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Abstract 

Background  Nasal polyps and inverted papillomas often look similar. Clinically, it is difficult to distinguish the masses 
by endoscopic examination. Therefore, in this study, we aimed to develop a deep learning algorithm for computer-
aided diagnosis of nasal endoscopic images, which may provide a more accurate clinical diagnosis before pathologic 
confirmation of the nasal masses.

Methods  By performing deep learning of nasal endoscope images, we evaluated our computer-aided diagnosis 
system’s assessment ability for nasal polyps and inverted papilloma and the feasibility of their clinical application. We 
used curriculum learning pre-trained with patches of nasal endoscopic images and full-sized images. The proposed 
model’s performance for classifying nasal polyps, inverted papilloma, and normal tissue was analyzed using five-fold 
cross-validation.

Results  The normal scores for our best-performing network were 0.9520 for recall, 0.7900 for precision, 0.8648 
for F1-score, 0.97 for the area under the curve, and 0.8273 for accuracy. For nasal polyps, the best performance 
was 0.8162, 0.8496, 0.8409, 0.89, and 0.8273, respectively, for recall, precision, F1-score, area under the curve, 
and accuracy. Finally, for inverted papilloma, the best performance was obtained for recall, precision, F1-score, area 
under the curve, and accuracy values of 0.5172, 0.8125, 0.6122, 0.83, and 0.8273, respectively.

Conclusion  Although there were some misclassifications, the results of gradient-weighted class activation mapping 
were generally consistent with the areas under the curve determined by otolaryngologists. These results suggest 
that the convolutional neural network is highly reliable in resolving lesion locations in nasal endoscopic images.
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Background
Nasal polyps (NPs) are inflammatory products of the 
nasal sinus tissue, which are usually bilateral, and benign 
[1]. However, if a nasal mass grows on only one side of the 
nasal cavity, the possibility of a potential tumor should be 
considered; the most common type of which is inverted 
papilloma (IP) [2]. IPs are related to the human papilloma 
virus, prone to recur after being surgically removed, and 
occasionally transform into a malignant tumor [3]. The 
percentage of malignant transformation to squamous cell 
carcinoma is 5–13% and the five-year survival rate after 
malignant transformation is less than 50% [4]. Because 
prognosis of IPs is worse than that of NPs, the preopera-
tive differential diagnosis of these two diseases is of great 
importance for selecting the appropriate surgical meth-
ods and the prognosis of patients [5]. However, NPs and 
IPs often have similar appearance, and it is difficult to 
distinguish them in clinical settings [6].

Endoscopy is commonly used for clinical diagnosis of 
nasal masses [7]. The final diagnosis of nasal masses must 
be combined with computed tomography (CT) and path-
ologic findings [8]. However, nasal endoscopy is a more 
rapid and non-invasive method in outpatient examina-
tion, although unilateral nasal polyps can easily be mis-
diagnosed by endoscopy alone. Before the pathological 
results are available after surgery, the preliminary diag-
nosis often depends on the experience of the physician, 
who can easily make mistakes. A study in which several 
rhinologists evaluated the results of different types of 
nasal endoscopy found significant differences in outcome 
evaluation [9].

Meanwhile, recent studies indicate that machine 
learning algorithms, particularly convolutional neu-
ral networks, excel in visual object recognition [10] and 
surpass humans in object recognition [11]. Studies have 
demonstrated the feasibility of artificial intelligence (AI) 
in diagnosing various lesions and patterns in medical 
imaging [12, 13]. Similarly, [14] showed the potential of 
a deep learning-based diagnosis system for the automatic 
classification of NPs and IPs. Although this has been 
developed using deep learning algorithms based on the 
transfer learning strategy used in this study, there are lim-
itations to classifying three classes. Curriculum learning 
[15], involving the step-by-step training of more sophisti-
cated concepts, could partially solve these complex chal-
lenges. Using this approach, [16] proposed a curriculum 
for refining the analysis of complex full images by ini-
tially training on lesion-specific patch images from chest 
X-rays.

Therefore, using machine learning for computer-
aided diagnosis of nasal endoscopic images can provide 
more accurate results based on curriculum learning. 
Deep learning of nasal endoscopic images can support 

the assessment of NPs and IP. Our algorithms were 
compared with [16] algorithms and general deep learn-
ing without curriculum learning. This study presents a 
computer-aided diagnosis system based on deep learn-
ing. We further demonstrate its potential for clinical 
applications.

Methods
Participants and grouping
Patients who attended a tertiary medical institution 
in South Korea between January 1, 2016, and May 31, 
2019, and underwent septoplasty with submucosal tur-
binoplasty or endoscopic sinus surgery were involved 
in the study. Patients without a mass in the nasal cavity 
who underwent septoplasty were assigned to the normal 
group. Patients diagnosed pathologically with NPs were 
assigned to the NP group, while those diagnosed with 
IP after endoscopic sinus surgery (ESS) were assigned to 
the IP group. Objects with poor photo quality or those 
that could not be obtained due to computer errors were 
excluded. Endoscopic images were examined by the rhi-
nologist (T.H.K.) using a 4 mm rigid telescope (Olym-
pus Medical Systems Corp., Tokyo, Japan) and a HDTV 
endoscope video processor system (VISERA ELITE 
OTV-S190; Olympus Medical Systems Corp., Tokyo, 
Japan). Revision surgeries with recurred nasal masses 
were excluded from the data. The study was approved 
by the Institutional Review Board of the Korea Univer-
sity Hospital (approval number: 2019AN0264). Further-
more, we confirm that all experiments were performed 
in accordance with relevant guidelines and regulations. 
Since this was a retrospective study, informed consent 
was not obtained from the participants, and the National 
Committee for Ethics waived the informed consent for 
this study.

The nasal endoscopic images were collected from the 
Korea University Anam Hospital (KUAH). The nasal 
endoscopic images of normal subjects (490 cases) and 
patients (952 cases), including NPs (775 cases) and 
IP (177 cases), in the full-resolution images randomly 
divided into training, tuning, and testing sets in a ratio of 
7:1:2, were enrolled at KUAH (Table 1). Normal subjects 
and patients with NPs and IPs were determined based on 
paranasal sinus CT and postoperative pathologic find-
ings. As a gold standard, two otolaryngologists defined 
lesions based on in-house regions of interest (ROIs) and 
manually made annotations for the image lesions. Patch 
images were generated from the full-resolution images of 
representative learnings (Fig.  2 and Table  1). The num-
ber of patch images from normal subjects and patients, 
including NPs (3096 cases) and IPs (708 cases), are listed 
in Table 1.
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Curriculum learning strategy using training patches 
and full‑sized images
InceptionResNetV2 [17] was configured with an incep-
tion layer and residual connections, which included vari-
ous convolutional filters connected to residual blocks. 
These blocks not only mitigated the gradient descent 
issues associated with the depth of the deep learning net-
work but also shortened the training duration. Curricu-
lum learning to infer multiple classes generally requires 
different and various datasets due to the complexity of 
medical images. Full-resolution nasal endoscope images 

contain complex patterns, including lesions, organs, and 
tissues, which complicates training with limited datasets. 
The given image underwent standard image preprocess-
ing (bi-linear interpolation) and was resized to a fixed 
size of 512 × 512 pixels to closely resemble a general natu-
ral image. In a previous study, a simple curriculum learn-
ing strategy [16] to train various lesion patterns in two 
steps showed much better performance. To address the 
issue of imbalance, the loss for each class was adjusted 
by multiplying it by its respective weight [16]. A straight-
forward curriculum learning strategy [16], involving two 
steps, was employed to train intricate disease patterns. 
In the first step, the pre-trained ResNet-50 network from 
the ILSVRC dataset was fine-tuned using lesion-specific 
patch images. In the second step, the network was fine-
tuned using full-sized images because of the difference in 
distribution between patches and full-sized images.

We employed curriculum learning as a representative 
learning strategy to classify lesions and normal images 
from nasal endoscopies. This approach aimed to improve 
model performance with a small dataset and address the 
dataset’s imbalance across three classes, as illustrated in 
Fig. 1. Since our datasets consist of an unbalanced form, 
we used patch images extracted from the features of the 
lesion to obtain more diversity. In addition, to improve 
training and tuning, different patch datasets were 
extracted from areas around the points selected by expert 
otolaryngologists to better train the regional patterns of 
lesions or normal tissue, as shown in Figs. 1 and 2. The 

Table 1  Number of nasal endoscopic images for training, 
tuning, and testing

KUAH Korea University Anam Hospital, NPs Nasal polyps, IP inverted papilloma

Endoscopic Patch 
images

Total KUAH
(Training)

KUAH
(Tuning)

KUAH (Testing)

Normal 1960 1456 168 336

Abnormal 3804 2860 288 656

NPs 3096 2324 232 540

IP 708 536 56 116

Endoscopic whole 
images

Total KUAH
(Training)

KUAH
(Tuning)

KUAH (Testing)

Normal 490 364 42 84

Abnormal 952 715 72 165

NPs 775 581 58 136

IP 177 134 14 29

Fig. 1  Architecture for curriculum learning: (a) first step based on pre-trained weights (InceptionResNetV2 with ImageNet) with patch images; (b) 
second step with full-resolution nasal endoscope images based on the weights of (a)
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patch images (256 × 256) were reduced to half of their 
raw resolution to ensure they contained multiple lesions 
around their central region. Subsequently, the network 
was fine-tuned using full-resolution nasal endoscope 
images to compensate for discrepancies between the full-
sized and patch images.

In the first step, the InceptionResNetV2network, a pre-
trained model using the ImageNet Large Scale Visual 
Recognition Competition (ILSVRC) [18], was trained 
using the extracted patches of nasal endoscope images, 
as shown in Fig.  2. These deep convolutional neural 
networks (CNNs) can learn general or different medi-
cal image features using other domain datasets without 
training the network from scratch. In the second step, 
we fine-tuned only the last layer of the model trained 
in the first step using all images. In addition, geometric 
enhancements such as augmentation using zoom, rota-
tion, and shifting were used for training and tuning. Due 
to potential variations in patterns among manufacturers 
in these images, we conducted a random application of 
sharpening and blurring techniques during the training 
and tuning phases. This approach aimed to enhance the 
performance of the model with diverse image variations. 
Furthermore, our training data incorporated additional 
augmentation techniques, including rotation (±10°), 
zoom (±10%), and shifting (±10%). These enhancements 
were performed to improve the model’s resilience to vari-
ations not related to radiological classes using Python 3.6.

All datasets for training, tuning, and testing were 
loaded onto a GPU platform running Ubuntu 20.04, 
NVIDIA Toolkit 460.80, three 24 GB Titan RTXs and 
one 48GB Quadro RTX 800 graphics cards, and cuDNN 

11.2 (NVIDIA Corporation) with Keras running on top 
of TensorFlow. We used hyperparameters in various 
training settings. To mitigate tuning errors in select-
ing optimized models, the backpropagation algorithm 
was executed over 25 training epochs using a batch size 
of eight. We used the ADAM optimizer and weighted 
loss with an initial learning rate of 0.001 for three-way 
classification. The cross-entropy cost function in binary 
classification (1.1) is expressed as follows:

where f and y denote the inferred probability and the cor-
responding desired output, respectively.

Statistical analysis
We evaluated diagnostic performance for inference of 
NPs, IP, and normal using five-fold cross-validation 
with terms forming the confusion matrix, as follows: 
True positive (TP) is the number of labels correctly 
classified as positive by the algorithms; true nega-
tive (TN) is the number of labels correctly classified 
as negative by the algorithms; false positive (FP) is the 
number of labels incorrectly classified as positive by 
the algorithms; and false negative (FN) is the number 
of labels incorrectly classified as negative by the algo-
rithms. Finally, the performance of multiple classifica-
tions based on the full-resolution images of the nasal 
endoscope was evaluated using four methods: recall, 
precision, F1-score, and accuracy with the scikit-learn 
Python library, as follows:

(1.1)Loss y, f = −y log f − 1− y log (1− f)

Fig. 2  Methods for extracting patch images using the central areas of lesions for curriculum learning
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Accuracy is the ratio between the number of cor-
rectly classified test samples and the total number of test 
samples.

For the multiclass case, the area under the curve 
(AUC) was analyzed using the receiver operating char-
acteristic (ROC) (1.17.0.1) within the R package. Our 
model was also compared with another model [17] using 
paired t-tests for statistical significance, which was set at 
P < 0.05.

Results
Comparison between our and another algorithm
To predict NPs, IP, and normal in nasal endoscope 
images, we used a curriculum learning-based deep learn-
ing network as the backbone, InceptionResNetV2, shown 
in Fig.  1, which was trained and tuned with five-fold 
cross-validation. The KUAH dataset (normal, 84 cases; 
NPs, 136 cases; and IP, 29 cases) was used for testing. 
This training model extracted probabilities per image 
to be classified as either normal or other lesions corre-
sponding to other classes. In statistical analysis, binary 
labeling was used to evaluate recall, precision, F1-score, 
and accuracy. With three classes, binary labeling was 
created by combining one class with the other two, and 
a total of three sets of statistical metrics were calculated 
based on these binary labels.

Each result of the five-fold cross-validation is shown in 
Fig. 3 and Table 2. The following averages were obtained: 
0.90 ± 0.04 for recall, 0.78 ± 0.03 for precision, 0.84 ± 0.03 
for F1-score, 0.95 ± 0.02 for AUC, and 0.82 ± 0.02 for 
accuracy. The best performance was observed for the 
first fold. The normal scores for the network with the 
best performance were 0.90 ± 0.04 for recall, 0.78 ± 0.03 
for precision, 0.84 ± 0.03 for F1-score, 0.95 ± 0.02 for 
AUC, and 0.82 ± 0.02 for accuracy, respectively. The NP 
scores for the network with the best performance were 
0.82 ± 0.02 for recall, 0.85 ± 0.01 for precision, 0.84 ± 0.02 
for F1-score, 0.88 ± 0.01 for AUC, and 0.82 ± 0.02 for 
accuracy, respectively. The IP scores for the network 
with the best performance were 0.56 ± 0.04, 0.81 ± 0.03, 

(1.2)Recall =
TP

TP+ FN

(1.3)Precision =
TP

TP+ FP

(1.4)F1− score =
2(Precision x Recall)

Precision x Recall

(1.5)Accuracy =
TN + TP

TN + TP+ FN + FP

0.66 ± 0.04, 0.87 ± 0.03, and 0.82 ± 0.02 for recall, preci-
sion, F1-score, AUC, and accuracy, respectively.

Our model was compared with another model without 
curriculum learning (p < 0.05), and the corresponding 
values of normal for those were as follows: 0.87 ± 0.02 for 
recall, 0.78 ± 0.06 for precision, 0.82 ± 0.04 for F1-score, 
0.93 ± 0.31 for AUC, and 0.80 ± 0.03 for accuracy, and 
those of NPs and IP were as follows: 0.86 ± 0.04 and 
0.28 ± 0.04 for recall, 0.80 ± 0.02 and 0.99 ± 0.03 for preci-
sion, 0.83 ± 0.05 and 0.43 ± 0.03 for F1-score, 0.85 ± 0.01 
and 0.89 ± 0.03 for AUC, and 0.80 ± 0.03 for accuracy, 
respectively (Table 2).

Our model was compared with another model 
(p < 0.05), and the corresponding values of normal for 
the other model [17] were as follows: 0.79 ± 0.02 for 
recall, 0.78 ± 0.05 for precision, 0.82 ± 0.03 for F1-score, 
0.93 ± 0.01 for AUC, and 0.79 ± 0.02 for accuracy, and 
those of NPs and IP were as follows: 0.80 ± 0.03 and 
0.50 ± 0.09 for recall, 0.81 ± 0.03 and 0.68 ± 0.07 for preci-
sion, 0.81 ± 0.02 and 0.57 ± 0.08 for F1-score, 0.88 ± 0.03 
and 0.84 ± 0.03 for AUC, and 0.79 ± 0.02 for accuracy, 
respectively in Table 2.

Comparison between our algorithms and clinicians’ 
analyses
The visual scoring of clinicians was analyzed by seven 
human experts, and this analysis was compared with the 
performance of our deep learning model. Seven otolar-
yngologists analyzed the images with the test dataset 
(249 images), including normal and abnormal images 
(NPs and IP), as shown in Table  1. Three of the seven 
were board-certified experts in nasal endoscopy; two 
were senior residents with clinical experience of over 3 
years, and the remaining two were junior residents with 
a maximum clinical experience of 2 years. We compared 
our deep-learning algorithm against human performance 
by analyzing the confusion matrices for three classifica-
tions. Additionally, we assessed the AUC to evaluate the 
performance of each class, comparing the deep learning 
model with seven experts (see Fig. 4).

Table  3 displays the classification performance results 
for both our model and the experts. First, the cor-
responding values of normal for our algorithm are 
as follows: 0.90 ± 0.04 for recall, 0.78 ± 0.03 for preci-
sion, 0.84 ± 0.03 for F1-score, 0.95 ± 0.02 AUC, and 
0.82 ± 0.02 for accuracy. Those for the human experts 
were as follows: 0.98 ± 0.01 for recall, 0.85 ± 0.02 for pre-
cision, 0.91 ± 0.01 for F1-score, 0.95 ± 0.02 for AUC, and 
0.93 ± 0.01 for accuracy.

Second, the corresponding values of NPs for our algo-
rithm were as follows: 0.82 ± 0.02 for recall, 0.85 ± 0.01 
for precision, 0.84 ± 0.02 for F1-score, 0.88 ± 0.01 for 
AUC, and 0.80 ± 0.02 for accuracy. Those for the human 
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experts were as follows: 0.71 ± 0.08 for recall, 0.91 ± 0.02 
for precision, 0.80 ± 0.06 for F1-score, 0.81 ± 0.03 for 
AUC, and 0.80 ± 0.04 for accuracy.

The corresponding values of IP for our algorithm 
were as follows: 0.56 ± 0.04 for recall, 0.81 ± 0.03 for 
precision, 0.66 ± 0.04 for F1-score, 0.87 ± 0.03 for AUC, 
and 0.85 ± 0.02 for accuracy. Those for the human 
experts were as follows: 0.64 ± 0.08 for recall, 0.48 ± 0.10 

for precision, 0.51 ± 0.01 for F1-score, 0.76 ± 0.04 for 
AUC, and 0.86 ± 0.04 for accuracy.

Our model achieved similar AUCs to those of the 
seven human experts but showed lower accuracy and 
recall than the experts (particularly for the normal 
group). Although the experts outperformed our model 
in the normal group, our model outperformed the 

Fig. 3  Results of classification for normal, NPs, and IP: (a) confusion matrix on test datasets (KUAH) and (b) mean receiver operating characteristic 
(ROC) curve for five-folds. Note: Korea University Anam Hospital (KUAH); nasal polyps (NPs); inverted papilloma (IP). p-values > 0.05 (fold2:0.91; 
fold3:0.83; fold4:0.14; fold5:0.14) for the best performance among five-folds and other folds and p value < 0.05 (IP: 2.2e-16; NPs: 1.64e-06; Normal: 
0.004) for the curriculum learning backbone network: InceptionResNetV2 and CNN
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Table 2  Classification results (Normal, NPs, and IP) on the KUAH

KUAH Korea University Anam Hospital, NPs Nasal polyps, IP inverted papilloma

Class Recall Precision F1-score AUC for multiclass Total Accuracy

Curriculum learning
backbone network:
InceptionResNetV2

Normal 0.90 ± 0.04 0.78 ± 0.03 0.84 ± 0.03 0.95 ± 0.02 0.82 ± 0.02

NPs 0.82 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.88 ± 0.01

IP 0.56 ± 0.04 0.81 ± 0.03 0.66 ± 0.04 0.87 ± 0.03

InceptionResNetV2
without curriculum learning

Normal 0.87 ± 0.02 0.78 ± 0.06 0.82 ± 0.04 0.93 ± 0.03 0.80 ± 0.03

NPs 0.86 ± 0.04 0.80 ± 0.02 0.83 ± 0.05 0.85 ± 0.01

IP 0.28 ± 0.04 0.99 ± 0.03 0.43 ± 0.03 0.89 ± 0.03

[17] CNN-ResNet152 Normal 0.79 ± 0.02 0.78 ± 0.05 0.82 ± 0.03 0.93 ± 0.01 0.79 ± 0.02

NPs 0.80 ± 0.03 0.81 ± 0.03 0.81 ± 0.02 0.88 ± 0.02

IP 0.50 ± 0.09 0.68 ± 0.07 0.57 ± 0.08 0.84 ± 0.03

Fig. 4  Visual scoring of classification for normal, NPs, and IP: (a) normal, (b) NPs, and (c) IP on test datasets (KUAH) between deep learning 
and otolaryngologists

Table 3  Comparison of the classification (normal, NPs, and IP) performance in the KUAH dataset between deep learning and humans

KUAH Korea University Anam Hospital, NPs Nasal polyps, IP inverted papilloma

Class Recall Precision F1-score AUC for multiclass Accuracy 
for each 
class

Curriculum learning backbone 
network: InceptionResNetV2

Normal 0.90 ± 0.04 0.78 ± 0.03 0.84 ± 0.03 0.95 ± 0.02 0.82 ± 0.02

NPs 0.82 ± 0.02 0.85 ± 0.01 0.84 ± 0.02 0.88 ± 0.01 0.80 ± 0.02

IP 0.56 ± 0.04 0.81 ± 0.03 0.66 ± 0.04 0.87 ± 0.03 0.85 ± 0.02

Seven otolaryngologists Normal 0.98 ± 0.01 0.85 ± 0.02 0.91 ± 0.01 0.95 ± 0.02 0.93 ± 0.01

NPs 0.71 ± 0.08 0.91 ± 0.02 0.80 ± 0.05 0.81 ± 0.03 0.80 ± 0.04

IP 0.64 ± 0.08 0.48 ± 0.10 0.51 ± 0.01 0.76 ± 0.04 0.86 ± 0.04

Rhinologists Normal 0.98 ± 0.02 0.87 ± 0.05 0.92 ± 0.03 0.95 ± 0.02 0.94 ± 0.02

NPs 0.75 ± 0.11 0.89 ± 0.08 0.81 ± 0.04 0.81 ± 0.02 0.81 ± 0.03

IP 0.55 ± 0.31 0.54 ± 0.31 0.46 ± 0.07 0.72 ± 0.11 0.86 ± 0.05

Senior residents Normal 0.98 ± 0.02 0.85 ± 0.01 0.91 ± 0.01 0.95 ± 0.02 0.94 ± 0.01

NPs 0.78 ± 0.03 0.92 ± 0.01 0.84 0.01 0.85±
0.11

0.84 ± 0.01

IP 0.67 ± 0.06 0.54 ± 0.07 0.60 ± 0.01 0.80 ± 0.02 0.89 ± 0.01

Junior residents Normal 0.98 ± 0.03 0.83 ± 0.04 0.90 ± 0.02 0.94
± 0.02

0.93 ± 0.01

NPs 0.62 ± 0.04 0.92 ± 0.03 0.74 ± 0.02 0.78 ± 0.02 0.76 ± 0.01

IP 0.71 ± 0.02 0.36 ± 0.02 0.47 ± 0.01 0.77 ± 0.01 0.82 ± 0.01
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experts in the NP classification (recall: 0.82 ± 0.02 vs. 
0.71 ± 0.08; AUC: 0.88 ± 0.01 vs. 0.81 ± 0.03; p < 0.05).

For the test, the best model among the five-fold cross-
validation was determined using gradient-weighted 
class activation mapping (Grad-CAM) [19] for normal 
and abnormal (NPs and IPs) images after training based 
on curriculum learning, as shown in Fig.  5. Although 
the Grad-CAM results were generally consistent with 
the AUC results of otolaryngologists, our deep learning 
model misclassified some patients with normal or other 
lesions (NPs and IPs) (Fig.  4). Most misclassifications 
made by humans were NPs among normal and other 
lesions.

Discussion
In this study, we demonstrated the detection and classi-
fication of nasal masses using CNNs. We demonstrated 
that the trained CNNs could discriminate between NPs 

and IPs with high accuracy using limited learning sam-
ples. Our study evaluated the model’s utility, particu-
larly for primary physicians without specialized training 
in otolaryngology. The clinical role of this deep learning 
model is to enable not only the primary physicians but 
also the otolaryngologists to obtain more accurate infor-
mation from the nasal endoscopy images. This supports 
the concept that optimizing the deep learning architec-
ture is useful and effective in clinical nasal endoscopic 
practice. Although, it is important to develop deep learn-
ing algorithms with a large volume of dataset, our algo-
rithm demonstrated superior accuracy compared to 
other models in scenarios with fewer total samples [17], 
as detailed in Table 2.

Several articles have been published on the applica-
tion of CNNs in otolaryngology endoscopy. After deep 
learning based on 6066 otoscopic images from 2022 par-
ticipants, the CNN’s accuracy in diagnosing otitis media 

Fig. 5  Grad-CAM results of the best model among five-folds for normal, NPs, and IP on nasal endoscope images. a Positive results 
for the classification of normal, NPs, and IP in the nasal endoscope images and the corresponding heat maps for our model. b Negative results 
for the classification of normal, NPs, and IP in the nasal endoscope images and the corresponding heatmaps for our model. Grad-CAM results 
for each class were extracted independently, with the Grad-CAMs for each class extracted by deep learning and being consistent with specific 
regions delineated by experts
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based on tympanic membrane images achieved 93.4%, 
and the diagnosis level reached the level of an associate 
professor of otolaryngology [20]. A CNN model based 
on deep learning of over 4000 laryngoscope images, 
including cysts, nodules, polyps, leukoplakia, and pap-
illoma, demonstrates better diagnostic performance 
than clinicians, with an average AUC of 0.95 in distin-
guishing papilloma an F1-score of 0.870 [21]. In addi-
tion to otolaryngology endoscopy, CNNs have also been 
employed to conduct research on endoscopy in other 
fields. In gastroenterology, for example, a trained CNN 
model demonstrated an accuracy of 91.2% in distin-
guishing gastrointestinal stromal tumors and leiomyo-
mas in endoscopic ultrasound images [22]. In colorectal 
polyp detection, a CNN model accurately classified 83% 
of polyps from images and accurately identified 97% of 
adenomas under white light images [23]. CNNs have also 
achieved 97% sensitivity and 94% accuracy in detecting 
and classifying nasal cytology images [24].

Curriculum learning based on the centering of lesions 
in the patch image is crucial for training deep learning 
models with limited medical datasets and for interpret-
ing the localization and features of lesions. In the first 
stage, the patch image used for the pre-trained model 
reflects the shape and texture of different lesions in the 
medical dataset (endoscopic images or others). As shown 
in Table 2, our algorithm outperformed the other models 
[17] and algorithms (InceptionResNetv2) without curric-
ulum learning in classifying normal and abnormal endo-
scopic images. This strategy is important for diagnosing 
patients and assisting clinicians in the medical setting.

In this study, we used multiple parameters to analyze 
the performance of our algorithm. To eliminate the devi-
ation caused by the unbalanced composition of images in 
the training, tuning, and testing sets in the training stage, 
we verified it with five-fold cross-validations. By employ-
ing the curriculum learning strategy, only 5764 images 
were used, achieving an average accuracy of 0.82 ± 0.02. 
Furthermore, the performance is improved by reflect-
ing the main characteristics of the lesion well. Moreover, 
the attention mechanism of the trained model was con-
sistent with the local lesion-related areas, particularly 
with respect to those that experienced otolaryngologists 
focus on during nasal endoscopy. The ROC curves dem-
onstrate that the evaluations made by otolaryngologists 
and our Grad-CAM were generally similar. Otolaryngol-
ogists made some incorrect assessments, most of which 
were NPs. Although the human experts performed bet-
ter in classifying normal images, our model performed 
better than the experts in classifying NPs. This result 
may have been observed because the experts can eas-
ily distinguish an endoscopic picture of normal nasal 
turbinate from an abnormality, while our model could 

have detected the turbinate as an NP, which has a simi-
lar soft mucosal texture. Our model exhibited improved 
performance in classifying NPs, despite the inherent dif-
ficulty in distinguishing NPs in nasal endoscopy, even 
for experienced professionals. Rhinologists often resort 
to collecting biopsy samples from lesions to conclusively 
determine whether they are NPs or not. Therefore, the 
promising performance of our model in NP classification 
is noteworthy, as it surpassed the clinical impressions of 
experts. Therefore, it is plausible that the proposed model 
is not only helpful to inexperienced otolaryngologists but 
also to experienced physicians.

Studies have been conducted on machine learning for 
application in CT images [25] and pathological slides [26] 
that achieved good results. In our next work, we will not 
only include endoscopic images but also consider add-
ing CT images and pathological slice images to observe 
the accuracy of the model after training in comparison 
with this study’s results. We will experiment to compare 
the model after training with the performance of human 
physicians using different types of images, such as endo-
scopic, CT, and pathological images. In addition, this 
model was trained only to diagnose diseases. However, 
we will consider whether the model can still show out-
standing ability in disease prevention and disease prog-
nosis assessment when various images of diseases at each 
pathogenic stage are used to train the model.

This study has several limitations. First, the num-
ber of images was relatively small, particularly the IP 
images, to perform conventional deep learning. To 
overcome the limited sample size, we used the curric-
ulum learning strategy to train patches and full-sized 
images. Although our CNN model achieved high accu-
racy, more images will be required for further study, 
and we will develop advanced algorithms to classify 
normal, NPs, and IP. Second, since this study was con-
ducted from a single tertiary referral hospital located 
in Seoul, South Korea, it was difficult to collect endo-
scopic images from different epidemiologic back-
grounds such as race or residence to further investigate 
and verify the CNN model. There was a lack of endo-
scopic images from other hospitals to further investi-
gate and verify the CNN model. Third, the training 
images used in this study were selective. Most of the 
training images were clear and typical. To verify CNNs, 
a significant number of various images are needed. 
Therefore, in future studies, we plan to collect various 
images, develop more powerful CNNs to better fit the 
actual clinical environment, and analyze experiment 
results using various ablation studies, such as curricu-
lum learning based on other models [17]. Finally, the 
proposed CNN model could distinguish only three 
types of images. When the model encounters images 
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of unseen diseases, it may make an incorrect diagnosis 
due to its limitations. This requires a significant num-
ber of nasal endoscopic images of other diseases to be 
further investigated. In the future, a multi-center study 
with larger data validated by a larger group of clinicians 
can be conducted to produce more rigorous results.

Conclusion
This study revealed potential results, indicating that the 
proposed deep learning algorithm effectively detects 
nasal masses in endoscopic images of the nasal cavity. It 
provides a reference for clinicians and can help inexpe-
rienced examiners distinguish nasal endoscopy images. 
However, further image accumulation and prospective 
studies are required to further improve its reliability and 
accuracy.
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