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Abstract 

Background Machine learning (ML) classifiers are increasingly used for predicting cardiovascular disease (CVD) 
and related risk factors using omics data, although these outcomes often exhibit categorical nature and class imbal-
ances. However, little is known about which ML classifier, omics data, or upstream dimension reduction strategy 
has the strongest influence on prediction quality in such settings. Our study aimed to illustrate and compare different 
machine learning strategies to predict CVD risk factors under different scenarios.

Methods We compared the use of six ML classifiers in predicting CVD risk factors using blood-derived metabolomics, 
epigenetics and transcriptomics data. Upstream omic dimension reduction was performed using either unsuper-
vised or semi-supervised autoencoders, whose downstream ML classifier performance we compared. CVD risk factors 
included systolic and diastolic blood pressure measurements and ultrasound-based biomarkers of left ventricular 
diastolic dysfunction (LVDD; E/e’ ratio, E/A ratio, LAVI) collected from 1,249 Finnish participants, of which 80% were 
used for model fitting. We predicted individuals with low, high or average levels of CVD risk factors, the latter class 
being the most common. We constructed multi-omic predictions using a meta-learner that weighted single-omic 
predictions. Model performance comparisons were based on the F1 score. Finally, we investigated whether learned 
omic representations from pre-trained semi-supervised autoencoders could improve outcome prediction in an exter-
nal cohort using transfer learning.

Results Depending on the ML classifier or omic used, the quality of single-omic predictions varied. Multi-omics pre-
dictions outperformed single-omics predictions in most cases, particularly in the prediction of individuals with high 
or low CVD risk factor levels. Semi-supervised autoencoders improved downstream predictions compared to the use 
of unsupervised autoencoders. In addition, median gains in Area Under the Curve by transfer learning compared 
to modelling from scratch ranged from 0.09 to 0.14 and 0.07 to 0.11 units for transcriptomic and metabolomic data, 
respectively.
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Conclusions By illustrating the use of different machine learning strategies in different scenarios, our study provides 
a platform for researchers to evaluate how the choice of omics, ML classifiers, and dimension reduction can influence 
the quality of CVD risk factor predictions.

Keywords Multi-omics, Autoencoders, Meta-learners, Cardiovascular disease, Blood pressure, Hypertension, Diastolic 
function, Imbalanced design, Predictions

Background
Cardiovascular disease (CVD) is one of the leading 
causes of death in the world and its prevalence has been 
increasing globally over the past three decades [1]. Sub-
stantial genetic components associated with CVDs have 
been identified [2, 3], but the linking of knowledge gained 
at different molecular levels remains incomplete. The 
use of integrative modelling in genomic studies, com-
monly referred to as multi-omics modelling, has broad 
but still largely unrealised potential for both the diagno-
sis and discovery of the aetiology of CVD [4, 5]. Interest 
in studying risk factors for CVDs has also increased, as 
generating multi-omic data in observational cohorts with 
a sufficient number of CVD cases can be challenging. In 
addition, a large number of CVDs share common risk 
factors that can be easily measured non-invasively, such 
as blood pressure. A deeper understanding of CVD risk 
factors and, for example, which omic layers best predict 
individuals at increased risk, would enable the better 
identification of individuals at risk for future cardiovas-
cular outcomes.

The integration of omics data into multimodal model-
ling is a rapidly expanding area of research whose (dis)
advantages over single-omics approaches have already 
been discussed [6], despite its relatively modest utiliza-
tion in cardiovascular research [7, 8]. The complexity of 
multi-omics approaches may cause challenges at meth-
odological level (e.g. omics pre-processing, small sample 
sizes, imbalanced study designs, high dimensions) and 
restrict the replicability of multi-omics models. The use 
of integrative strategies may also raise additional chal-
lenges in predictive settings, such as balancing model 
interpretability and model performance: the search for 
a high predictive performance often leads to the use of 
advanced methods (e.g. deep learning) for which the 
model interpretation is difficult. Multimodal models suit-
able for multi-omic data have been extensively developed 
to address at least some of these challenges. A wide vari-
ety of models have emerged, depending on the use of dif-
ferent statistical methods and theories (e.g., Bayesian or 
graph) [9], some of them being extensions of well-known 
machine learning classifiers such as random forests [10].

To reduce omic dimensions, the use of autoencod-
ers (AEs) has progressively been adapted to the integra-
tion of multimodal data [11–13]. These neural networks 

reduce the dimensions of omics data by linearly or non-
linearly encoding them into lower-dimensional subspaces 
which can, in the case of several omics, be concatenated 
or pre-trained separately before integration [14, 15]. 
When models are trained separately for each omic and 
the resulting predictions are later weighted to produce 
a meta-prediction (or multi-omic prediction), such a 
design is said to be late integrative. While autoencoding 
is often used in an unsupervised manner, it is possible to 
supervise the dimension reduction so that the encoded 
data is expected to have a higher predictive potential. 
One problem with AEs is the difficulty in assessing vari-
able importance in reducing dimensions, in contrast to 
principal component analysis (PCA), where loading fac-
tors are easy to consult. Assessing variable importance 
in semi-supervised autoencoders could, yet, identify 
variables that are useful for summarizing the data into 
lower dimensions, but also have high predictive potential. 
Overall, the benefits of AE approaches are still largely 
unknown in CVD research, as are the advantages of 
multi-omics over single-omics approaches for predictive 
purposes. A key to late-integrative modelling for CVD 
research is to assess the predictive performance of each 
encoded omic to be integrated, as well as which ML clas-
sifier can best predict CVD or CVD risk factors from 
these data, and whether supervising AEs allows for better 
downstream predictions.

The main goal of our study was to illustrate different 
machine learning strategies for predicting risk factors 
under different scenarios, by using CVD  risk factors 
as an example. We sought to investigate the perfor-
mance of omics data, ML classifiers and autoencoders 
in predicting individuals with relatively high, low or 
average CVD biomarker levels, which may reflect indi-
viduals potentially at risk and/or protected from CVD 
(Fig.  1). In addition, we sought to 1) examinate model 
interpretability in semi-supervised autoencoders to 
identify which omic factors contributed the most to 
dimension reduction, 2) investigate in which scenarios 
late-integrative multi-omic modelling outperforms 
single-omic modelling in predicting CVD risk factors, 
and 3) explore whether transfer of omic representa-
tions acquired by semi-supervised autoencoders could 
improve CVD risk factor prediction in an external 
cohort. To this end, five CVD-related variables were 
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studied: systolic blood pressure (SBP), diastolic blood 
pressure (DBP), and three biomarkers of left ventricu-
lar diastolic dysfunction (LVDD) derived from ultra-
sound. The joint analysis of blood pressure and LVDD 
biomarkers was aimed at extending recent multi-omics 
studies of blood pressure [16, 17], as diastolic dysfunc-
tion and development of heart failure are cardiac com-
plications of high blood pressure [18].

Material and methods
Cohorts
The Young Finns Study (YFS) is a Finnish prospective ini-
tiative that aims to address the multidisciplinary levers 
underlying cardiovascular disease [19]. From this cohort, 
different levels of blood-derived omics data, namely 
transcriptomic, metabolomic, and epigenetic, were col-
lected during 2011 follow-up for up to 1,650 individuals. 

Fig. 1 Study pipeline for prediction of individuals with high, low or moderate CVD risk factor values. The study aimed to predict individuals within 3 
classes, called 1-sd classes, corresponding to classes of individuals with high, low or moderate CVD risk factor values. CVD risk factors included 
systolic blood pressure, diastolic blood pressure and three ultrasound-based left ventricular biomarkers. First, the omics data were dimensionally 
reduced using either pre-filtering or autoencoders, the latter being unsupervised (USAE) or semi-supervised (SSAE). Subsequently, individuals 
from the test sample were predicted to belong to 1-sd classes at the scale of each encoded omics using different machine learning classifiers. 
Finally, multi-omic predictions were constructed using a meta-learner: View Correlation Discovery Networks (VCDNs). Multi-omic predictions were 
constructed by weighting single-omic predictions using VCDNs in the training sample, and predictions in the test sample were then generated
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Participants expressed consent for data collection and 
use, and the study protocol was conducted accord-
ing to the guidelines of the Declaration of Helsinki and 
approved by the relevant ethics committees. Epigenetic 
DNA methylation data were quantified using Illumina 
EPIC array, from which pre-processing has been detailed 
elsewhere [16, 20] and beta values were computed. Tran-
scriptomic data were collected using Illumina microarray 
technology, and pre-processed [21, 22] resulting in a total 
of 19,644 initial probes. Metabolomic data were obtained 
by high-throughput Nuclear Magnetic Resonance (NMR) 
platform [23, 24]. Four individuals were excluded because 
three of them had more than 40% missing metabolomic 
data, and one had inconsistent metabolomic measure-
ments. The metabolomic dataset comprised 228 metabo-
lites and was pre-processed as detailed elsewhere [16]. In 
addition to the multilevel omics data, age, sex, and BMI 
were included as covariates.

Two types of CVD biomarkers were studied, namely 
LVDD biomarkers and blood pressure measurements, as 
LVDD and high blood pressure are risk factors of CVD 
[25–29]. The former were measured from medical ultra-
sound imaging [30, 31] and consisted of the mitral peak 
velocity of early filling to early diastolic mitral annular 

velocity (E/e’ ratio), the ratio of the early to late ventric-
ular filling velocities (E/A ratio), and Left Atrial Volume 
Index (LAVI). Systolic and diastolic blood pressure were 
measured in the sitting position after a 5-min rest using 
a random zero sphygmomanometer. Only participants 
for whom the full set of omics data and CVD biomark-
ers could be overlapped were retained, resulting in a 
total sample of 1,249 participants with an average age of 
42 years (Table 1) of whom 1,000 (~ 80% of the total) were 
used for model fitting, and the remaining 249 for testing.

To investigate the value of transferring pre-trained 
autoencoders to perform a different task within an exter-
nal cohort, we conducted additional analyses. A total of 
310 participants, corresponding to 155 complete twin 
pairs targeted for blood pressure discordance, were 
drawn from the elderly subcohort of the Finnish twin 
cohort (FTC) [32]. This cohort was composed of partici-
pants with a mean age of 62.5 years and included a high 
proportion of hypertensive individuals (Table  1), con-
trasted with the YFS cohort representative of a 40-year-
old Finnish population. The target variables available 
were averaged systolic and diastolic blood pressure cor-
rected for medication use. The participants were classi-
fied as hypertensive if systolic blood pressure exceeded 

Table 1 Descriptive characteristics of participants in the training, test and external samples

Three samples were used in the study; a training sample used during model fitting, a test sample also derived from YFS and an external sample derived from FTC. 
YFS Young Finns Study, FTC Finnish Twin Cohort, sd standard deviation, SBP Systolic blood pressure, DBP Diastolic blood pressure, M Male, F Female.  X-1: 1-sd class of 
individuals deviating negatively by at least one sd from the mean.  X+1: 1-sd class of individuals deviating positively by at least one sd from the mean (i.e., individuals at 
risk).  X(-1,+1): 1-sd class of individuals within 1 sd from the mean

Cohort Sample Size Variable Mean (sd) 1-sd classes  (X-1/X(-1,+1)/X+1)

YFS Training 1000 SBP 119 ( 14.2) 15.8/69/15.2 (%)

DBP 75.2 ( 10.6) 14.5/69.2/16.3 (%)

E/e’ ratio 4.8 ( 1) 14.4/71.1/14.5 (%)

E/A ratio 1.5 ( 0.4) 11.7/73.7/14.6 (%)

LAVI 22.5 ( 6.6) 15.9/69/15.1 (%)

Age 41.6 ( 5.1)

Sex 53.8% (F)

BMI 26.4 ( 4.7)

YFS Test 249 SBP 119.6 ( 14.1) 14.5/68.7/16.9 (%)

DBP 75.1 ( 10.6) 16.5/67.1/16.5 (%)

E/e’ ratio 4.9 ( 1.1) 12.4/67.1/20.5 (%)

E/A ratio 1.5 ( 0.4) 12.9/72.7/14.5 (%)

LAVI 22.8 ( 6.4) 12.4/73.5/14.1 (%)

Age 41.6 ( 5)

Sex 53.4% (F)

BMI 26.8 ( 5.6)

FTC External 310 SBP 151.2 ( 20)

DBP 85.8 ( 11.8)

Age 62.5 ( 3.8)

Sex 58.1% (F)

BMI 27.5 ( 4.8)



Page 5 of 18Drouard et al. BMC Medical Informatics and Decision Making          (2024) 24:116  

140  mmHg and if diastolic blood pressure exceeded 
90  mmHg; the other participants were considered con-
trols. In this cohort, transcriptomic (Microarray) and 
metabolomic (NMR) data were also used with independ-
ent pre-processing detailed elsewhere [16].

Single-omics encoding methodology
Data processing
The set of target variables consisted of five quantitative 
measures: SBP, DBP, E/e’ ratio, E/A ratio, and LAVI. Dur-
ing autoencoding, these five variables were adjusted for 
age, sex, and body mass index (BMI) and used in their 
residual form; they were kept unchanged otherwise. Such 
adjustments were made to ensure that the metabolomic 
and transcriptomic subspaces did not learn a represen-
tation dependent on age, sex, or BMI. Target variables 
were standardized so that an increase of one unit meant a 
divergence of one standard deviation.

Additional variable filtering was performed for tran-
scriptomic and methylation data, for which the initial 
number of variables was large. The transcriptomic vari-
ables were filtered so that, within the training sample, 
each selected variable verified one of the following two 
criteria: 1) the variable was correlated with at least one of 
the two adjusted blood pressure variables (p-value < 0.05, 
Pearson correlation nullity test), or 2) the variable was 
correlated with at least one adjusted LVDD biomarker 
(p-value < 0.05, Pearson correlation nullity test) and had 
a variance greater than 0.01. This filtering resulted in a 
selection of 5,842 probes. Methylation data were filtered 
by selecting replicated CpG sites from hypertension and 
CVD literature [33–35], resulting in a set of 75 CpG sites 
known to be associated with coronary heart disease, 
myocardial infarction, type-II diabetes, SBP and DBP. 
The set of metabolomic variables remained unfiltered.

Transcriptomic variables were scaled for model fitting 
using a minmax transformation, defined as minmax: u ↦ 
(u—minu)/  (maxu—minu), where  minu and  maxu denoted 
the minimum and maximum of the variable u in the 
training sample, respectively. Metabolomics data were 
standardized. The transcriptomic and metabolomic vari-
ables in the test sample were scaled from the respective 
maxima, minima, means, and standard deviation calcu-
lated in the training sample. Epigenetic variables were 
preserved in their beta-value format as no dimension 
reduction was performed on this omic.

Autoencoder architecture and semi‑supervision
In order for the AE to learn to extract useful features for 
representing the omics data, we repeatedly corrupted the 
input metabolomic and transcriptomic data and used 
the AE to reconstruct the original data. The corruption 
consisted of adding Gaussian noise to each variable, with 

standard deviation 0.01 for the transcriptomic data and 
0.1 for the metabolomic data, corresponding to about 
one-tenth of the mean standard deviations of the tran-
scriptomic and metabolomic variables, respectively.

To force the dimension reduction to be optimal for pre-
dicting the target variables, we constrained the encod-
ing to learn to predict the target variables in addition 
to reconstructing the original omics data from the cor-
rupted omics data [36]. In order to perform such a task, 
we designed a Semi-Supervised Autoencoder (SSAE) 
which consisted of the junction of a classical AE to 
which a 1-layer perceptron (1LP) was grafted (Fig.  2). 
The encoder part was composed of a single hidden layer 
of dimension p, connected to the bottleneck layer of tar-
geted dimension l. The decoder had a symmetric struc-
ture, featuring a hidden layer of dimension p. The 1LP 
inherited the bottleneck layer and was connected to a 
hidden layer of the same dimension. The last layer of the 
decoder and the 1LP were linearly activated to recon-
struct the z-scored variables. Other layers were activated 
with a Leaky Rectified Linear Unit (LeakyReLU) func-
tion [37], defined as the identity function if the input u is 
positive, and au otherwise where a is a real number. This 
form differs from the uncorrected ReLU [38] activation 
function (a = 0) in that it avoids the dying neuron prob-
lem in addition to vanishing gradients that may occur. A 
dropout regularization was also used on the first layer at 
a rate r. This constraint resulted in a random inactivation 
of units at a rate r and ensured that the input units were 
not codependent, thus limiting overfitting [39, 40].

In contrast to the use of PCA, there is no unilateral 
decision rule to determine the size of the autoencoder-
derived subspace: its size may depend on multiple 
parameters (e.g., the number of layers, the number of 
neurons, etc.). The choice of these parameters is usually 
guided by the reconstruction quality of the AE, based on 
metrics such as the Mean Square Error (MSE). While a 
classical AE focuses mainly on the reconstruction quality 
of the input, based for example on a metric such as MSE, 
we wanted SSAE to force the encoding to also take into 
account the matrix of target variables. We translated this 
constraint into a bi-output cost function, defined as

where L(u, v) = ∥u − v∥2 is a MSE-type loss function, α is 
a convexity parameter, X the original data, X′ the recon-
structed input, Y the target matrix composed of z-scored 
blood pressure measurements and z-scored LVDD bio-
markers, and Y′ the reconstruction of Y from the 1LP. 
L(X, X′) and L(Y, Y′) therefore evaluate respectively the 
reconstruction quality of the corrupted input into the 

(1)LSSAE X, X
,

, Y, Y
′

= αL X, X
,

+ (1− α)L Y, Y
′
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original data X and the closeness of the predictions Y′ to 
Y.

Model fitting and evaluation of gains from semi‑supervision
We compared the single-omics SSAE model to a corre-
sponding unsupervised model to judge the suitability of 
our semi-supervised solution for reducing dimensions. 
This new model, called Unsupervised AE (USAE), had 
the same neural network structure as the SSAE model, 

but assigned zero weight to the supervised term of the 
cost function (i.e. α = 1). USAE can thus be seen as the 
autoencoder part of SSAE from which the 1LP has been 
cut out, and it was used to evaluate the value of having 
the semi-supervising term in the SSAE cost function. 
To ensure that the encoding performance of USAE was 
similar to SSAE, we trained USAE using the same con-
figurations. We also ensured that the reconstruction 
performance of USAE achieved the same reconstruc-
tion performance as SSAE, i.e. the same MSE. To do so, 

Fig. 2 Architecture of the semi-supervised autoencoder. The autoencoder (AE) architecture consisted of an input layer, a hidden layer, 
and a bottleneck layer corresponding to the subspace layer. A regularization dropout was added on the first layer and the inputs were corrupted 
with Gaussian noise. To this unsupervised AE (USAE) was grafted a 1-layer perceptron on the bottleneck layer to form the semi-supervised AE (SSAE)
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we stopped the USAE training phase once the MSE had 
reached that of the corresponding SSAE model. Thus, the 
subspaces derived from SSAE and USAE reconstructed 
the omics input equally well, but the former was expected 
to be a subspace with stronger predictive potential for the 
target variables than the latter at an equal reconstruction 
quality of the omics data.

The tuned hyperparameters were the number of neu-
rons on the hidden layer of the encoder (nh), the dropout 
rate (r), the size of the bottleneck layer (l), and the con-
vexity parameter (α). The values of r tested ranged from 
0.2 to 0.8 by 0.1, those of α from 0.1 to 0.9 by 0.1. Bot-
tleneck layer dimensions were tested starting from 10 by 
steps of 10 and from 1 by steps of 1 for transcriptomic 
and metabolomic data, respectively. The number of neu-
rons on the encoder hidden layer was varied from 25 by 
steps of 25 and from 5 by steps of 5 for transcriptomic 
and metabolomic data, respectively. Further tests were 
performed to capture possible performance gains using 
other activation functions and optimizers. Adam and 
LeakyReLU, coupled, showed good training performance; 
both were therefore kept.

Model fitting was performed using a batch size of 64 
and a learning rate of  10–3. A large decay rate of 0.9 was 
chosen, and higher values (0.95 to 0.99) did not show 
substantial differences in dimension reduction perfor-
mance from 0.9. One fifth of the training sample was 
used as a validation sample, consisting of 200 partici-
pants. The minimum number of epochs was set to 10 
for transcriptomic data and 6 for metabolomic data, 
and the training procedure was stopped using a mov-
ing average of window size of 10 and 6 on the validation 
cost function, respectively. Therefore, if the valida-
tion cost at a given epoch did not improve the average 
validation cost of the past window epochs, the proce-
dure stopped. The computation was performed with 
the Keras and Tensorflow modules on the R interface 
(https:// tenso rflow. rstud io. com/).

The best model for each omics was considered to be the 
one with the lowest number of parameters (bottleneck 
layer size and number of neurons) verifying the follow-
ing constraints: 1) the encoded subspace reconstructed 
the input X from the corrupted input Xδ with an MSE 
lower than 0.015 for transcriptomic data and 0.25 for 
metabolomic data, and 2) the average correlation within 
the subspace components should not exceed 0.4 for tran-
scriptomic data and 0.3 for metabolomic data. This pro-
cedure showed small differences in dimension reduction 
performance related to the r dropout rate on the cost 
function optimization; a moderate dropout rate r = 0.5 
was therefore selected for metabolomics and transcrip-
tomics data. The final and optimal architecture of the 
SSAE encoder consisted of 1) 150 neurons on the hidden 

layer and a bottleneck layer of size 50 for transcriptomic 
data, and 2) 55 neurons on the hidden layer and 6 neu-
rons on the bottleneck layer for metabolomic data. The α 
parameter was 0.9 in both cases.

Variable importance investigation
There are a variety of methods for estimating the impor-
tance of input variables in predicting an outcome within 
a neural network, but none is considered gold standard. 
We propose to use one of these methods, called the Con-
nection Weights (CW) algorithm, to estimate the impor-
tance of omics variables in SSAE modelling (Fig. 3a). This 
method, commonly referred to as the Olden method, 
computes the product of weights across layers of the 
neural network and has proven to be a reliable method 
for estimating variable importance [41]. This approach 
contrasts with Garson’s method in that the sign of the 
variables’ contributions are preserved in addition to their 
magnitude, and it is possible to adapt the CW algorithm 
to several layers [41].

In our SSAE modelling, the CW algorithm involved the 
weights of the encoder and 1LP layers. The importance of 
an input variable xi (i ∈ N) in reconstructing a continuous 
target outcome variable yj (j ∈ {1, 2, 3, 4, 5}) was referred 
to as RIxi(yj).

Single-, inter- and multi-omics predictive methodology
Classification of participants into 1‑sd classes
The YFS cohort is composed of relatively young partici-
pants and is expected to represent the general CVD risk 
profile of the Finnish population in that age group. The 
unadjusted blood pressure variables and biomarkers of 
LVDD were standardized, and each variable was classi-
fied into 3 classes (Table  1). The 3 classes were defined 
according to the participants’ distance from the training 
sample mean, with 1 standard deviation (sd) as the dis-
tance criterion. The three 1-standard deviation classes 
(1-sd classes) created for each target variable thus con-
sisted of 1) participants deviating negatively by at least 1 
sd from the mean, 2) participants deviating positively by 
at least 1 sd from the mean, and 3) participants within 1 
sd from the mean.

Predictive performance of omic subspaces
To evaluate the predictive performance of each omic sub-
space compared to the other omic subspaces but also to 
the unsupervised homologous subspace (via USAE), a 
panel of machine learning (ML) classifiers was used to 
predict 1-sd class membership from the  information on 
the bottleneck layer. These methods included random for-
ests, linear and nonlinear support vector machine (svm), 
linear discriminant analysis, a gradient boosting machine 
(GBM) model and a Multi-Layer Perceptron (1 hidden 

https://tensorflow.rstudio.com/
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layer). Each omic subspace was scaled and age, sex, and 
BMI were added for model training. The ML classifiers 
were all trained using the caret R package [42]. A five fold 
cross-validation was used during model fitting within the 
training sample to select the best performing model con-
figurations. The 1-sd class membership of each target 

variable was then predicted for the 249 participants in the 
test sample.

Due to the imbalanced design (Table  1), we used an 
F1 score, defined as the harmonic mean between pre-
cision and recall, where precision = TP/(TP + FP) and 
recall = TP/(TP + FN), with TP the number of true 
positives, FP the number of false negatives and FN the 

Fig. 3 Importance of transcriptomic variables in the reconstruction of blood pressure values and multi-method (cross-)omics performance 
for systolic blood pressure prediction. In semi-supervised autoencoder dimension reduction, the importance of adjusted variables was quantified 
using a CW algorithm. The replicated genes in the blood pressure literature have relatively high importance according to the importance values 
calculated for the other genes in the reconstruction of the adjusted blood variables (a). After the classification of the participants into 1-sd 
classes, a macro-F1 score, consisting of an unweighted average of 1-sd class specific F1 scores, was obtained for each omics and in a multi-omics 
configuration, obtained by meta-learning using VCDNs. The multi-omics predictions of the 1-sd classes of systolic blood pressure in the test sample 
were better compared to those obtained in single-omics configurations for 5 of the 6 classifiers used (b). This superiority was illustrated in particular 
in the ability of the multi-omics modelling to acquire good predictive performances within the imbalanced 1-sd classes, as shown with the support 
vector machines. The performances presented in b) are also available for the other target variables in the supplementary material. CW: Connection 
Weight; VCDN: View Correlation Discovery Networks
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number of false negatives. The value of using an F1 
score also lay in its ability to assign a specific F1 score 
to each class, which allowed us to observe which omics 
data best predicted a specific 1-sd class. A macro-aver-
aged F1 score, defined as an unweighted average of the 
three 1-sd class-specific F1 scores, was then used to 
describe the overall performance of each ML classifier. 
The use of the unweighted macro-averaged F1 score 
thus rewarded the ML models for predicting relatively 
well also the risk and protected 1-sd classes for which 
the numbers were smaller than the 1-sd class of partici-
pants close to the population mean.

Cross‑omics integration for multi‑omics prediction
An integrative multi-omics modelling aiming at combin-
ing single-omic subspace predictions (i.e. label spaces) 
was used to predict the 1-sd classes. For this purpose, 
we used View Correlation Discovery Networks (VCDNs) 
[43, 44]. Briefly, VCDNs exploit 1) inter-omics correla-
tions in the label space for classification tasks, and 2) the 
fact that some omics might better predict a 1-sd class, 
which incidentally can be assessed from F1 scores.

From a technical point of view, VCDN was defined 
as a fully connected neural network taking as input a 
rescaled Cross-omics Discovery Tensor (CoDT), as 
introduced elsewhere [44]. We built CoDTs from the 
1-sd class membership probabilities derived from each 
omic subspace and each ML classifier, for each target 
variable (Fig. 1). In this way, we derived for each omic 
subspace oi (i = 1, 2, 3) and for each individual k a ML 
classifier-specific vector ŷk(oi) ∈ [0,1]c having c = 3 
probability entries corresponding to the probabilities 
of belonging to the 1-sd classes of the considered tar-
get variable. Next, a CoDT was constructed such that 
each entry ei was defined as a product of three proba-
bilities ei = abc, where {a,b,c} was a combination of 1-sd 
class probabilities across the 3 omics. Thus, not only 
were the probabilities of belonging to the same classes 
subject to multiplication, but also the probabilities of 
belonging to different classes from different omics. The 
total number of combinations was therefore  33 = 27, 
corresponding de facto to the input size of the VCDN, 
to which a hidden layer of dimension c2 and an output 
layer of size c were added. For each target variable and 
each classifier, the layers were activated with LeakyRelU 
and VCDNs were trained under Adam optimizer. Once 
the VCDNs were trained, the label vectors of the test 
participants were predicted. The F1 score was used to 
evaluate the quality of the multi-omics predictions and 
compared to those obtained in single-omics settings.

Transfer learning to the external cohort
We predicted hypertensive individuals in the FTC by 
transferring the learning acquired from semi-super-
vised autoencoders trained on the YFS cohort (Fig. 5a). 
The modelling consisted of building a neural network 
inheriting the layers of the SSAE’s encoder part pre-
trained on the YFS, to which a task-specific hidden layer 
(Fig.  5b), a dropout regularization, and three clinical 
variables (sex, age, and BMI) were added (Fig.  5a). A 
proportion of FTC participants was used for fine-tun-
ing, having the function of adjusting the weights of the 
new, non-transferred layers; the remaining participants 
were used to assess the predictive performance of the 
model, measured from the AUC derived from the pre-
diction of hypertensive status. The AUC was calculated 
in participants in the FTC test subset by randomly dis-
tributing 20%, 40%, 60%, and 80% of the FTC partici-
pants for fine-tuning. The procedure was repeated 100 
times. A homologous clone model was created from 
scratch for comparison with the model based on trans-
fer learning. This clone model had the same structure as 
the model based on transfer learning, but did not inherit 
the initial weights; the first layers were trained using 
transcriptomic or metabolomic data. In both cases, 
model fitting was performed under the same conditions.

Results
Briefly, we intended to predict individuals deviating 
positively or negatively from at least one sd of the popu-
lation mean or being within 1sd from the mean, for five 
risk factor outcomes (Fig.  1). This led to three classes 
for each outcome, which we refer to as 1-sd classes. 
The membership of these classes was predicted in a test 
sample, and we compared the quality of predictions 
as a function of the ML classifier used, the encoded 
omics used, and whether the autoencoding was semi-
supervised or not. In addition, we investigated vari-
able importance in semi-supervised autoencoding of 
metabolomic and transcriptomic data. Multi-omic 
predictions were constructed using a meta-learner and 
compared to single-omic predictions, for each ML clas-
sifier. Finally, we transferred the omics representations 
learned by SSAE in the YFS cohort to another external 
cohort to investigate whether this would improve the 
identification of hypertensive participants compared to 
modeling from scratch.

Variable importance in semi-supervised encoding
We investigated the importance of the metabolomic 
and transcriptomic variables in reconstructing the CVD 
biomarkers values adjusted by sex, BMI and age (Fig. 2). 
To perform this task, the CW algorithm computed a 
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cross-product of the weights defined through the lay-
ers of the encoder and the 1LP grafted to the bottleneck 
layer.

The metabolomic features of highest absolute variable 
importance in the reconstruction of LVDD biomarker 
values were mainly lipids, cholesterol concentrations, 
lactate and citrate (Table 2). Branched-chain amino acids 
(BCAAs) were also prominent, both in reconstructing 
adjusted LVDD biomarker values and adjusted systolic 
blood pressure measurements. Fatty acids were also 
found to be variables of high importance. Metabolomic 
variables of highest ordered importance can be found in 
Table 2.

For transcriptomic data, genes reported in the litera-
ture as being associated with systolic and diastolic blood 
pressure were further studied [45, 46], as 16 probes 
could be found among the 5,842 transcriptomic vari-
ables. These reported genes included TPPP3, CRIP1, and 
TIPARP which were in the first and/or second percen-
tile of genes with the greatest absolute variable impor-
tance values in the reconstruction of adjusted systolic 
and diastolic blood pressure values. The mean absolute 
importance score of the reported transcriptomic vari-
ables corresponded to the 15th and 16th percentiles of 
the greatest absolute importance scores of SBP and DBP, 
respectively (Fig. 3a).

Single- and multi-omics predictive performance
Disparities in performance were observed depending on 
the ML classifiers applied to the encoded representations 
of omics data. The best classifiers at single-omics levels 
were the Multi-layer perceptron (MLP) and the GBM, for 

which the macro-F1 scores were the highest (Table  3). 
The linear and non-linear svm showed poor performance 
in predicting imbalanced classes of LVDD biomarkers 
(Supplementary material: Figure S1, S2, S3 and S4) as 
macro-F1 scores in the test subset were most often close 
to a naive classifier (naive classifier macro-F1 = 33.3% 
with a 15%/70%/15% design (Table 1)).

Predictions derived from metabolomic and transcrip-
tomic semi-supervised subspaces in the test subsample 
were at least as good as those obtained in unsupervised 
configurations in 76% of cases, all methods and tar-
get variables combined. Macro-F1 scores obtained in a 
semi-supervised setting were strictly better than those 
obtained in an unsupervised setting for transcriptomic 
data in 70% of the cases. The semi-supervised transcrip-
tomic subspaces strictly improved predictions of individ-
uals deviating more than 1 sd from the mean in 73% and 
60% of the cases, respectively. Macro-F1 scores of predic-
tions derived from SSAE-trained metabolomic subspaces 
outperformed USAE metabolomic predictions in half of 
the cases, and predictions were equal in a quarter of the 
cases. Predictions of individuals above or below 1 stand-
ard deviation from the mean were similar 40% and 46% 
of the time, respectively. However, when predictions were 
not equal, SSAE-trained metabolomic predictions out-
performed USAE metabolomic predictions more than 
two-thirds of the time.

Semi-supervision of the omic subspaces using SSAE 
thus, across all ML methods and target variables, 
improved predictive performance, notably by better pre-
dicting the imbalanced 1-sd classes. More information 

Table 2 Metabolomic variables with the highest absolute variable importance in the reconstruction of adjusted left ventricular 
dysfunction biomarker values and adjusted blood pressure values in semi-supervised autoencoding

The most important metabolomic variables in the reconstruction of adjusted CVD biomarker values included lipids, cholesterol concentrations but also branched-
chain amino acids, citrate and lactate. RI: Variable importance score obtained using Connection Weight algorithm. SBP Systolic blood pressure, DBP Diastolic blood 
pressure. E/e’ ratio: mitral peak velocity of early filling to early diastolic mitral annular velocity. E/A ratio: ratio of the early to late ventricular filling velocities, LAVI Left 
Atrial Volume Index, HDL High-density lipoprotein, VLDL Very-low-density lipoprotein

Target Variable importance (z-scored RI)

SBP Citrate (3.48); Free cholesterol to total lipids ratio in very small VLDL (-2.94); Total lipids in small HDL (2.83); Creatinine (-2.83); Acetate (-2.64); 
Glycine (-2.54); Saturated fatty acids (2.51); Cholesterol esters to total lipids ratio in very small VLDL (2.43); Valine (-2.37); Ratio of saturated 
fatty acids to total fatty acids (2.27)

DBP Lactate (3.65); Free cholesterol to total lipids ratio in very small VLDL (-3.51); Citrate (3.26); Creatinine (-2.59); Glycine (-2.43); Saturated fatty 
acids (2.26); Total lipids in small HDL (2.2); Pyruvate (2.15); Total cholesterol to total lipids ratio in medium VLDL (-2.15); Phospholipids in small 
HDL (2.07)

E/A ratio Lactate (-5.75); Pyruvate (-3.74); Creatinine (3.26); Citrate (-2.87); 3-hydroxybutyrate (-2.63); Omega-3 fatty acids (2.51); Free cholesterol 
to total lipids ratio in very small VLDL (2.36); Isoleucine (2.05); Cholesterol esters to total lipids ratio in very large HDL (1.92); Estimated degree 
of unsaturation (1.85)

E/e’ ratio Triglyceride Cholesterol esters to total lipids ratio in very small VLDL (-3.43); Citrate (-3.23); Total cholesterol to total lipids ratio in very small 
VLDL (-2.94); Total lipids ratio in small VLDL (2.41); Cholesterol esters in very small VLDL (-2.36); Pyruvate (2.35); Albumin (2.33); Leucine (2.24); 
Glucose (2.21); Valine (2.2)

LAVI Lactate (-6.00); Pyruvate (-4.36); Free cholesterol to total lipids ratio in small VLDL (2.57); Acetate (-2.55); Omega-3 fatty acids (2.42); Free cho-
lesterol to total lipids ratio in very small VLDL (2.08); Free cholesterol to total lipids ratio in medium VLDL (2.06); Free cholesterol to total lipids 
ratio in small HDL (2); Creatinine (1.96); Cholesterol esters in small VLDL (1.94)
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specific to each ML method or CVD biomarker can be 
found in Supplementary material, Fig. 3b and Fig. 4.

Multi-omics predictions derived from meta-learners 
(see Methods) outperformed single-omic predictive 
modelling in predicting 1-sd classes of blood pressure 
83% of the time; only MLPs showed no superiority of 
the multi-omics approach over those acquired in single-
omics configurations (Fig.  3b; Supplementary material: 
Figure S1, S2, S3 and S4). Among all classifiers, random 
forest had the best performance for multi-omics mod-
elling (Table  3). At the global scale, the multi-omics 
approach obtained the best macro-F1 scores in the test 
subsample except for SBP and E/A ratio, for which the 
metabolomics data (macro-F1 of 0.51 vs. 0.50 for multi-
omics) and the transcriptomics data (macro-F1 of 0.44 
vs. 0.38 for multi-omics) provided the best predictions, 
respectively. Interestingly, among the best classifiers of 
each target variable, the multi-omics approach obtained 
the worst predictions of the non-deviant 1-sd class indi-
viduals (within 1 sd of the mean) (Fig. 3b; Supplementary 
material: Figure S1, S2, S3 and S4) but best predicted 
individuals deviating by more than 1 sd from the mean 
(Fig. 4; Table 3).

As the multi-omics predictions (with random forest 
classifier) for membership in the 1-sd classes of blood 
pressure were found to be the best (Table 3), we investi-
gated the potential of using these predictions to explain 
the variation in blood pressure values. Therefore, we 
fitted univariate linear regressions and examined the 
coefficients of determination  R2. The predicted probabili-
ties of having a blood pressure greater than 1 sd of the 
mean explained, alone, 13.6% and 21.4% of the systolic 
and diastolic blood pressure variation in the test subset, 
respectively. The addition of the predictions of belong-
ing to the class of individuals deviating negatively from 
1 sd of the mean and of the three a priori clinical vari-
ables (age, sex, and BMI) ultimately explained 27.3% and 
32.0% of the variation in SBP and DBP in the test subset, 
respectively.

Transfer learning
One of the major challenges of multi-omics approaches 
is the externalization of models to cohorts 1) composed 
of individuals clinically different from those used dur-
ing the training phase, 2) for which omics preprocess-
ing and instrumentation were performed independently 

Table 3 Performance of the best single-omics and multi-omics machine learning model for each target variable in the test subset

ML classifier performance comparisons were based only on omics dimensionally reduced with semi-supervised autoencoders, except for the epigenetics domain 
where feature selection was performed instead. The blood pressure variables were the best predicted in the test sample. For each target variable, the best 1-sd class-
specific predictions for less represented classes and macro-F1 scores are highlighted in bold. F1(X-1): F1 score of the 1-sd class of individuals deviating negatively by at 
least one sd from the mean. F1(X+1): F1 score of the 1-sd class of individuals deviating positively by at least one sd from the mean (i.e., individuals at risk). F1(X(-1,+1)): 
F1 score of the 1-sd class of individuals within 1 sd from the mean. SBP Systolic blood pressure, DBP Diastolic blood pressure. E/e’ ratio: mitral peak velocity of early 
filling to early diastolic mitral annular velocity. E/A ratio: ratio of the early to late ventricular filling velocities. LAVI Left Atrial Volume Index, sd standard deviation, GBM 
Gradient Boosting Machine, MLP Multi-layer Perceptron, rf random forest

Target Model Omics F1(X-1) F1(X(-1,+1)) F1(X+1) macro-F1

DBP MLP Transcriptomics .22 .75 .42 .47

DBP MLP Metabolomics .16 .74 .51 .47

DBP GBM Methylation .12 .79 .32 .41

DBP rf Multi-omics .36 .68 .55 .53
SBP MLP Transcriptomics .25 .74 .38 .46

SBP MLP Metabolomics .35 .76 .41 .51
SBP MLP Methylation .31 .73 .36 .47

SBP rf Multi-omics .40 .66 .44 .50

E/A ratio GBM Transcriptomics .27 .83 .23 .44
E/A ratio GBM Metabolomics .05 .83 .26 .38

E/A ratio MLP Methylation .10 .82 .20 .37

E/A ratio MLP Multi-omics .05 .81 .28 .38

E/e’ ratio GBM Transcriptomics .14 .78 .27 .40

E/e’ ratio GBM Metabolomics .32 .77 .07 .39

E/e’ ratio MLP Methylation .19 .74 .15 .36

E/e’ ratio rf Multi-omics .29 .68 .32 .43
LAVI GBM Transcriptomics .05 .82 .10 .32

LAVI GBM Metabolomics .10 .81 .04 .32

LAVI MLP Methylation .04 .81 .14 .33

LAVI rf Multi-omics .31 .47 .25 .34
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Fig. 4 Performance of machine learning classifiers in predicting less represented classes from omics data in the test sample. 1-sd class F1 scores 
for predicting individuals above or below 1 standard deviation of the mean are shown for each machine learning classifier and omic data. ML 
classifiers were applied to dimension-reduced omic data from semi-supervised autoencoders, except for the epigenetics domain where feature 
selection was performed instead. Multi-omic predictions were constructed using a meta-learner for each ML classifier and CVD risk factor 
independently. Diastolic BP: Diastolic blood pressure. Systolic BP: Systolic blood pressure. E/e’ ratio: mitral peak velocity of early filling to early 
diastolic mitral annular velocity. E/A ratio: ratio of the early to late ventricular filling velocities. LAVI: Left Atrial Volume Index. sd: standard deviation
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or were different from those used during model fitting, 
resulting in batch effects, and 3) for which the predic-
tive objectives may differ. A solution to these issues 
can be found in transfer learning. We transferred the 
learning acquired in the YFS cohort (Fig.  5a), i.e., the 

pre-trained weights of the SSAE encoder layers, to pre-
dict hypertensive participants in an external cohort 
(Table  1) using unequal proportions of FTC partici-
pants to fine-tune the model (see Methods section).

Fig. 5 Replication by transfer learning for detection of hypertensive participants in the external Finnish Twin Cohort. The weights of the SSAE 
encoding layers pre-trained distinctly on the YFS metabolomic and transcriptomic data were transferred for the detection of FTC hypertensive 
individuals (a). To this pre-trained structure, a dropout regularization was added, and an additional layer with the function of learning a task-specific 
representation was added (b) and concatenated to three clinical variables: age, sex, and BMI. For metabolomic and transcriptomic data, 
the constructed neural network was refined by randomly selecting 20%, 40%, 60%, and 80% of the FTC sample. This was repeated 100 times, 
the AUC in the remaining test subsamples was calculated and compared to a cloned model not inheriting the pre-trained weights on the YFS data 
(c), i.e. having random weights and learning its task from scratch. SSAE: semi-supervised autoencoder. YFS: Young Finns Study. FTC: Finnish Twin 
Cohort. BMI: body mass index. AUC: area under the curve
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Regardless of whether 20%, 40%, 60%, or 80% of the FTC 
sample was taken for fine-tuning, the model with transfer-
inherited first layers outperformed the one constructed 
from scratch for both transcriptomic and metabolomic 
data (Fig. 5c). This superiority was reflected in a median 
gain in Area Under the Curve (AUC) in the test subsam-
ple ranging from 0.09 to 0.14 and 0.07 to 0.11 units for 
transcriptomic and metabolomic data, respectively, across 
all fine-tuning combinations. The median AUC obtained 
by transfer learning increased from 62.7% to 72.9% (resp. 
53.2% to 59.0% from scratch) and from 64.9% to 69.4% 
(resp. 57.1% to 62.8% from scratch) by increasing the fine-
tuning sample size from 20 to 80% for transcriptomic and 
metabolomic data, respectively. Increasing the fine-tuning 
sample therefore increased the median AUC from poor to 
moderate using transfer learning, and from very poor to 
poor when modelling from scratch.

The increase in median AUC as a function of fine-
tuning subsample size was, however, 75% greater in 
the transfer-based model than in the model built from 
scratch for transcriptomic data, whereas no substantial 
increase in difference was observed for metabolomic 
data. Transcriptomic data also best predicted hyper-
tensive status of participants in the test subset when 
248 participants (i.e., 80% of the FTC set) from the FTC 
cohort were used for fine-tuning (median AUC: 72.9%), 
although performing worse than metabolomic data for 
small fine-tuning subsample sizes (Fig.  5c). The transfer 
has therefore mostly benefited transcriptomic data for 
which the high dimensions are a hindrance to modelling 
from scratch.

Discussion
Our study aimed to illustrate different machine learn-
ing strategies for predicting risk factors, which we 
compared under different scenarios, with CVD as a 
real-world example. Although we used a unique train-
ing dataset, suggesting that generalization of our results 
should be made with caution, it illustrates how the choice 
of autoencoders, ML classifiers, or omics data influ-
ences downstream predictions of CVD risk factors, and 
therefore provides a valuable platform for the scientific 
community. We showed that multi-omics modelling 
outperformed single-omics modelling particularly in 
predicting individuals in less-represented classes, being 
classes of interest for the detection of individuals at risk of 
CVD. Compared to their classical unsupervised counter-
parts, semi-supervised autoencoders allowed for better 
downstream predictions. They also allowed quantifying 
the importance of transcriptomic and metabolomic vari-
ables in reconstructing adjusted cardiovascular disease 
biomarkers. In addition, transfer learning to an older and 
smaller cohort with a high prevalence of hypertensives 

led to major performance gains, showing the replicative 
potential of pre-trained semi-supervised autoencoders.

While multi-omics predictions outperformed single-
omics predictions on average, very few scenarios showed 
little to no improvement in prediction. This echoes 
known results from cancer research [47], which we also 
observed for CVD risk factors. This highlights the need 
to consider the costs and benefits of adding omics layers, 
as adding data does not systematically improve model 
performance but increases model complexity in the 
training set, which could reduce model reproducibility 
in external cohorts. For example, our study suggests that 
plasma metabolites are highly predictive of systolic blood 
pressure for which the addition of other omics layers did 
not substantially improve prediction. This is consistent 
with multi-omic studies of blood pressure where metabo-
lomic data were found to be the best predictor of systolic 
blood pressure as well [16, 17]. However, our study sug-
gests that the predictive potential of metabolomic data 
compared to other omics varies depending on which ML 
classifiers are used.

Metabolomic variables playing a substantial role in the 
reconstruction of CVD biomarkers included lipids and 
cholesterol concentrations (Table  2), for which associa-
tions with CVD risk are now well established [48, 49]. 
The presence of lipid and cholesterol concentrations as 
well as BCAAs among the variables of high importance 
in the reconstruction of adjusted blood pressure values 
echoes previous results observed in a multi-omics study 
of blood pressure [16], as does the presence of satu-
rated fatty acids, glycine, lipids, BCAAs and lactate with 
respect to another recent multi-omics study of blood 
pressure [17]. Metabolites of high importance in recon-
structing LVDD biomarkers included fatty acids [50] and 
BCAAs [51], reflecting recent findings in left ventricular 
function. Results were therefore consistent with the lit-
erature, making semi-supervision an interesting explana-
tory tool, even when semi-supervision could not provide 
a better 1-sd class predictive performance. However, 
because our study does not involve statistical testing but 
rather illustrates the use of variable importance examina-
tion, the generalizability of these results to epidemiologic 
studies is limited.

The interpretability of semi-supervised autoencod-
ers faces major obstacles in genomics. The first is meth-
odological: the interpretability of advanced ML models 
remains an active research area [52] for which a substan-
tial number of methods have only recently emerged in 
genomics. Various methods exist for assessing variable 
importance, such as SHAP values, but little is known 
about the best strategy for assessing variable importance 
when using omics data. The second obstacle mirrors the 
first, as the high omics dimensions can slow down the 
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discovery potential, as in the case of transcriptomic data 
for which the false discovery rate could not be controlled 
downstream in our framework, thus limiting their poten-
tial for interpretation. High input correlations could 
also influence measures of variable importance. The last 
obstacle is aetiological, as causal inference is not possible 
in such a setting, which significantly limits the biological 
dimension in the use of autoencoders. Thus, estimates of 
variable importance are not necessarily an indication of 
biological importance. From an epidemiological perspec-
tive, using methods adapted to causal inference is there-
fore preferable; mendelian randomization in this context 
is largely appropriate [53]. The biological nature of the 
omics presents its own challenges, as transcriptomics 
and methylation data reflect the activity of the cells from 
the tissue that has been sampled, while metabolomics 
represent the flux of molecules from varied sources. 
Obtaining the relevant target tissue in large numbers is a 
major challenge, ethically and logistically. Model organ-
ism studies and in vitro cell studies could provide more 
insight to discoveries from multi-omics modelling on 
observational data.

In addition to the difficulties in modelling omics data 
due to their biological complexity, the CVD risk factors 
of the current study are also subject to biological limi-
tations. Consecutive systolic or diastolic blood pressure 
measurements are not perfectly aligned, making blood 
pressure measurement highly variable. For example, we 
observed correlations ranging 0.73–0.92 and 0.76–0.90 
between four SBP and DBP measurements taken on the 
same morning in the FTC sample, respectively. This 
short-term variability in blood pressure measurements 
can introduce noise into the variables, thereby limit-
ing the predictive potential of any statistical model, 
whether advanced or not. To partially address the noise 
in blood pressure measurements, we have identified 
two possible alternatives to blood pressure. First, we 
suggest increased use of polygenic risk scores and the 
underlying genetic components of blood pressure [54], 
because they are not influenced by short-term changes 
in time. Second, we recommend that more use be made 
of nighttime blood pressure measurements. These may 
be, when available, less prone to variability as con-
founding external factors (e.g., stress, white coat effect) 
may be reduced. Nighttime blood pressure measure-
ments may also provide a better estimate of a patient’s 
health status, as they have been shown to be better 
predictors of incident cardiovascular disease than tra-
ditional daytime measurements [55]. Finally, it should 
be noted that CVD risk factors in our study were cat-
egorized and not used as continuous variables. We 
used categorized outcomes to illustrate and mimic the 
use of different machine learning strategies in clinical 

settings, as blood pressure and LVD outcomes are 
based on thresholds in practice. However, categoriza-
tion of CVD risk factors may result in a loss of informa-
tion contained in the variables.

Another obstacle in model-reproducibility was observed 
with the partition of YFS individuals into classes based 
on LVDD biomarkers values. In contrast to systolic and 
diastolic blood pressure for which unitary increases are 
causally associated with the occurrence of cardiovascular 
disease [26, 56], and for which positive deviation from the 
mean implies a higher risk of developing CVD, knowledge 
of LVDD biomarkers is so far mainly based on thresholds. 
Thus, deviation from the mean in a non-selected cohort of 
relatively healthy individuals such as the Young Finns Study 
may not necessarily imply an increased risk of developing 
CVD. This design limitation was, moreover, reflected in the 
quality of LVDD biomarker predictions, which were rela-
tively weak compared with SBP and DBP predictions; our 
ML classifiers had difficulty distinguishing among relatively 
healthy individuals. The use of a cohort with a substantial 
proportion of individuals at high risk for CVD therefore 
seems, in the context of a study focusing on diastolic func-
tion, more appropriate. Finally, despite better predictions of 
blood pressure outcomes from ML classifiers, these may, at 
least in part, reflect the prediction of poor or good overall 
health rather than blood pressure itself. As discussed pre-
viously, the use of advanced machine learning is not sys-
tematically suited to epidemiologic perspectives because 
confounders are not easily adjusted in such settings. Meas-
ures of ML classifier performance are therefore expected to 
be affected by confounding [57].

As for the challenges associated with omics data inte-
gration, we chose to dissociate single-omics views and 
multi-omics views. This choice was in line with the aim 
of our study, which was to illustrate and compare dif-
ferent machine learning strategies for predicting CVD 
risk factors in different scenarios, including the separate 
study of omics. One could use an end-to-end and single-
task setting (Fig. 1), limiting the study to a single target 
variable by joining classification, dimension reduction 
and meta-learning. However, the aim of our study was 
to present and explore different machine learning strate-
gies, which we applied to the prediction of CVD risk fac-
tors. To this end, the use of methods specifically designed 
for multi-omic data integration is preferable, to which 
our study complements, as we have shown, for example, 
benefits in supervising dimension reduction and trans-
fer learning. The use of larger cohorts, for example from 
large biobanks, could not only improve ML classifier per-
formance but also the potential for outsourcing models 
to external cohorts, as could greater Gaussian corrup-
tion of neural inputs or feature selection based on a pri-
ori knowledge. The use of large biobank datasets would 
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also allow for greater generalizability of results, which 
is a limitation of our study. The further development of 
multi-omics methods, within larger cohorts and in multi-
ple settings, is therefore a promising approach for study-
ing cardiovascular disease risk factors within a machine 
learning framework.

Conclusions
Our study comprehensively illustrates the use of differ-
ent machine learning strategies in predicting risk fac-
tors under different scenarios, using CVD as an example. 
In particular, we demonstrate the advantages of using 
supervised autoencoders and transfer learning in the 
study of CVD risk factors, as well as the influence that 
the choice of omics and ML classifiers can have on the 
quality of predictions. We therefore believe that the pre-
sent study can provide an excellent platform for CVD 
researchers, but also for a broader audience interested in 
the use of omics data.
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