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Abstract 

Background Modeling causality through graphs, referred to as causal graph learning, offers an appropriate descrip-
tion of the dynamics of causality. The majority of current machine learning models in clinical decision support 
systems only predict associations between variables, whereas causal graph learning models causality dynamics 
through graphs. However, building personalized causal graphs for each individual is challenging due to the limited 
amount of data available for each patient.

Method In this study, we present a new algorithmic framework using meta-learning for learning personalized causal 
graphs in biomedicine. Our framework extracts common patterns from multiple patient graphs and applies this infor-
mation to develop individualized graphs. In multi-task causal graph learning, the proposed optimized initial guess 
of shared commonality enables the rapid adoption of knowledge to new tasks for efficient causal graph learning.

Results Experiments on one real-world biomedical causal graph learning benchmark data and four synthetic bench-
marks show that our algorithm outperformed the baseline methods. Our algorithm can better understand the under-
lying patterns in the data, leading to more accurate predictions of the causal graph. Specifically, we reduce the struc-
tural hamming distance by 50-75%, indicating an improvement in graph prediction accuracy. Additionally, the false 
discovery rate is decreased by 20-30%, demonstrating that our algorithm made fewer incorrect predictions compared 
to the baseline algorithms.

Conclusion To the best of our knowledge, this is the first study to demonstrate the effectiveness of meta-learning 
in personalized causal graph learning and cause inference modeling for biomedicine. In addition, the proposed 
algorithm can also be generalized to transnational research areas where integrated analysis is necessary for various 
distributions of datasets, including different clinical institutions.

Keywords Causal inference, Precision medicine, Meta-learning, Causal graph learning

Introduction
Causal relationship discovery between variables is one of 
the fundamental problems in biomedical research, and 
clinical practice [1]. For instance, inferring gene regula-
tory networks (GRNs) [2] from gene expression data 
can help uncover causal relationships such as inhibition 
and promotion among genes and protein targets, while 
observing fMRI imaging can reveal causal links between 
components of neuron networks [3]. Epidemiological 
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research also benefits from causal discovery in studying 
the link between a disease outcome and its risk factors 
[4]. Understanding causal relationships has numerous 
practical benefits, including improved experimentation 
design, biomarker identification, and drug discovery [2]. 
Causal inference is focused on establishing cause-and-
effect connections to reflect the inherent and universal 
interdependence of variables and reveal consistent causal 
relationships across various contexts [5].

In clinical decision-making, physicians typically rea-
son from a cause-and-effect perspective, focusing on the 
causes of diseases and treatment outcomes. However, 
many machine learning models used in clinical decision 
support systems rely on predicting correlations among 
variables of interest [1]. For example, in patients with 
high cholesterol, we might calculate the percentage of 
patients with high cholesterol who do not exercise regu-
larly or estimate the likelihood of a patient having high 
cholesterol based on observational data such as age and 
exercise level. These calculations are based on correla-
tions; they do not reflect the causes of high cholesterol 
in each patient. In addition, understanding the causal 
effect is essential for personalized and precise treatment 
recommendations. For instance, high cholesterol in one 
patient might be caused by obesity, while in another 
patient, it could be caused by age, genetic predisposi-
tion, or lack of exercise. To provide individualized treat-
ment plans, clinicians need to identify the causes of high 
cholesterol in each patient. To this end, causal machine 
learning can use observational data and intervention 
information to (1) quantify the causal effect for individu-
als and (2) infer the underlying causal structure for popu-
lations in biomedicine.

Causal inference graphs are commonly used to estab-
lish these causal relationships in order to make correct 
inferences about variable relationships. For example, 
Fig.  1a shows an example causal graph among the five 
variables: age, genotype A, phenotype B, exercise level, 
and cholesterol level. Each node in the graph corresponds 
to one of these variables, and each directed edge from 
node X[i] to node X[j] indicates the existence of a causal 
relationship from the variable X[i] to the variable X[j]. In 
addition to the qualitative causal relationships described 
by the existence of edges, we also focus on quantitative 
relationships between a variable and its parent variables. 
In the same example in Fig. 1a, for the cholesterol level, 
one possible functional relationship is cholesterol level 
= - exercise level + age / 50 + genotype A + phenotype 
B. The gold standard for constructing such causal graphs 
is to perform intervention experiments, i.e., changing 
the value of a single variable to observe changes in other 
variables. However, intervention experiments can be 
expensive and difficult to control, making it challenging 

to define interventions for all possible variable combina-
tions. An alternative approach is to use existing observa-
tional data to learn causal relationships among available 
variables. For each patient, we record the values of vari-
ables at different time points, resulting in an observa-
tional data matrix, where each row represents a sample 
observation, and each column corresponds to one vari-
able. Given this data matrix as a starting point, we can 
learn a causal graph with the highest likelihood of hav-
ing generated this matrix. This method, known as causal 
graph learning with observational data, determines the 
causal relationships between all possible pairs of variable 
combinations. With observational data, we can search for 
a graph that maximizes the observed data likelihood sub-
ject to certain graph constraints.

In biomedicine, the genotype and phenotype of each 
patient result from a unique causal graph. For example, in 
Fig. 1a and b, we show two different causal graphs of the 
five variables for two individual patients. For heteroge-
neous biomedical data, they share some commonalities: 
they both contain edges from genotype A to phenotype 
B. Nevertheless, each of the graphs exhibits its own set 
of distinctive characteristics: phenotype B is shown to 
have an effect on the cholesterol level of this patient in 
(a), whereas there is no causal association between phe-
notype B and the cholesterol level in (b). As a result, vari-
ations in causal structures make it challenging to extract 
commonalities from existing data for the adoption of 
new tasks. In addition, learning all relationships for each 
causal graph requires a large amount of observational 
data [6]. However, in biomedicine, there are often limited 
observations for each patient, which makes learning per-
sonalized causal graphs for a collection of patients a very 
challenging computational problem. To summarize, bio-
medical causal graph learning problems present two dis-
tinct obstacles: (1) variation between causal graphs and 
(2) sample size limitations per graph.

In this paper, we develop a novel algorithmic frame-
work for learning personalized causal graphs for mul-
tiple patients using meta-machine learning. Intuitively, 
although we have only limited samples per patient (task), 
integrating them together may be sufficient to learn the 
shared network interactions (i.e., commonalities). Once 
we have learned the shared network structures across 
all patients, we can learn individual variations for each 
patient. The combination of shared and individual topol-
ogy can aid in the construction of personalized causal 
graphs. To capture our intuition algorithmically, we 
define each task of causal graph learning as a maximum 
likelihood problem of the graph structure. We assume 
that each task (i.e., learning a causal graph for a given 
patient) is drawn from a fixed underlying distribution. 
Learning the commonality shared among all tasks is 
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learning characteristics of the distribution while learn-
ing variations of each task is learning an individual point 
from the distribution. In solving each task, we start from 
an initial guess of the graph structure, which corresponds 
to the initial value of an optimization problem. Solv-
ing the maximum likelihood problem can be regarded 
as adding/deleting edges and tuning the functional rela-
tionships of each edge so that the likelihood of observing 
the data is maximized. We use the initial guess to char-
acterize the shared commonality of all graphs: if the ini-
tial guess is accurate enough, we may be able to acquire a 
better understanding of the personalized graph using the 
limited samples available for the task. The objective of 
our learning framework is to identify a good initial guess 
of the shared commonality by iteratively updating this 
guess. The contribution of our method is three-fold:

• We propose a novel causal inference framework to 
learn personalized biomedical causal graphs with a 
limited sample size per graph. By employing a meta-
learning framework, we enable accurate personalized 
causal graph learning by sharing knowledge shar-
ing across a collection of correlated causal structure 
learning tasks.

• In multi-task causal graph learning, the optimized 
initial guess of shared commonality enables the rapid 
adoption of knowledge to new tasks for efficient 
causal graph learning.

• Extensive experiments demonstrate the accuracy and 
efficiency of the proposed causal structure learning 
framework, comparing with baselines. To the best of 
our knowledge, this is the first study to demonstrate 
the effectiveness of meta-learning in personalized 

Fig. 1 Problem formulation of multi-task causal graph learning in biomedicine. There are two scenarios of causal graph learning: a single-task 
(patient) setting and b multi-task setting. Each patient has a unique causal graph and his or her own observational data matrix. There are three 
dimensions to the data: the number of variables in the causal graphs, the number of patients/tasks, and the number of observational data points 
for each patient. Ideally, to deliver personalized medicine, it is important to construct a personalized causal graph for each patient. This study treats 
learning the causal graph for each patient as a single task and concentrates on multi-task settings. Although conventional approaches treat each 
task independently, we propose a novel causal inference approach to extract knowledge shared across all given tasks and to use meta-learning 
to enable rapid adaptation to new tasks
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causal graph learning and cause inference modeling 
for biomedicine.

Related works
Causal discovery in biomedicine with heterogeneous data
Causal learning problems can be solved via maximum 
likelihood estimation techniques, for example, an L1-reg-
ularized maximum likelihood. Another approach is the 
recent state-of-the-art graph learning algorithm pro-
posed by Zhang et  al. [7], which constrains the graph 
from being directed acyclic. As biomedical datasets are 
heterogeneous and collected under various conditions, 
researchers have started to explore the importance of 
integrating multiple datasets for causal discovery. For 
example, Rau et  al. [8] used a Markov Chain Monte 
Carlo sampling algorithm and showed that incorporat-
ing additional perturbation datasets helps identify the 
true underlying causal graph. They found that in the case 
of gene regulatory networks (GRNs), observational data 
alone is not sufficient for accurate graph construction. 
Saremi et  al. [9] proposed an iterative refinement algo-
rithm for extracting gene regulatory networks using ran-
dom forest, and Omranian et al. [10] applied a joint Lasso 
algorithm for the single causal graph identification.

While the aforementioned approaches focus on learn-
ing a single graph by combining multiple datasets, we 
discuss a different scenario in our paper: we have multi-
ple datasets and are learning a (potentially unique) graph 
for each dataset. There are also other works that study 
the use of heterogeneous data in non-causal settings that 
inspired our work, including sample-specific disease cor-
relation networks [11] and sample-specific predictive 
models [12].

Data‑driven algorithms for learning single causal graph
The complexity and dimensionality of biomedical data 
require methodologies that integrate existing biologi-
cal knowledge with patient-specific data, such as knowl-
edge graphs  [13, 14]. For example, CLinical Embedding 
of Patients (CLEP) [15] incorporates patient-level multi-
omics data into a knowledge graph to model the under-
lying relationships between patients and clinical features 
for identifying Alzheimer’s patients and their proper-
ties. Medical knowledge graphs or deep architectures 
that utilize patient-level medical data are important for 
developing accurate and generalizable clinical decision-
support models  [15–22]. Moreover, the utilization of a 
personalized biomedical graph enables the identifica-
tion of patient-specific biological mechanisms [7, 15, 23, 
24], offering further insights into the causal relationships 
in specific diseases or patient subgroups. Existing data-
driven algorithms for learning single causal graphs can 

generally be categorized into two groups: score-based 
and constraint-based learning methods.

Score-based methods for learning directed acyclic 
graphs (DAGs) design specific scores for evaluating 
DAGs, typically penalized data likelihood, and then find 
the graph with the highest score. Notably, Greedy Equiv-
alent Search (GES)[25] and its variants work by iteratively 
adding and deleting single edges to identify the DAG with 
the best (penalized) data likelihood. The recent trend in 
DAG learning has been to focus on solving a continuous 
relaxation of the problem. NOTEARS [7] was the first 
in this line of work. The paper proposed a novel con-
straint for the graph represented by an adjacency matrix 
to be a DAG. Based on this formulation, the paper then 
designed a constrained optimization problem for iden-
tifying a DAG. Follow-up work also utilized the DAG 
constraints to reduce the search space of possible causal 
graphs. For example, in DAG-GNN [26], the authors 
proposed to model DAG in an encoder-decoder frame-
work, where the weighted adjacency matrix is a variable 
explicitly used in both the encoder and decoder. Vari-
ational inference algorithms are then used to maximize 
the data likelihood for learning the adjacency matrix. On 
the other hand, GraN-DAG [27] models the relationship 
of a variable with its parents using neural networks, and 
the summation for all network weights is defined as the 
corresponding entry in the weighted adjacency matrix.

Another category of DAG learning methods is con-
straint-based. A typical assumption of these methods is 
that there is a one-to-one correspondence between the 
conditional independence between variables from the 
observed data distribution and the missing edge in the 
DAG, i.e., the faithfulness assumption. For example, PC 
algorithm [28], which is named after its inventor Peter 
Spirtes and Clark Glymour, and its variants, such as fast 
causal inference (FCI), use this assumption to first iden-
tify an undirected skeleton of the variable relationships, 
then orient the edges to obtain the DAG. Other work 
studies how to combine score- and constraint-based 
DAG learning, as seen in the max-min hill climbing algo-
rithm [29].

Meta‑learning
Meta-learning [30] is a machine learning paradigm for 
learning from a set of (training) tasks to adapt faster to 
a new (test) task. Meta-learning has seen great success 
recently in few-shot learning and reinforcement learn-
ing domains. There are two major types of algorithms in 
meta-learning. Model-based approaches, such as meta-
long short-term memory [31], propose to learn a meta-
model that outputs the model parameters based on the 
input dataset. Model-agnostic approaches [32, 33] pro-
pose to learn the initialization of model parameters 
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so that the adaptation can be faster with a well-tuned 
initialization.

Method
In this section, we present our framework using meta-
learning for learning personalized causal graphs in 
biomedicine. Firstly, we present the preliminaries of 
single-task causal graph learning, which serves as the 
foundation for constructing a biomedical graph from 
individual patient data. Subsequently, we illustrate our 
unique multi-task causal graph learning setting, which 
extracts common patterns from multiple patient graphs 
and applies this information to develop individualized 
graphs. Lastly, we introduce our proposed approach for 
meta-causal structure learning for updating shared com-
mon knowledge. In multi-task causal graph learning, the 
proposed optimized initial guess of shared commonality 
enables the rapid adoption of knowledge to new tasks for 
efficient causal graph learning. An overview of the pro-
posed multi-task causal graph development is available in 
Fig. 2.

Preliminaries: single‑task causal graph learning
In the single task causal structure learning (Fig.  2), 
we are given an observation data matrix for a patient, 
which contains N samples from a D-dimensional space, 
X ∈ R

N×D , and our goal is to learn the causal relation-
ships between the D variables, X[1], ...,X[D] . Here we 

focus on the binarized causal relationships, i.e., whether 
a causal relationship exists between X[d1] and X[d2] , for 
d1  = d2 ∈ {1, ...,D} . Correspondingly, this is the same 
as a graph G , where an edge X[d1] → X[d2] indicates 
the existence of causal relationship between variable 
X[d1],X[d2] . A causal graph G corresponds to an adja-
cency matrix W ∈ R

D×D , and the non-zero entries of 
W [d1, d2] indicate the edge X[d1] → X[d2].

A single causal structure learning algorithm defines a 
procedure to output W  from X , A(X , γ0) → W  . Here we 
use γ0 to denote our prior or domain knowledge of the 
underlying causal structures. For example, we can con-
strain the graph to be directed acyclic graphs (DAGs), 
or we can learn from prior intervention experiments 
that certain edges exist or do not exist. In our previous 
example in Fig. 1, we have an observation in the form of 
X ∈ R

N×5 , and the goal is to find the causal relationship 
between the five variables: X[1] − X[5].

A popular method is to use a score-based formula-
tion for the single task causal graph learning problem 
A(X , γ0) → W

The score function is the maximum likelihood of 
observing X given W  . Here we assume a linear model of 
likelihood, 1

2N
�X − XW�2F , but other types of assump-

tions can also be encoded in the loss function. We impose 
additional constraints using a regularization function. 

(1)W = arg max Score(X ,W )+ �Reg(W ).

Fig. 2 An illustration of different learning schema for multi-task causal graph learning. a Decoupled learning methods solve each task 
independently without considering the similarities among tasks; b Joint learning methods introduce an additional set of parameters to model 
the shared commonality among all tasks and learn a separate variation parameter for each task; and c Our method applies a new framework based 
on meta machine learning principle and learns both commonality and variations for each task. Compared with baselines, meta-learning enables 
the sharing of knowledge across tasks for enhanced prediction performance and the rapid adoption of knowledge to new tasks for efficient causal 
graph learning
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For example, we can use L1 norm to constrain the num-
ber of learned edges on W  [34], �W�1 = �vec(W )�1 . In 
some cases, our prior knowledge specifies the graph cor-
responding to W  , denoted as G(W ) is a DAG, so we can 
also impose additional acyclic constraints, such as those 
proposed in [7].

Problem formulation: multi‑task causal graph learning
In multi-task settings, instead of a single data matrix 
from a single patient, we now have matrices from mul-
tiple patients. Each patient has their own causal graph 
W

(m) and a corresponding observational data matrix 
X
(m) . Each patient network becomes a single-task causal 

structure learning problem A X
(m), γ0 → Ŵ

(m).
For this collection D =

{

A
(

X
(m), γ0

)

→ Ŵ
(m)

}

m=1,...

 , our 

goal in the multi-task setting is two-fold: 1) to identify 
the causal structure correctly for each W (m) ’s and 2) to 
extract useful knowledge γ0 that reflects the shared com-
mon knowledge for future causal structure learning tasks.

We will use superscript (m) to denote the mth task, 
while lowerscript i denotes the ith sample. Similar to the 
conventional supervised learning setting, we have a ‘train’ 
and ‘test’ phase. As illustrated in Fig. 3, during training, 
we are given a collection of patients/tasks 
Dtrain =

{

A(m)
}

m=1,...,Mtrain
 , and for each patient A(m) we 

learn the causal graph. In parallel, we also update γ0 as we 

(2)
J (W ) =

1

2N
�X − XW �2F + ��W �1

s.t.G(W ) ∈ DAGs

solve each of the tasks so when we encounter a new task 
we can quickly solve it based on our aggregated knowl-
edge γ0 to improve the performance, i.e., we optimize the 
average performance on the Mtest test set.

The performance of our algorithm is evaluated on an 
unseen test set Dtest =

{

A(m)
}

m=1,...,Mtest
 , when we make 

use of our learned γ0.

Proposed algorithm: meta causal structure learning
We then utilize meta-learning principles [32] to formal-
ize our intuition of updating our shared knowledge γ0 . 
Specifically, we adopt an explicit approach to address 
the problem by focusing on fine-tuning a model using a 
gradient-based optimization method for new tasks. Our 
objective is to train a model that can quickly adapt to new 
tasks from a specific task distribution. We achieve this 
by identifying model parameters that are highly sensi-
tive to changes in the task. The overview of meta training 
algorithm is available in Algorithm  1. Importantly, our 
methodology is not dependent on any particular model 
structure (i.e., model-agnostic). Instead, it is based on the 
key assumption of model-agnostic meta-learning that a 
good initialization of the parameters helps the optimiza-
tion algorithm reach the final solution faster. By updating 

(3)

1

Mtest

Mtest
∑

m=1

Performance
(

Ŵ
(m)

,W (m)
)

with Ŵ
(m)

= A

(

X
(m), γ0

)

Fig. 3 An illustration of proposed causal graph learning framework using meta machine learning. We amortize the knowledge in the initialization 
graph for the causal structure learning problem Wmeta . For each task, we solve the structure learning problem with initialization from Wmeta . We 
also update this knowledge after solving each training task via meta-learning principles. For test task unseen, we adapt our knowledge to this task 
but do not update the knowledge
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this initialization, we can share the knowledge across dif-
ferent tasks and facilitate learning of similar tasks.

Algorithm 1 Algorithm for Meta Training

To learn a good initialization of the parameters for 
model optimization, we utilized a first-order update rule 
(as shown in Line 6 in Algorithm 1), Reptile [35], as the 
meta update rule. When facing a new task at test time, it 
optimizes model parameters by generalizing from only a 
small number of examples. Specifically, instead of simply 
updating Wmeta in the direction W (m) −W

meta , we can 
treat 

(

W
(m) −W

meta
)

 as a gradient and plug it into an 
adaptive algorithm. When lr = 0. , we always start from 
the same initialization graph, and there is no knowledge 
sharing among different tasks. While when lr = 1. , we 
are continuously learning from the previous ending stage, 
similar to the fine-tuning practice in the computer vision 
domain. By selecting a learning rate between [0,  1], we 
find a trade-off between the current task and all the seen 
tasks. During test time, we iterate through all our test 
tasks using Line 5 without updating our Wmeta.

Results
In this section, we present how we applied our proposed 
causal learning optimization algorithms to improve the 
performance of multi-task causal graph learning models 
on real-world and synthetic datasets. For real-world data, 
we choose a common benchmark causal graph learning 
dataset with gene expression levels to understand the 
applicability of our algorithm to real-world biomedical 
data. To understand our algorithm’s performance under 
different scenarios and the impact of factors such as task 
difficulty and sample efficiency, we also experimented 
with synthetic datasets to control the data generation 
process. We varied the number of tasks, the data distri-
bution of each task, and the sample size of each task.

Dataset
Synthetic dataset
For the purpose of data simulation, we generate causal 
graphs and their corresponding observational data. We 
utilize two types of random graph models: Erods-Renyi 
(ER) graphs and scale-free (SF) graphs. Based on the 

graph, we generate N observation samples. In our experi-
ments, we examine two sample cases: a small sample 
case with N = 50 and a large sample case with N = 500 . 
Table  1 summarizes the four configurations. Subse-
quently, we apply multi-task causal structure learning 
algorithms to the collection of M tasks and report the 
average accuracy on the M graphs. Using our running 
example, we set the number of patients as M = 50 . We 
also vary the number of nodes d. For each patient, we 
generate a random causal graph with a specified num-
ber of nodes in the graph d, where the expected number 
of edges is 3d. This study serves extensive examinations 
for two purposes: firstly, to evaluate the performance of 
algorithms under different conditions, and secondly, to 
analyze how the performance of each algorithm changes 
as the number of variables (d) and the task difficulty 
increase.

Real‑world dataset
We adopt the SACHS dataset [36], a common bench-
mark in the causal inference literature, as a real-world 
application for further evaluation of the proposed causal 
inference framework. The Sachs dataset measures the 
level of protein and phospholipid expression in human 
cells. It contains 7466 continuous measurements of pro-
tein and phospholipids expression levels in 11 human 
immune systems cells, i.e., we are learning a causal graph 
of 11 nodes. In addition to the original cell type, there 
are also 13 different interventions (e.g., inhibition of PKC 
isozymes). A detailed description of the specific inter-
ventions is available in [36]. Thus, we have a total of 14 
related tasks. We use 9 tasks for training and 2 for test-
ing, and the results are averaged over 10 folds.

Training and inference
In each scenario, we have a set of variables with unknown 
causal relationships. We also have a collection of train-
ing tasks and another collection of test tasks, with each 
task being a causal graph learned from observational 
data. During training, each algorithm receives all train-
ing tasks. During testing, we evaluate the performance of 
each algorithm by computing the average performance 
metrics of the algorithm over all test tasks.

Table 1 Configurations of the synthetic datasets generated 
using ER and SF graph models

Configuration Graph type Sample size (N)

1 Erdös-Rényi (ER) 50

2 Erdös-Rényi (ER) 500

3 Scale-Free (SF) 50

4 Scale-Free (SF) 500



Page 8 of 15Wu et al. BMC Medical Informatics and Decision Making          (2024) 24:137 

Evaluation metrics
For causal models described with adjacency matrices, we 
evaluate how close the fitted Ŵ  is to the true model W 
(assuming we have access to ground-truth data), or how 
well Ŵ  describes the observed data. We compute the 
metrics for each of the test tasks and report their average 
as the final evaluation for the multi-task setting of causal 
graph learning.

Classification‑based metrics
For the true model W with d variables, there are d(d−1)

2  
edges. We can regard each of the edges as a binary 
classification problem. Thus, for a collection of d(d−1)

2  
problems, we can define true positive rate (TPR), false 
discovery rate (FDR), and false positive rate (FPR). As we 
are dealing with DAGs, we can calculate the following:

• True positive (TP): A predicted edge is in the correct 
direction

• Reverse (R): for a true edge, the predicted direction is 
reversed

• False positive (FP): the predicted edge doesn’t exist in 
the undirected skeleton of the true graph

Structural hamming distance
Structural Hamming Distance (SHD) is defined based on 
the popular Hamming distance. Briefly, for two graphs 
W (1),W (2) , SHD is the number of graph edits (edge inser-
tion, deletion, or flips) required to make the two graphs 
identical [7].

Number of non‑zero entries
In addition, we also report the number of non-zero 
entries (NNZ) in our prediction. SHD alone is not suf-
ficient for evaluation. For example, in a graph of 10 
edges, a predicted graph with 0 edges and 20 edges (10 
true edges plus 10 edges) can both have an SHD of 10. In 
this case, we would prefer the graph with more edges in 
exploratory studies where we want to validate the causal 
relations from our algorithmic analysis.

Baselines
We will compare meta-learning-based causal graph 
learning algorithms against conventional causal graph 
learning and other multi-task algorithms.

Decoupled learning algorithms
Specifically, we choose two decoupled learning algo-
rithms. In decoupled learning, the algorithm solves each 
task separately and does not extract shared network 
structures. During testing, each test task is treated sepa-
rately. We use the state-of-the-art causal graph learning 

algorithm NoTears-L1 [7]. In addition, we use an L1 
regularized causal graph learning algorithm. As this 
algorithm does not impose the directed acyclic graph 
constraints as NoTears-L1 does, we call this algorithm 
Unconstrained-L1.

Multi‑task learning algorithms
We also study a conventional multi-task learning algo-
rithm combined with NoTears-L1. For each test task i, we 
learn its corresponding causal graph as Wi = W0+�i , 
where W0 is the baseline causal model shared across all 
tasks, and �i is the task-specific parameter. For a total 
of Mtest tasks, we are now solving an optimization prob-
lem the size of Mtest + 1 . In practice, this algorithm fails 
to scale with increasing test size. For our meta-learn-
ing-based framework, we plug in both the decoupled 
NoTears-L1 and Unconstrained-L1 algorithms and name 
them MetaNoTears-L1 and MetaUnconstrained-L1, 
respectively.

Main results on synthetic data
In this section, we present the performance comparison 
of our algorithms against baselines, as shown in Fig.  4. 
This graph shows how the performance of all five algo-
rithms (MultiTaskLearning NoTears-L1, Single-Task 
NoTears-L1, Single-Task Unconstrained-L1, MetaLearn-
ing-based MultiTask NoTears-L1, and MetaLearning-
based MultiTask Unconstrained-L1) changes with 
respect to the changing number of nodes in the graph 
(d in the X-axis). The three subfigures from left to right 
show the performance metrics: FDR, SHD, and the num-
ber of NNZ.

For FDR, we can see that our MetaNoTears-L1 
outperforms NoTearsL1, Unconstrained-L1, and 
MetaUnconstrained-L1 by a large margin; MTL and 
MetaNoTears-L1 have similar FDR performance in FDR. 
For SHD, MetaNoTears outperforms all other four algo-
rithms by a large margin consistently, reducing SHD by 
50%-75%.

Non-zero entries reflect a trade-off between false posi-
tive and false negative rates. It is clear that MTL makes 
very conservative predictions. For example, the num-
ber of predicted edges is the smallest, and it has a rather 
low FDR. However, this comes at the cost of increas-
ing SHD. When the size of the graph grows, we can see 
that the SHD of the MTL learned graph also grows, 
indicating that MTL makes many more mistakes than 
MetaNoTears-L1.

Overall, we can see that 1) SHD increases as the size of 
graphs grows, but 2) our algorithm decreases the slowest, 
and 3) our algorithm maintains a relatively flat FDR.
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Main results on real‑world data
In this section, we present the results of our algorithms 
on real-world data. As we can observe from Table  2, 
when we compare a base algorithm with its meta-learn-
ing counterparts we proposed (i.e., Unconstrained vs. 

MetaUnConstrained-L1, NoTears-L1 vs. MetaNoTears-
L1) and the state-of-the-art methods like AVICI  [37], 
meta-learning versions improve over their counterparts 
and existing methods. In addition, the NoTears-L1 algo-
rithm performs better than the UnConstrained algorithm 

Fig. 4 Overall results: The X axis denotes the size of the graph d, and the Y axes are the three types of evaluation metrics, FDR (false discovery rate), 
SHD (structural Hamming distance), and NNZ (number of non-zero entries). When we fix the number of samples per patient/task and the graph 
type, we can see that MetaNoTears-L1 outperforms others in SHD consistently. Although MTL has a similar performance with MetaNoTears-L1 
on FDR, it has a higher SHD and also predicts a much lower number of edges. In addition, as the size of the graph increases, MetaNoTears-L1’s 
performance worsens slowest
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in the Sachs dataset. Overall, MetaNoTears-L1 is the 
best-performing algorithm and shows improvement in 
the four metrics. As the graph only has 11 nodes, we are 
not observing a significant improvement in the SHD dis-
tance, but still, we can see that our algorithm improves 
significantly over NoTears on the false discovery rate and 
false positive rate. We perform additional results on syn-
thetic data to further understand the performance of our 
algorithms against others with larger-scale data.

Sample efficiency
In this section, we present the impact of sample size on 
each of the algorithms. We use an ER graph and fix the 
number of variables (d) to be 30 and select 90 edges. 
We also set the total number of patients to 50. We then 
vary the number of samples per patient (N from 10 to 
750. We observe in Fig. 5 that FDR we see that MTL and 
MetaNoTears-L1 outperform the other three algorithms 
by a large margin. Between MTL and MetaNoTears, 

when the number of samples is smaller than 100, MTL 
has a better performance. This is because MTL makes 
many more conservative actions relative to MetaNoTears, 
as shown by the NNZ graph on the right. After the num-
ber of samples increases over 100, MetaNoTears-L1 
starts to outperform MTL by 0.05. For SHD, we see that 
except for the case when the number of samples is 10, 
MetaNoTears-L1 consistently outperforms other algo-
rithms significantly (e.g., improving the SHD by 50% 
- 90%).

Number of task
We can observe the impact of the number of tasks in 
the training set on the algorithms’ performance from 
Fig.  6. When the number of tasks is smaller than 30, 
adding more tasks to the problem increases the algo-
rithms’ performance. This is because increasing more 
similar tasks also increases the number of samples for 
each algorithm. However, after the number of tasks is 

Table 2 Main results on the real-world dataset, SACHS. Unconstrained versions of causal discovery learning yield relatively 
low performance, while the NoTears algorithms are the two best. MetaNoTears-L1 is the best-performing algorithm and shows 
improvement in the metrics. Abbreviations: FDR (false discovery rate), TPR (true positive rate), FPR (false positive rate), SHD (structural 
Hamming distance), and NNZ (number of non-zero entries)

*denotes the significance of 0.05

Methods FDR TPR FPR SHD NNZ

MTL 0.73±0.01 0.42±0.03 0.44±0.02 20.24±0.73 23.92±0.95

NoTears-L1 0.69±0.04 0.34±0.06 0.31±0.01 16.83±1.76 17.50±0.32

Unconstrained-L1 0.88±0.02 0.14±0.04 0.40±0.02 26.36±0.52 17.96±0.99

AVICI 0.80±0.02 0.40±0.05 0.35±0.03 20.23±1.32 18.23±0.47

MetaUnconstrained-L1 0.98±0.01 0.02±0.01 0.28±0.00 26.20±0.73 11.32±0.18

MetaNoTears-L1 0.62±0.02∗ 0.40±0.04 n.s. 0.28±0.01∗ 15.50±0.50 n.s. 17.17±0.29

Fig. 5 Impact of sample size on each of the algorithms on a synthetic dataset. The X-axis denotes the size of the graph d, and the Y axes are 
the three types of evaluation metrics, FDR (false discovery rate), SHD (structural Hamming distance), and NNZ (number of non-zero entries). We 
fix the number of patients to 50, the size of the graph to 30, and the type of graph to be Erdos-Reni. We vary the number of samples per patient 
from 10 to 750 and plot how each algorithm’s performance changes accordingly. For FDR, we can see that MTL and MetaNoTears-L1 outperform 
the other three algorithms by a large margin. Between MTL and MetaNoTears, when the number of samples is smaller than 100, MTL has a better 
performance. This is because MTL makes much more conservative actions, as shown by the NNZ graph on the right. After the number of samples 
increases over 100, MetaNoTears-L1 starts to outperform MTL by 0.05. For SHD, we can see that except for the case when the number of samples 
is 10, MetaNoTears-L1 consistently outperforms other algorithms significantly, improving the SHD by 50% - 90%
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greater than 40, adding more tasks does not have an 
additional benefit for MetaNoTears. Among the five 
algorithms, our algorithm has the lowest SHD and 
FDR (except for FDR when the number of tasks = 10), 
while predicting considerably more edges and being 
closer to the true graph compared to MTL.

Sensitivity to hyper‑parameters
In this section, we explore the impact of hyperpa-
rameters on the performance of our algorithms. The 
hyperparameters we consider are the meta-learning 
rate (lr) and the number of outer loop steps. We use 
the MetaNoTears version of our algorithm, and test on 
a 30-node ER graph with 500 samples, and test differ-
ent scenarios.

Meta learning rate
Here lr = 0.0 corresponds to the decoupled learning 
algorithm NoTears, while lr = 1.0 corresponds to con-
tinuous learning. As we can observe in Fig.  7, in terms 
of FDR and SHD, using meta-learning algorithm (set-
ting lr > 0 ) increases the performance of the algorithm 
compared to the decoupled NoTears. This again verifies 
the benefit of knowledge sharing enabled by our meta-
learning algorithm. As the learning rate increases to 
sufficiently large (greater than 0.8 in this case), we can 
see that the algorithm performance decreases. This is 
because the algorithm overfits one particular dataset and 
“forgets” the previously encountered tasks.

Number of outer loop steps
We can observe from Fig.  8, that the number of outer 
steps influences the final performance slightly. We can 

Fig. 6 Impact of the number of tasks in training set on each of the algorithms on a synthetic dataset. The X-axis denotes the size of the graph 
d, and the Y axes are the three types of evaluation metrics, FDR (false discovery rate), SHD (structural Hamming distance), and NNZ (number 
of non-zero entries). We fix the size of the graph to be 30, and the type of graph to be Erdos-Reni, the number of samples to be 100. We vary 
the number of patients from 10 to 100 and plot the performance against it. When the number of tasks is smaller than 30, adding more tasks 
to the problem increases the algorithms’ performance. This is because increasing more similar tasks also increases the number of samples for each 
algorithm. However, after the number of tasks is greater than 40, adding more tasks does not have an additional benefit for MetaNoTears-L1. Among 
the five algorithms, our algorithm has the lowest SHD and FDR (except for FDR when the number of tasks = 10), while predicting considerably more 
edges and closer to the true graph compared to MTL

Fig. 7 Sensitivity to meta-learning rates. We choose NoTears-L1 as the base algorithm, and study our algorithm’s sensitivity to meta-learning rates 
(X-axis). We test on a 30-node ER graph with 500 samples. Here the case where meta-learning rate = 0. corresponds to the NoTears-L1 algorithm 
without the meta-learning framework. When meta-learning rate = 1., for a new patient, the algorithm continuously starts from the previous 
patient’s result. When meta-learning rate is in the range of [0.1, 0.7], the MetaNoTears-L1 algorithm finds a good balance between learning 
knowledge from past patients and adaptation to new patients
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observe that in this experiment, 10 outer steps yield 
the best performance in FDR and SHD. Increasing the 
number of outer steps further, however, won’t increase 
the performance correspondingly. Thus, in practice, we 
should select a suitable number for the outer steps, for 
example, through grid search over the possible range.

L1 regularization
We have also experimented with varying the L1 regulari-
zation strength from 0.0 to 1.0 on a linear scale, as shown 
in Fig. 9. The result is in line with the L1 regularization 

effect on other models such as Lasso regression. Increas-
ing the regularization strength will lead to fewer 
identified edges. In practice, we also use 0.1 as the regu-
larization hyperparameter value.

Discussion
As biomedical causal graphs are often heterogeneous, the 
multi-task learning approach for causal graph problems 
is very common and challenging due to the low sample 
sizes. While the existing approaches focus on learning a 
single graph by combining multiple datasets (Table  3), 

Fig. 8 Sensitivity to the number of outer steps. We choose NoTears-L1 as the base algorithm, and study our algorithm’s sensitivity to the number 
of outer steps (X-axis). We test on a 30-node ER graph with 500 samples: the algorithm’s performance is much noisier with respect to changing 
numbers of outer steps. Thus, in practice, we need to carefully select the number of outer steps for each different dataset

Fig. 9 Sensitivity to L1 regularization. The increasing strength of L1 regularization reduces the number of non-zero entries identified, and choosing 
the number to be 0.1 in practice gives us a good trade-off between the false discovery rate and the number of non-zero entries

Table 3 Comparison of existing graph representation and causal discovery works in biomedicine with heterogeneous patient data

Reference Task Graph type Single‑task Multi‑task

Rocheteau et al. [19] outcome prediction undirected graph yes no

Lu et al. [20] disease prediction bipartite or undirected graph yes no

Li et al. [21] CTR prediction weighted fully-connected graph yes no

Xu et al. [22] clinical prediction hypergraph yes no

Zheng et al. [7] biomedical structure directed acyclic graph yes no

Ours causal discovery directed acyclic graph yes yes
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we discuss a different scenario in our paper: we have 
multiple datasets and are learning a (potentially unique) 
graph for each dataset. In this paper, we adapted a meta-
machine learning algorithm that can process the data 
from all tasks to identify shared knowledge. The shared 
knowledge, in turn, can lead to new discoveries of per-
sonalized graphs faster and more accurately.

As we show in the synthetic and real-world datasets, in 
all five scenarios with different underlying data distribu-
tions and dataset sizes, our algorithm (meta-learning-
based causal structure learning) consistently outperforms 
state-of-the-art approaches. This shows the general 
applicability of our algorithm to solve the challenging 
multi-task causal structure learning problem. The key 
ingredient for our algorithm is to extract common knowl-
edge from different tasks so that we can adapt to unseen 
tasks at test time. Case studies in Figs. 5 and 6 studying 
the impact of sample size on multi-task causal structure 
learning problems to further understand the behavior of 
our algorithm against others. Moreover, we also discuss 
the sensitivity of our algorithms to hyper-parameters to 
demonstrate the robustness of our proposed causal graph 
learning strategy. In addition, we also analyze the graphs 
generated by various algorithms in Fig.  10. When the 
number of tasks increases (from 5 to 10), our algorithm 
effectively utilizes more data, improving its performance 
and reducing the number of false positive edges.

Our algorithm improves multi-task causal graph 
learning in multiple ways compared to state-of-the-art 
multi-task causal graph learning algorithms. Decoupled 
learning algorithms such as [7] learn each personalized 
graph separately. Although they are faster, they fail to 
capture the commonality shared among all tasks. Joint 
learning algorithms such as conventional multi-task 
learning algorithms [38] solve all personalized causal 
graph learning simultaneously. These algorithms are less 
efficient: 1) they have higher time and space complexity, 
for M patients, the time and space of complexity is O(M) 

to that of the decoupled learning and our algorithm; 2) 
if we want to learn a new task, these algorithms need to 
learn from all existing tasks plus this new task simultane-
ously again, i.e., solving a problem the size of M+1. On 
the other hand, our algorithm only needs to start from 
our initial guess and solves a single task, which is much 
more time and space efficient.

Experiments on both real-world and synthetic graphs 
show that our framework can improve upon base-
line algorithms, such as the state-of-the-art decou-
pled NoTears algorithm and joint multi-task learning 
algorithms. Specifically, in graph learning perfor-
mance (measured by FDR and SHD), our algorithm 
MetaNoTears-L1 outperforms others, with a 50%-
75% reduction in SHD and 0.2 - 0.3 reduction in FDR 
while identifying 50% more edges than the second-
best performing algorithms. Our algorithm works as 
a meta-algorithm: it can incorporate different single-
task causal graph learning to extract common knowl-
edge shared among patients. For two of the single-task 
causal graph learning algorithms, comparing Uncon-
strained to MetaUnConstrained-L1 and NoTears-L1 to 
MetaNoTears-L1, our algorithm improves upon its sin-
gle-task counterpart by 50% percent in FDR and SHD. 
This shows the benefit of common knowledge extraction 
achieved by our framework. When we fix the number of 
samples and increase the number of nodes on the graph, 
the problem becomes more challenging. Compared to 
baseline algorithms, our MetaNoTears-L1 has the low-
est error overall, and the error increases at the slowest 
rate. When we fix the number of nodes on the graph and 
increase the number of samples per graph, our algorithm 
MetaNoTears-L1 has the lowest error overall. When the 
number of samples per graph is small, the error of our 
algorithm decreases at the fastest rate. This shows that 
our algorithm can make better use of the additional sam-
ples per graph. When we change the number of tasks, all 
algorithms have a relatively flat change in performance 
when the number of tasks is greater than 20. Our algo-
rithm also has the lowest error overall.

Specifically, for each experiment among the three 
dimensions (i.e., number of variables in the causal 
graphs, number of patients/tasks, and number of obser-
vational data points for each patient), we fix two dimen-
sions vary the other, and then observe how causal graph 
learning metrics on test tasks change, our algorithm has 
shown major improvement in graph accuracy in com-
paring to state-of-art algorithms: (1) When we fix the 
number of tasks and the number of samples per task and 
vary the number of variables in the graph. Our algorithm 
consistently reduced the false discovery rate by 10-20% 
compared to the state-of-the-art single-task causal 
graph learning algorithm and the graph edit distance by 

Fig. 10 Visualization of Learned Graphs. We visualize the graphs 
learned from different algorithms. As shown in the figure, 
with an increasing number of tasks (from 5 to 10), our algorithm can 
utilize additional data to increase its performance, resulting in fewer 
false positive edges. In the depicted adjacency matrices, a dark hue 
signifies a value of 0, while a bright yellow indicates a value of 1. The 
various shades of green represent the probability estimates produced 
by each algorithm



Page 14 of 15Wu et al. BMC Medical Informatics and Decision Making          (2024) 24:137 

50-70%; (2) When we fix the number of variables in the 
graph and the number of tasks and vary the number of 
samples per task, our algorithm reduced the false discov-
ery rate by 5-10% and the graph edit distance by 40-75%; 
and (3) When we fix the number of variables in the graph 
and the number of samples per task, and vary the num-
ber of tasks, our algorithm reduced the false discovery 
rate by 5-10% and the graph edit distance by 33-55%.

Building personalized causal graphs for each individual 
poses a significant challenge due to the limited data avail-
able per patient. In this study, we introduce a novel algo-
rithmic framework that leverages meta-learning for the 
multi-task learning of personalized causal graphs in bio-
medicine. Unlike previous studies that concentrated on 
learning causal graphs from single patients, our approach 
efficiently extracts common patterns across multiple 
patient graphs to construct individualized graphs. It 
also demonstrates the effectiveness of meta-learning 
in personalized causal graph learning and cause infer-
ence modeling for biomedicine. One potential limitation 
is the relatively limited sample size, which may impact 
the robustness and generalizability of the learned causal 
graphs. Additionally, handling complex biomedical data 
efficiently can pose challenges in scenarios where com-
putational resources are constrained or when process-
ing exceedingly large datasets. In our future work, we 
will optimize the applicability of our proposed methods 
across diverse biomedical data. This will allow for more 
efficient and effective integrated analyses across various 
data distributions, including datasets from different clini-
cal institutions.

Conclusion
This paper is a first step towards solving multi-task learn-
ing problems more efficiently in learning personalized 
causal graphs. Our study shows the possibility to extract 
knowledge from different tasks to facilitate the learn-
ing of new unseen tasks, and we believe this opens up 
the possibility for future lines of research. The algorithm 
we proposed can help analyze heterogeneous datasets 
with multi-task structures. It also has the potential to be 
used to establish personalized causal graphs of cancer 
patients’ gene expression levels or of brain connectiv-
ity via imaging data. We can also apply this principle to 
other biomedical data analytic settings. For example, we 
may be able to infer the personalized treatment effects 
of drugs on patients. For future work, we aim to further 
study how we can improve the current multi-task causal 
graph learning problems via advanced meta-learning 
approaches, for example, model agnostic meta-learning 
and Bayesian meta-learning algorithms. We can also 
apply our algorithms to other settings, for example, inte-
grating datasets from different clinical institutions and 

from different countries, and making customized clinical 
decisions and personalized treatment.
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