.65%

29 Pow_Ratio7 38.15% 35.12%

17 RSP_alpha 38.10% 34.76%

Table 12 Overall accuracies of sleep staging using single-
selected features with Top 12 selected features of EOG signal

Feature
Number

Selected
Feature Names

Epoch-wise
Testing (%)

Subject-wise
Testing (%)

45 SE 74.79% 69.58%

38 PSD 68.43% 66.32%

46 HE 66.80% 56.60%

43 ZCR 61.27% 55.18%

39 HM 56.01% 49.79%

44 PE 47.11% 45.09%

35 ME 39.80% 37.60%

31 MinV 36.91% 35.05%

32 SD 33.10% 31.47%

33 VAR 29.96% 28.19%

37 HA 29.15% 25.12%

34 M 28.10% 25.12%

Table 13 Overall accuracies of sleep staging using single-
selected features with the Top 12 selected features of EMG signal

Feature
Number

Selected
Feature Names

Epoch-wise
Testing (%)

Subject-wise
Training (%)

54 SPE 44.19% 40.76%

60 SE 38.33% 37.23%

58 ZCR 36.74% 34.16%

62 AE 36.56% 34.03%

61 EN 33.58% 31.44%

51 ME 32.94% 29.78%

55 HE 32.88% 29.11%

50 M 29.25% 27.35%

53 HM 28.87% 26.97%

59 PE 27.46% 26.09%

48 SD 26.84% 24.82%

52 HA 26.77% 24.02%
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schemes, respectively. To compare the outcome of 
the proposed research work with the previous exist-
ing contributions on the ISRUC-SG1, S-EDF, and PB-
CAPSDB, the experimental settings are set as similar 
as possible, which includes testing schemes dataset 
size, and input signals.

Analysis of the sleep staging performance using 
Epoch-wise (Experiment-1 to Experiment-4)
For Experiment-1 and Experiment-4, different fusions 
of the signals were performed on three datasets such as 
ISRUC-SG1, S-EDF,PB-CAPSDB and S-EDF-78 under 
the AASM sleep scoring rules. The top 12 selected fea-
tures are presented in Table  10. At last, the selected 
multi-modal features were fed into the ADB + RF classi-
fier. The confusion matrices obtained using the epoch-
wise testing scheme for Experiment-1 to Experiment-4 
are detailed in Tables  15, 16, 17, 18. Furthermore, per-
formance metrics for Experiment-1 to Experiment-4 are 
summarized in Tables 19, 20, 21.

From Tables  19, 20, 21, 22, it is evident that the 
average accuracy, sensitivity, precision, and F1 score 
are reported as 97.74%, 93.43%, 94.21%, and 93.75%, 
respectively, using the ISRUC-SG1 dataset, 96.57%, 
81.37%, 85.23%, and 81.77% using S-EDF dataset, and 
96.83%, 92.26%, 92.32% and 92.25% using PB-CAPSDB 
and 95.38%,80.25%,82.03% and 80.93% using S-EDF-
78 respectively. But it has been seen that our proposed 

Table 14 Experiments under different testing procedures

Experiments Datasets Signals Testing Schemes

Experiment-1 ISRUC-SG1 EEG + EOG + EMG Epoch-wise

Experiment-2 S-EDF

Experiment-3 PB-CAPSD

Experiment-4 S-EDF-78

Experiment-5 ISRUC-SG1 EEG + EOG + EMG Subject-wise

Experiment-6 S-EDF

Experiment-7 PB-CAPSD

Experiment-8 S-EDF-78

Table 15 Confusion matrix for 5C sleep staging by ADB + RF classifier using EEG + EOG + EMG on ISRUC-SG1dataset

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 1144 2 5 4 19

N1 5 675 13 10 12

N2 11 30 1054 4 0

N3 1 60 16 1112 36

REM 11 22 12 5 617

Table 16 Confusion matrix for 5C sleep staging using EEG + EOG + EMG on S-EDF dataset

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 2378 33 6 1 5

N1 15 113 5 1 25

N2 2 28 1024 49 16

N3 2 1 23 356 1

REM 2 156 6 2 437

Table 17 Confusion matrix of EEG + EOG + EMG for 5C sleep staging with PB-CAPSDB dataset

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 404 3 7 4 8

N1 16 291 3 4 12

N2 21 9 455 4 8

N3 2 2 7 224 5

REM 6 4 6 8 302
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model is well-performed against the discrimination of 
N1 sleep stages. It is noticed in Tables  19 and 21 that 
the SEN-N1 sleep stage has improved using ISRUC-
SG1 and PB-CAPSDB datasets, respectively. The clas-
sification performance results for the five-class (5C) to 
two-class (2C) using ISRUC-SG1 S-EDF, PB-CAPSDB 
and S-EDF-78 datasets based on epoch-wise testing 
schemes are presented in Table 23.

Analysis of the sleep staging performance using 
Subject-wise (Experiment-5 to Experiment-8)
Here also we considered the same three public datasets for 
all the four experiments, the same multi-modal of signal 
features, and the only changes are here testing scheme that 
is subject-wise analysis. The other parameters remained the 
same as the earlier experiments of this study. The reported 
confusion matrix for Experiment-5 to Experiment-8 using 

Table 18 Confusion matrix of EEG + EOG + EMG for 5C sleep staging with S-EDF-78 dataset

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 62897 2018 689 71 476

N1 622 11982 6221 112 2585

N2 544 552 63646 2161 2229

N3 16 7 1016 11988 12

REM 902 2748 1158 92 20395

Table 19 Performance metrics values obtained for 5C sleep staging using an ISRUC-SG1 dataset with EEG + EOG + EMG

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Epoch-wise Wake 98.76% 97.61% 97.44% 97.53%

N1 96.76% 85.55% 94.41% 89.76%

N2 98.54% 95.82% 95.91% 95.86%

N3 97.13% 97.97% 90.78% 94.24%

REM 97.52% 90.20% 92.50% 91.34%

Overall 97.74% 93.43% 94.21% 93.75%

Table 20 Performance metrics values obtained for 5C sleep staging using an S-EDF dataset with EEG + EOG + EMG

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Epoch-wise Wake 98.49% 99.12% 98.14% 98.63%

N1 94.23% 34.14% 71.07% 46.12%

N2 96.68% 96.24% 91.51% 93.82%

N3 98.18% 87.04% 92.95% 89.90%

REM 95.29% 90.29% 72.47% 80.40%

Overall 96.57% 81.37% 85.23% 81.77%

Table 21 Performance metrics values obtained for 5C sleep staging using a PB-CAPSDB dataset with EEG + EOG + EMG

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Epoch-wise Wake 96.16% 89.98% 94.84% 92.34%

N1 96.93% 94.17% 89.26% 91.65%

N2 96.43% 95.19% 91.55% 93.33%

N3 97.90% 91.80% 93.33% 92.56%

REM 96.71% 90.15% 92.64% 91.38%

Overall 96.83% 92.26% 92.32% 92.25%
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ISRUC-SG1, S-EDF, PB-CAPSDB, S-EDF-78 based on 
subject-wise analysis are shown in Tables  24, 25, 26 and 
27, respectively. Similarly, the proposed model’s perfor-
mance results based on the subject-wise testing procedure 

for all the datasets as mentioned earlier are presented in 
Tables 28, 29, 30, and 31 respectively. Finally, Table 32 pre-
sents the results for two-class (2C) to five-class (5C) sleep 
stages classification problems.

Table 22 Performance metrics values obtained for 5C sleep staging using a S-EDF-78 dataset with EEG + EOG + EMG

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Epoch-wise Wake 96.97% 95.08% 96.79% 95.93%

N1 92.00% 55.67% 69.23% 61.72%

N2 95.57% 92.06% 96.31% 94.14%

N3 98.00% 91.94% 83.11% 87.30%

REM 94.37% 80.63% 79.37% 79.99%

Overall 95.38% 80.25% 82.03% 80.93%

Table 23 Performance of accuracy and Cohen’s kappa score with top 12 selected features for ISRUC-SG1, S-EDF, and PB-CAPSDB 
scored according to AASM guidelines using epoch-wise testing procedures

Testing Schemes Performance metrics Dataset Signals 5C 4C 3C 2C
(%) (%) (%) (%)

Epoch-wise Overall
Accuracy

ISRUC-SG1 EEG + EOG + EMG 94.30% 95.67% 97.21% 98.39%

S-EDF 94.18% 95.09% 97.02% 98.10%

PB-CAPSD 92.34% 94.89% 96.69% 97.79%

S-EDF-78 95.38% 94.49% 97.01% 98.12%

Cohen’s kappa score ISRUC-SG1 EEG + EOG + EMG 0.92 0.93 0.95 0.97

S-EDF 0.90 0.91 0.93 0.97

PB-CAPSD 0.90 0.91 0.92 0.96

S-EDF-78 0.90 0.91 0.92 0.96

Table 24 Confusion matrix for Experiment 4 on ISRUC-SG1 using EEG + EOG + EMG for 5C sleep staging

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 2017 55 47 15 42

N1 64 2788 66 107 55

N2 35 27 4428 268 185

N3 43 5 47 3043 11

REM 62 117 143 9 2587

Table 25 Confusion matrix for Experiment 5 on S-EDF using EEG + EOG + EMG for 5C sleep staging

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 8002 103 43 44 55

N1 26 543 22 13 3

N2 392 55 2997 35 142

N3 16 3 88 1173 19

REM 122 107 53 8 1074
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Table 26 Confusion matrix for Experiment 6 on PB-CAPSDB using EEG + EOG + EMG for 5C sleep staging

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 674 50 35 4 8

N1 26 751 23 7 5

N2 21 40 1625 64 88

N3 2 2 37 1194 5

REM 6 24 56 8 1292

Table 27 Confusion matrix for Experiment 6 on SEDF-78 using EEG + EOG + EMG for 5C sleep staging

Automatic Scoring Expert Scoring
W N1 N2 N3 REM

W 62393 2518 691 74 475

N1 1622 10982 6221 112 2585

N2 544 1052 63146 2161 2229

N3 16 7 1016 11988 12

REM 902 2748 2158 92 19935

Table 28 Performance evaluation results for five-class sleep staging using ISRUC-SG1 with multi-modal signal fusions

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Subject-wise Wake 97.62% 90.81% 92.69% 91.74%

N1 96.77% 93.18% 90.52% 91.83%

N2 94.21% 93.60% 89.58% 91.54%

N3 96.71% 88.41% 96.63% 92.34%

REM 95.97% 89.83% 88.66% 89.24%

Overall 97.74% 93.84% 94.21% 93.95%

Table 29 Performance evaluation results for five-class sleep staging using S-EDF with multi-modal signal fusions

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Subject-wise Wake 94.51% 93.50% 97.03% 95.23%

N1 97.65% 66.95% 89.46% 76.59%

N2 95.01% 93.57% 82.77% 87.84%

N3 98.39% 92.14% 90.30% 91.21%

REM 96.44% 83.06% 78.74% 80.84%

Overall 96.40% 85.85% 87.66% 86.34%

Table 30 Performance evaluation results with multi-modal signal fusions for five-class sleep staging using PB-CAPSDB

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Subject-wise Wake 97.33% 92.46% 87.42% 89.87%

N1 96.90% 86.62% 92.49% 89.46%

N2 94.97% 91.50% 88.41% 89.93%

N3 97.77% 93.72% 96.29% 94.99%

REM 96.46% 92.22% 93.22% 92.72%

Overall 96.69% 91.30% 91.57% 91.39%
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Analysis of sleep staging classification performance using 
single-channel and multi-modal signals fusions
This analysis was done through the same three data-
sets in both the testing procedures (epoch-wise and 
subject-wise).

The overall accuracy performance for 2C to 5C classifi-
cation problems using individual and multi-modal signal 

fusions using the epoch-wise testing method is shown in 
Figs.  6, 7, and 8. Similarly, the reported graph perfor-
mance results using subject-wise testing procedures are 
shown in Figs. 9, 10, and 11 with ISRUC-SG1, S-EDF, and 
PB-CAPSDB, respectively. It has been noticed from the 
above presented graphical results that the overall accu-
racy performances are improved with combinations of the 

Table 31 Performance evaluation results with multi-modal signal fusions for five-class sleep staging us-ing PB-CAPSDB

Testing Schemes Sleep Stages Accuracy Sensitivity Precision F1-Score

Subject-wise Wake 96.10% 94.32% 95.29% 94.80%

N1 90.90% 51.03% 63.45% 56.57%

N2 95.24% 91.34% 96.28% 93.75%

N3 97.97% 91.94% 83.09% 87.29%

REM 93.76% 77.16% 78.99% 78.07%

Overall 94.79% 81.16% 83.42% 82.10%

Table 32 Average overall accuracy and Cohen’s kappa score with top 12 selected features for ISRUC-SG1, S-EDF, and PB-CAPSDB 
scored according to AASM guidelines using subject-wise testing procedures

Testing Schemes Performance metrics Dataset Signals 5C 4C 3C 2C
(%) (%) (%) (%)

Subject-wise Overall
Accuracy

ISRUC-SG1 EEG + EOG + EMG 91.37% 94.42% 96.89% 98.23%

S-EDF 91.08% 93.91% 96.19% 97.91%

PB-CAPSD 91.55% 93.07% 95.91% 97.05%

S-EDF-78 94.79% 95.05% 97.23% 98.10%

Cohen’s kappa
coefficient

ISRUC-SG1 EEG + EOG + EMG 0.89 0.92 0.95 0.98

S-EDF 0.87 0.91 0.94 0.97

PB-CAPSD 0.89 0.91 0.92 0.97

S = EDF-78 0.90 0.91 0.92 0.97

Fig. 6 The overall accuracies performances of two-five sleep stages classification with ISRUC-SG1 dataset
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multi-modal signals incomparable to the individual signal 
performances with both the testing procedures irrespective 
of the obtained dataset in this study.

Discussion
Several studies on sleep staging methods were gener-
ally focused upon the classification methods [16–40]. 
Some of the sleep studies were based on traditional 
time–frequency analysis using machine learning tech-
niques [20–33], and the deep learning techniques [34, 

37, 39, 40, 51, 55–64]. Generally, during the sleep stud-
ies, several kinds of signals were recorded for analyzing 
the changes in sleep characteristics during sleep. Gener-
ally, it is preferable and advantageous for considering the 
multi-modal of signal fusions during sleep quality assess-
ment incomparable to the individual signals [65–79]. By 
the experiments results using both the testing schemes 
(epoch-wise and subject-wise), it is concluded that the 
multi-modal of signal fusions can be discriminating the 
sleep stages by AdaBoost with base classifier as RF in 

Fig. 7 The overall accuracies performances of two-five sleep stages classification with the S-EDF dataset

Fig. 8 The overall accuracies performances of two-five sleep stages classification with ISRUC-SG1 dataset
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acceptable level. Therefore, this proposed methodol-
ogy is much more effective than other machine learn-
ing models. The effectiveness of the multi-modal of 
signals using epoch-wise and subject-wise testing dur-
ing sleep staging was illustrated in Tables  23 and 32, 
respectively. The sleep staging accuracy performances 
for two-five sleep classes’ problems using individual and 
multi-modal signal fusions were illustrated in Figs. 6, 7, 
8 and Figs.  9, 10, 11 based on epoch-wise and subject-
wise testing, respectively. More specifically, the proposed 
multi-modal signal fusions (EEG + EOG + EMG) contain 
valuable information regarding changes in sleep charac-
teristics during sleep periods. EEG signals capture the 
brain’s information and its activities during sleep, and it 

also helps to study the changes in rhythm (alpha, delta, 
theta, and beta) during the different sleep stages [80–83]. 
Similarly, the EOG recorded the eye movement informa-
tion, recognizing the W and REM stages [84–86]. EMG 
signals obtained information about muscular activity, 
and it has been found that the higher muscular behavior 
seen during the W stage is incomparable to REM stages. 
This information helps to discriminate the W and REM 
stages properly. Therefore, three modalities of signal 
fusions (EEG + EOG + EMG) signals to help discriminate 
the NREM sleep stages (N1, N2, and N3) and extracted 
multi-modal signal features that support discriminating 
the sleep status in the various aspect, which directly con-
tributes to the improvement on sleep staging accuracy 

Fig. 9 Overall accuracies performances of two-five sleep stages classification are compared between using single-channel and multi-modal 
of signals fusions using subject-wise testing procedures with ISRUC-SG1 dataset

Fig. 10 Overall accuracies performances of two-five sleep stages classification are compared in between using single-channel and multi-modal 
of signals fusions using subject-wise testing procedures with S-EDF dataset
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[59–65]. The proposed study investigated 63 features 
(time-domain, frequency-domain, and non-linear fea-
tures) from the polysomnography signals’ three modali-
ties (EEG, EOG, and EMG).The selected joint optimal 
features were applied to the proposed classification 
model (AdaBoost with RF). For measuring the proposed 
methodology’s effectiveness, both the testing proce-
dures (epoch-wise and subject-wise) were adopted in our 
experiments. The present study was performed on three 
widely used datasets such as ISRUC-SG1, S-EDF, and 

PB-CAPSDB to analyze the effectiveness of the proposed 
methodology.

The required recordings were retrieved from the sub-
jects who had difficulty sleeping and subjects with com-
plete healthy control. To see the effectiveness of the sleep 
staging performance, the classification results provided 
by the proposed model(automatically) and manual stag-
ing are shown in Figs. 12, 13, and 14, where the hypno-
grams of ISRUC-Sleep-SG1, S-EDF, and PB-CAPSDB 
datasets are utilized.

Fig. 11 Overall accuracies performances of two-five sleep stages classification are compared between using single-channel and multi-modal 
signals fusions using subject-wise testing procedures with the PB-CAPSDB dataset

Fig. 12 Comparison of hypnogram annotation of manual sleep staging (blue) and proposed sleep staging method (red) with ISRUC-SG1 dataset

Fig. 13 Comparison of hypnogram annotation of manual sleep staging (blue) and proposed sleep staging method (dark red) with S-EDF dataset
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However, there are some limitations to this study. Our 
study has certain constraints. Initially, we exclusively 
utilized physiological signals from PSG for sleep stage 
classification, yet sleep stages are also associated with 
additional features of the human body. Certain diseases 
can impact sleep stage classification. To enhance accu-
racy and provide a more comprehensive evaluation of 
sleep stages, we plan to extract information pertaining 
to sleep quality from electronic medical records in future 
research. Secondly, to address the challenge of minority 
classification in sleep stages, we will explore the imple-
mentation of data augmentation strategies to generate 
new sequences of sleep stages. Another limitation is that 
the utilization of a more varied array of machine learning 
models was not feasible for the experiments. Addition-
ally, the optimization during the sleep stages phase was 
time-consuming due to the adoption of ReF, a method 
that systematically removes features one by one to con-
firm performance.

Complexity comparison with other approaches
Many researchers have proposed two to five sleep state 
classification problems so far. For measuring the effec-
tiveness of our proposed methodology during sleep 
staging, very brief comparisons were made with the 
existing state-of-the-art sleep staging methods with 
other state-of-the-art models. Figures  12, 13 and 14 
illustrates the comparison between labels manually 
acquired by sleep experts and those predicted by the 
proposed method using one-night data records. Fig-
ures 12, 13 and 14 depicts the sleep data, revealing that 
the subject experienced approximately 6  h of effective 
sleep time. The individual entered a deep sleep phase 
shortly after initially falling asleep. Despite numerous 
instances of waking up during the sleep period, the sub-
ject promptly transitioned back into a sleep state after 
each awakening. We also compared the results with the 
latest published research works like LGSleepNet [5] 
SleepEEGNet [79], TinySleepNet [87], XSleepNet [88], 

CoSleepNet [89], SSleepNet [90], and RobustSleepNet 
[91] based on the multi-modal signal fusions and the 
same dataset. As observed in Tables 33, 34, and 35, our 
proposed sleep staging classification method has dem-
onstrated superior performance compared to other 
methods across three datasets. From the comparison 
analysis, it has been found that the proposed multi-
modal signal fusions performed high sleep staging clas-
sification accuracy. The reported overall accuracy and 
Cohen’s kappa score reported as 94.30%,0.92 (using 
ISRUC-SG1),94.18%,0.90 (using S-EDF), 92.34%,0.90 
(using PB-CAPSDB) for five-class (5C) classifica-
tion problem using epoch-wise analysis. Similarly, the 
same proposed model reported as 91.37%, 0.89 (using 
ISRUC-SG1), 91.08%, 0.87 (S-EDF), 91.55%, 0.89 (PB-
CAPSD) using subject-wise analysis. Tables  23 and 32 
demonstrate that the kappa score surpasses 0.80 using 

Fig. 14 Comparison of hypnogram annotation of manual sleep staging (green) and proposed sleep staging method (purple) with PB-CAPSDB 
dataset

Table 33 Performance evaluation results in between proposed 
studies with state-of-the-art based upon the signals used

Reference/Year Methods Accuracy

Ref [31], 2018 EEG + EOG + EMG 80.07%

Ref [66], 2018 73.28%

Ref [67], 2019 92.09%

Ref [68], 2019 91.22%

Ref [84], 2022 90.60%

Ref [85], 2023 89%

Ref [86], 2023 90.21%

Ref [88], 2021
XSleepNet

81.1%

Ref [91], 2021
RobustSleepNet

78.2%

Proposed
Study
(Epoch-wise
Testing)

EEG + EOG + EMG + 
AdaBoost with RF

94.30%
94.18%
92.34%

Proposed
Study
(Subject-wise
Testing)

91.37%
91.08%
91.55%
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Table 34 Performance comparisons based on the dataset obtained for the experiment

Authors Datasets Epoch Number Data Selection Method CT-5 (%)

Hassan et al. 2016 Ref [2] S-EDF 15188 10-Fold EMD + Ensemble methods 90.11%

Rahman, M. M 2017 Ref [22] Sleep-EDF 15139 10-Fold DWT + RusBoosting 91.13%

Hassan et al. 2017 Ref [63] S-EDF 15188 10-Fold EEMD + RUSBoost 83.49%

Zhou, J.et al. 2020 Ref [68] S-EDF 15170 5-Fold Stacked ensemble layer 91.8%

Zhou, J.et al. 2020 Ref [69] 15170 10-Fold TLCNN-DF 93.58%

Satapathy, S. K. et al. 2021 Ref [70] 15139 5-Fold Ensemble stacking model 91.10%

Satapathy, S. K. et al. 2021 Ref [71] 15,139 5-Fold Ensemble 91.70%

Huang Zuo et al., 2022 Ref [72] 15188 10-Fold Bagging Classifier 90.66%

Huafeng Wang et al., 2022 Ref [84] 15199 20-Fold MSDNN + 1D-CNN 91.74%

Mousavi S, 2019 (SleepEEGNet) Ref [79] 42,308 10-Fold Deep convolutional neural networks 84.26%

Weijia Yang et al., 023 Ref [87] TinySleepNet 44220 10-Fold Deep Neural Model 85.4%

Xingfeng Lv et al., 2023 Ref [90] SSleepNet 42,308 10-Fold Multi-scale feature extraction + Struc-
tured learning module

84.6%

Proposed Study (Epoch-wise Testing) ISRUC-SG1
S-EDF
PB-CAPSDB

16266
15139
6047

10-Fold EEG + EOG + EMG + 
AdaBoost with RF

94.30%
94.18%
92.34%

Proposed Study (Subject-wise Testing) ISRUC-SG1
S-EDF
PB-CAPSDB

16266
15139
6047

10-Fold EEG + EOG + EMG + 
AdaBoost with RF

91.37%
91.08%
91.55%

Table 35 Performance of ADB + RF model compared with the existing literature based on subject-dependent and subject-
independent testing

Authors Epoch Number Validation Classifier CT-5 (%)

Subject‑Dependent Test (Epoch‑wise Test)
 Ref [26], 2019 127512 70%15%15% 1D-CNN 90.5%

 Ref [31], 2020 104368 10-Fold Bagged Trees 92.5%

 Ref [73], 2020 62177 70%,10%,20% CNN 83.3%

 Ref [74], 2019 36972 10-Fold HMM + RF 92.6%

 Ref [75], 2021 1,139 20-Fold TCNN + CRF 85.4%

 Ref [76], 2017 106376 10-Fold RF 91.5%

Subject‑Independent Test (Subject‑wise Test)
 Ref [29], 2019 40100 LOSO

50%-holdout
HMM + RF 81.2%

80.5%

 Ref [68], 2020 42269 LOSO ABNN + CNN 82.8%

 Ref [77], 2021 81558 LOSO RUSBoost 92.2%

 Ref [78], 2017 41950 20-Fold CNN + BLSTM 79.8%

 Ref [79], 2019 42308 20-Fold BiRNN + EDNA 82.8%

 Ref [80], 2019 41950 LOSO BLSTM + WDBN 85.5%

 Ref [81], 2016 37022 20-Fold CNN 74.8%

 Ref [82], 2018 46236 LOSO SVM-ARNN 82.5%

 Ref [83], 2021 42308 20-Fold HMM + CNN 84%

 Ref [89], 2023
CoSleepNet

15139 10-Fold Hybrid neural network architecture 87.11%

Proposed Study
(Epoch-wise Testing)

16266 10-Fold EEG + EOG + EMG + AdaBoost with RF 94.30%
15139 94.18%
6047 92.34%

Proposed Study
(Subject-wise Testing)

16266 10-Fold EEG + EOG + EMG + AdaBoost with RF 91.37%
15139 91.08%
6047 91.55%
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both testing procedures, indicating excellent agree-
ment between manual and automatic scoring.Generally, 
in sleep staging, it’s quite complicated and challenging 
towards discriminating between the N1 stage because 
it is the transition stage in between the Wake stage and 
the N2 stage. But it is noticed that the performance of 
the SEN-N1 stage is improved using subject-wise anal-
ysis with ISRUC-SG1 (93.18%), S-EDF (66.95%), and 
PB-CAPSDB (86.62%) incomparable to result reported 
using epoch-wise testing.

Computation time analysis
Another crucial factor for assessing a classifier is the 
computation time, although the training time is not 
taken into account during this analysis. During the ini-
tial phase, the computation time for each stage of the 
proposed ADB + RF method is logged, followed by the 
computation of the average value. The time consump-
tion in seconds at various stages of the proposed scheme 
over Sleep-EDF is as follows: For each recorded signal, 
the computation time for feature extraction is 0.018  s, 
for feature reduction is 0.005  s, and for classification is 
0.0013 s. The overall computation time for 3000 epochs 
is approximately 7  min, which is considered sufficiently 
fast to meet real-time requirements. Feature extraction 
is recognized to be more time-consuming, suggesting 
potential for optimization. Nevertheless, by utilizing only 
the top 12 features per epoch, not only are storage costs 
reduced, but calculations are also simplified and scheme 
surpasses other comparable methods in terms of feature 
usage and accuracy.

Conclusion
Accurate and effective sleep staging is highly important 
step for analysis and identifying the sleep irregulari-
ties. To develop a highly accurate and robust automatic 
sleep staging system, this paper presents a computer-
aided sleep staging system capable of classifying two to 
five sleep states using multimodal signal fusion of poly-
somnography (PSG) signals following the AASM sleep 
scoring guidelines. The proposed approach involves 
extracting multiple features, including time-based, 
frequency-based, statistical-based, entropy-based, and 
non-linear features, from three modalities (EEG, EOG, 
and EMG) of PSG signals. The model is evaluated on 
three widely accepted datasets: ISRUC-SG1, S-EDF, and 
PB-CAPSDB. These datasets include sleep recordings 
from subjects affected by various types of sleep-related 
disorders as well as healthy control subjects, totaling 
16,266 epochs (ISRUC-SG1), 15,139 epochs (S-EDF), 
and 6,047 epochs (PB-CAPSDB) of 30-s length each. In 

this study, the chosen optimal features are inputted into 
highly robust, adaptable, and scalable classifiers such as 
AdaBoost with Random Forest as base classifiers. This 
approach directly contributes to enhancing classifica-
tion accuracy. The entire experiments of this study were 
conducted through two testing procedures, epoch-wise 
and subject-wise. From the experimental results, it has 
been observed that the proposed methodology using 
multi-modal signal fusions is superior to other machine 
learning classification models with overall accuracies 
of 98.39%,97.21%,95.67%, and 94.30% using ISRUC-
SG1, 98.10%, 97.02%, 95.09%, and 94.18% using S-EDF, 
97.79%,96.69%,94.89% and 92.34% using PB-CAPSDB 
and 98.12%,97.01%,94.49% and 95.38% using S-EDF-78 
for two-five classes respectively. Further, the proposed 
model reported accuracies of 98.23%, 96.89%, 94.42%, 
and 91.37% using ISRUC-SG1, 97.95%, 95.91%, 93.07% 
and 91.08% using S-EDF, 97.05%, 95.91%, 93.07%, and 
91.55% using PB-CAPSDB and 98.10%,97.13%, 95.05%, 
and 94.79% using S-EDF-78 for two-five classes respec-
tively. We will extend our proposed work by integrating 
with different physiological signals, which can help us 
to detect more than one different type of sleep disorder 
simultaneously.
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