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Abstract 

The main cause of fetal death, of infant morbidity or mortality during childhood years is attributed to congeni-
tal anomalies. They can be detected through a fetal morphology scan. An experienced sonographer (with more 
than 2000 performed scans) has the detection rate of congenital anomalies around 52%. The rates go down in the 
case of a junior sonographer, that has the detection rate of 32.5%. One viable solution to improve these performances 
is to use Artificial Intelligence. The first step in a fetal morphology scan is represented by the differentiation process 
between the view planes of the fetus, followed by a segmentation of the internal organs in each view plane. This 
study presents an Artificial Intelligence empowered decision support system that can label anatomical organs using 
a merger between deep learning and clustering techniques, followed by an organ segmentation with YOLO8. Our 
framework was tested on a fetal morphology image dataset that regards the fetal abdomen. The experimental results 
show that the system can correctly label the view plane and the corresponding organs on real-time ultrasound 
movies.

Trial registration
The study is registered under the name “Pattern recognition and Anomaly Detection in fetal morphology using Deep 
Learning and Statistical Learning (PARADISE)”, project number 101PCE/2022, project code PN-III-P4-PCE-2021–0057. 
Trial registration: ClinicalTrials.gov, unique identifying number NCT05738954, date of registration 02.11.2023.
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Introduction
Congenital abnormalities or disorders can be structural 
or functional, and they occur during intrauterine life. 
Some of these disorders are detected prenatally during 
the second trimester morphology ultrasound scan, at 
birth, or later in infancy. According to the World Health 
Organization, each year, around 240 000 newborns die in 
their first month after birth, due to birth defects (https:// 

www. who. int). 170 000 die before their 5th birthday. The 
occurrence of congenital abnormalities is high in low 
and middle-income countries, due to social, economic, 
and racial reasons [1]. The deficiency of nutritious food, 
increased exposure to infections, alcohol, lack of prenatal 
care, and screening lead to a higher risk of birth defects. 
Detecting abnormalities early on can facilitate potential 
life-saving treatments, or manage certain disabilities, by 
stopping their progression. Birth defects can be diag-
nosed prenatally by performing a morphology scan [2]. 
Current methodologies fail to achieve high performance 
in detecting abnormalities. There have been reported dis-
agreements between pre- and post-natal diagnosis that 
range between 27.5% and 96% in terms of sensitivity [3]. 
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Different studies present different accuracies in detecting 
congenital abnormalities during the morphology scan, 
from 32.5% (unexperienced sonographer) to 52% (expe-
rienced sonographer) [4]. A recent study, conducted in a 
Danish region, reported a detection rate of 69% [5].

The first step towards detecting congenital anomalies 
is detecting the organs automatically during a morphol-
ogy scan. Some types of birth defects are represented by 
the non-visualization of the specific organ (e.g. stom-
ach, nose, limbs, corpus callosum, bladder, gallbladder, 
etc.) [6–8]. Therefore, if an autonomous intelligent sys-
tem is not able to find in an ultrasound movie a certain 
organ, that implies that the fetus might suffer from a 
congenital anomaly. Even though this subject is critical 
and sensitive, relatively little work has been published 
regarding this domain. In two studies that regard the 
fetal heart, conducted by the Department of Obstetrics 
and Gynecology Showa University School of Medicine, 
Fujitsu, and the Cancer Translational Research Team, 
the researchers report a recall that ranged between 61.9 
and 100 [9, 10]. In [11], the 3D fetal brain has been seg-
mented and reconstructed using convolutional neural 
networks. For the fetal brain and lungs segmentations, 
the researchers obtained a dice score of 0.78, after apply-
ing DL, sequential forward feature selection techniques, 
and Support Vector Machines [12], while for the fetal 
head, after applying only DL, the reported dice score 
ranged between 0.70 and 0.76 [13]. A mixture between 
convolutional neural networks and Differential evolu-
tion was applied on two maternal fetal datasets achieving 
96.20% and 78.73% accuracy, respectively [14]. A merger 
between DL and evolutionary computation achieved 
74.62% accuracy when applied on a dataset regarding the 
fetal abdomen. Reached a 74.62% accuracy [15]. In [16], 
DL together with Gaussian Mixture Modelling obtained: 
81.92% and 92.12% accuracy, on two maternal fetal data-
sets. For further reading regarding the fetal ultrasound 
segmentation, we mention [17–19].

This study is intended to provide a solution for early 
detection of congenital anomalies using Artificial Intelli-
gence (AI). Therefore, our aim is to build an AI-powered 
decision support system based on a synergetic merger 
between different DL algorithms that perform feature 
extraction with transfer learning from 2D ultrasound 
images, which are further on clustered using differ-
ent clustering methods to differentiate the view planes 
of the abdomen of a second trimester fetal morphology 
scan. During a morphology scan, as the fetus moves and 
breathes, images that correspond to a view plane are 
mixed with images that correspond to other view planes 
of the abdomen. We are using clustering techniques so 
we could group together the images that represent the 
same view plane. After the clustering process is over, 

we use YOLO8 to segment the anatomical structures in 
each image, to help the doctors detect easier potential 
abnormalities.

The paper is organized as follows: in Sect.  "Materials 
and methods", we will present the design and implemen-
tation of the proposed AI-powered decision support sys-
tem, the dataset used, and the design of experiments and 
used parameters. The results and their statistical analysis 
are discussed in Sect. "The framework". Sect. "DL Com-
petitors" deals with the discussion, while Sect.  "Cluster-
ing competitors" covers the conclusions and future work.

Materials and methods
The framework
The AI-powered decision support system is built on 
four pillars: DLs for feature extraction from ultrasound 
images, clustering methods for clustering the obtained 
information, YOLO8 for segmenting the organs, and sta-
tistical analysis to validate our findings. Since the DLs 
and the clustering methods are of stochastic nature, the 
only way to determine whether the obtained results are 
effective, as well as robust, is to independently run all 
the AI algorithms a certain number of times in a com-
plete tenfold cross-validation. Therefore, we have per-
formed power analysis to guarantee that the statistical 
tests applied have achieved adequate power. The sample 
size estimation method involved the two-tailed type of 
null hypothesis, having a default statistical power goal 
P ≥ 95% , with type I error. For each DL method we have 
used the standard tenfold cross-validation. In this way, 
we have eliminated the possibility of overlearning. The 
performance of each algorithm was computed as the per-
centage of correctly classified cases.

To choose the best performing DL algorithm, we have 
recorded the accuracy obtained in the testing phase and 
the corresponding standard deviation (SD). This step 
was followed by a thorough statistical analysis of the 
DL’s performances, involving data screening (i.e. nor-
mality tests such as Anderson–Darling and Jarque–Bera 
tests, and equality of variances tests such as Levene’s and 
Brown-Forsythe tests), and one-way ANOVA test which 
comprised the sum of squares (SS), mean squares (MS), 
degrees of freedom (df ), F-value, and p-value. The one-
way ANOVA was followed-up by the post-hoc Tukey 
test. These follow-up tests revealed which DLs are statis-
tically significant different in terms of performance. Tak-
ing into account the “no-free-lunch” theorem, we cannot 
state that there is only one best performing DL for fea-
ture extraction, their performance being dependent on 
the dataset they have been applied on. Hence, we have 
chosen heuristically five DL methods, and statistically 
compared their performances, to find the best suited one 
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for this dataset. Future work will include statistically ana-
lyzing the performance of other DLs.

Using only the best performing DL, we extract features 
from the ultrasound images. Feature extraction trans-
forms raw data (images) into numerical features, so we 
can further process them while keeping the information 
in the original database. Each layer from the DL extracts 
one or multiple unique features from an image. We 
define a feature as any part or pattern of an object used to 
identify it in an image. Features can be corners, regions 
of interest points, ridges, edges, blobs of color, etc. In 
our study, we have used discriminative filters learned by 
state-of-the-art DLs on ImageNet, after which we have 
applied these DL networks to recognize objects on a sec-
ond trimester morphology scan dataset.

When we are performing feature extraction, we are 
mainly using the pre-trained DL networks as an arbitrary 
feature extractor, that allows the input image to propa-
gate forward throughout the network, only to stop at a 
predefined layer. The features will be the outputs of that 
layer. For a better understanding of the process, we illus-
trate in Fig. 1, how a certain type of DL, called VGG16, 
extracts features from an image.

To obtain the feature vector, we allow the image to 
propagate throughout the network, and we stop this 

process prior to the fully connected layer. If we stop the 
propagation process at this step, we obtain an output 
that has the shape of 7× 7× 512 . The feature vector is 
extracted by flattening this volume to a list of numbers 
that will quantify our input image, 7× 7× 512 = 25088 . 
If we have n images in the training dataset, then after the 
feature extraction process is over, we will have n vectors, 
each one of them having a 25,088 dimension. Each clus-
tering technique groups these features.

We record for each clustering method the decision per-
formance on the testing data, and its standard deviation. 
Another statistical analysis similar to the one presented 
above is performed on the recorded results. The best per-
forming DL together with best clustering technique are 
kept for standard view plane differentiation. After this 
step is over, we apply YOLO8 to segment the anatomical 
organs in each view plane (Fig. 2).

DL Competitors
In general, when we are dealing with DL neural networks, 
we encounter in their architecture three types of layers: 
the convolutional layer, the pooling layer, and the fully 
connected layer. Since we are using the DLs for feature 
extraction purposes, we will remove from their architec-
ture the last layer, the fully connected one. The feature 

Fig. 1 VGG-16 network architecture for classification vs.VGG-16 network architecture for feature extraction

Fig. 2 Overview of the proposed framework’s architecture
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map is computed by convolution operations that use a 
filter to scan the input. The filter is characterized by its 
size and stride. Another parameter encountered in a DL 
is the zero-padding. As we can see in Fig. 1, one or multi-
ple convolutions are followed by a pooling layer. The role 
of the pooling layer is to down sample the feature map 
and to produce spatial invariance.

In general, the activation function used in a DL is the 
rectified linear unit function (ReLU). However, in litera-
ture we find other variants like Leaky ReLU, Exponential 
linear unit (ELU), and softmax. ReLU, leaky ReLU, and 
ELU produce non-linearities, while softmax transforms 
the input score vector into a probability vector. In mathe-
matical terms, we can express these functions as follows:

• ReLU:

• Leaky ReLU:

• ELU:

• Softmax:

In this study we have used the following DL networks:

• VGG-16 won the 1st and 2nd place in 2014 ISLVR 
challenge. It has been developed by the Visual Geom-
etry Group Lab of Oxford University [20]. VGG-16 
has 13 convolutional layers, 5 max pooling, and 3 
dense layers. This type of DL network focuses in hav-
ing convolution layers of 3× 3 filters with stride 1, 
and the max pooling layer of 2× 2 filters with stride 
2. For feature extraction we remove the fully con-
nected layer.

• VGG-19 is a variant of the VGG model that has 16 
convolutional layers, 3 fully connected, 5 max pool-
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ing layers, and 1 softmax layer. To act as a feature 
extractor, we remove the last fully connected layer 
from its architecture.

• ResNet50 (Residual Network 50) won the ILSVR 
(ImageNet) contest in 2015. ResNet uses a skip con-
nection, that permits the gradient flow to have a 
complementary cutoff route. The skip connection 
facilitates the higher-level layers of the model to per-
form as well as the lower ones. Its architecture con-
tains 48 convolutional layers, 1 maxpool layer, and 
1 average pool [21]. To use ResNet50 as a feature 
extractor, we train it with one-hot encoded labels, 
and take away the fully connected layer.

• DenseNet121 (Dense CNN) is a variant of ResNet 
that represents a better solution for the gradient van-
ishing problem. In this type of network, the propa-
gation of features is strengthened, and the number 
of parameters is reduced. In a DenseNet121 archi-
tecture we have five blocks of batch normal convo-
lutional layers. Between two such blocks there is a 
transition layer used for merging the preceding fea-
ture maps from the same block used as input for the 
next block. We drop the last fully connected layer 
from the architecture to extract the feature vector 
[22].

• InceptionV3 uses factorized convolutions. Big convo-
lutions are replaced with smaller ones, and asymmet-
ric convolutions are added to the architecture. In this 
way the training process is speeded up. An auxiliary 
classifier is added to the network. This classifier acts 
as a regularizer [23]. The last fully connected layer is 
dropped for feature extraction.

All five DLs have the same classifier, activation function 
ReLU, optimizer adam. The loss function is the categori-
cal cross entropy.

Clustering competitors
The feature vectors obtained by the best performing DL 
network were clustered using the following methods: 
k-means, mean-shift, and Gaussian Mixture Modelling 
(GMM). The rationale behind choosing these cluster-
ing techniques was based on the data type and structure 
of our data, the number of clusters, and the clusters’ 
shape and size. For instance, our data is numeric, so we 
needed to use algorithms that are based on distance 
measures such as k-means or hierarchical clustering, and 
not k-modes, DBSCAN or fuzzy clustering. We decided 
to drop the hierarchical clustering method due to time 
complexity and irreversibility. Mean-shift was chosen 
because it can determine the number of clusters auto-
matically. Because we had no prior knowledge regarding 
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the clusters’ shapes (spherical or elliptic), we decided to 
use both k-means and GMM.

We define a cluster as a set of data points similar to 
each other. The goal of the clustering procedure is to split 
the set of data points into a number of clusters (groups) 
in such a way that the data points within each group 
resemble one another and differ from the data points in 
other groups.

k‑means
K-means is one of the most popular clustering methods. 
It uses k centroids that define the number of clusters. We 
assign a data point to a particular cluster, if it is ‘closer’ 
to that cluster’s centroid than any other centroids. The 
centroids are at first set arbitrarily, after which they are 
computed as the center of a cluster. K-means clusters 
data alternating the following steps: a) assigns data points 
to the nearest centroid; b) computes the new centroids 
using the currently assigned data points.

Let us denote the training set as Train = {x1, . . . , xn} , 
where each xj , j = 1, . . . , n is an image feature vector. We 
need to add the label c(i) to each data point, i = 1, . . . , k . 
The k-means algorithm is as follows:

1. Randomly initialize the cluster centroids 
µ1,µ2, . . . ,µk ∈ R

l , l being the number of features.
2. Repeat until convergence:

For every i, set the label:

For each j, compute the new centroids:
µj = 1

|nj|
∑nj

i=1 x
i , where nj is the number of data points 

in cluster j.
K-means is very sensitive to initialization, which can 

lead to poor convergence speed and an overall bad clus-
tering performance. Even though it works well for round 
shaped equal sized clusters, it fails in performance when 
dealing with non-convex shapes.

Mean‑shift clustering
Mean shift clustering is a non-parametric algorithm 
which uses density to identify clusters in a dataset. This 
type of algorithm works well on data that has an arbitrary 
shape and does not have well-separated linear bounda-
ries. Taking into account a certain radius, the method 
shifts each data point towards the highest density of the 
distribution of points, also known as mode. This pro-
cess is repeated until all the points converge to a local 
maximum representing the clusters in the data. Unlike 
k-means, in the mean-shift algorithm we do not specify 

c(i) = argminj�x{i} − µj�
2
.

the number of clusters a priori. The algorithm deter-
mines by itself the number of clusters. A downside of the 
algorithm is the fact that it is computationally expensive 
( O(n2)).

Having N data points xi ∈ R
d , d being the number of 

features, we define the kernel density estimate using a 
radially symmetric kernel, K (x), as:

where h is the bandwidth parameter that defines the ker-
nel’s radius.

Mathematically speaking, the radially symmetric kernel 
is computed using the following formula:

where ck is the normalization constant. The algorithm 
ends with when it reaches convergence, i.e.∇f (xi) = 0.

Using the gradient of the density estimator, we 
compute:

where g(x) = −k′(x) is the derivative of the selected 
kernel. The first parenthesis of the above formula is pro-
portional to the density estimate at x, having the kernel 
G = cg g

(
�x�2

)
 . The second parenthesis represents the 

mean shift vector, m, and it points toward the direction 
of the maximum increase in density. It is proportional to 
the density gradient estimate at point x, using the kernel 
K [24].

Technically, the mean shift algorithm is summarized as:

1 Compute the mean shift vector m
(
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)
.

2 Shift the data point toward the mean xt+1
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3 Repeat 1 and 2, until the algorithm reaches conver-
gence, ∇f (xi) = 0.

Gaussian mixture modeling
The GMM algorithm presumes that all the data points 
are governed by the Normal distribution, so the shape of 
the clusters is described not using only one parameter, 
the mean, but two parameters: the mean and SD. Since 
the SD goes both ways, the shape of the cluster is ellip-
tic, and not circular. Each cluster has assigned a Gaussian 
distribution. The GMM clustering method merges mul-
tiple such Gaussian distributions. We compute the prob-
ability density function for 1-dimension as:
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where µ and σ are the mean and SD of the distribution. 
If we are dealing with a multivariate d-variate dimension, 
then the probability density function will be computed 
as:

where µ is the mean of the distribution, � is the covari-
ance matrix of X, T is the transpose of a vector, and -1 the 
inverse of a matrix.

For each cluster we estimate µ and � . Since we are not 
dealing with only one cluster, we cannot estimate these 
values using the maximum-likelihood method, we need 
to define the probability density as a linear function of 
the cluster’s distribution densities:

where πk is the mixing coefficient for cluster’s k 
distribution.

We then can compute:

making use of the maximum log-likelihood method. 
Using Bayes’ theorem, we can define a random variable 
βk(X) = p(k|X) , and compute as:

If the derivative of p(X |µ,�,π) = 0 with respect to 
µ and π , then the maximum value of the log-likelihood 
function is reached, thus the parameters can be esti-
mated by computing:

and
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where 
∑N

n=1 βk(xn), is the total number of data points in 
cluster k, n is the total number of samples xi.

The expectation maximization algorithm initializes 
µk ,�k , and πk with random values, followed by estimat-
ing the latent variables ( βk) , and by updating the param-
eters’ values. Having estimated the parameters of each 
Gaussian, we can proceed to cluster the data points.

Second trimester morphology scan dataset
The proposed AI powered decision support system was 
applied on a dataset containing second trimester fetal 
morphology scans. The data comes from a prospec-
tive cohort study implemented in a maternity hospital 
in Romania, University Emergency County Hospital of 
Craiova. The participants are pregnant patients that have 
admitted themselves at the Prenatal Unit of the County 
Hospital for the second trimester morphology scan. Prior 
to the standard consultation and ultrasound scan, the 
OB-GYN doctors members of the research team, have 
informed the patients about the conducted research and 
invited them to take part of the study. After the patients 
understood the study’s implication, we obtained their 
written consent.

The OB-GYN team members have a minimum 
2-year experience and are board certified in perform-
ing transabdominal obstetrical ultrasound. The images 
were acquired using Logic e (GE Healthcare, China US 
machines with 2–5-MHz, 4–8-MHz, and 5–9 MHz cur-
vilinear transducers) and Voluson 730 Pro (GE Medical 
Systems, Zipf, Austria). The dataset contains 3279 images 
of the fetal abdomen collected from 215 patients. The 
images were anonymized and secured. The data was split 
into 9 decision classes: 3 vessels plus bladder plane (591 
images), abdominal circumference plane (421 images), 
anteroposterior kidney plane (373 images), bladder 
plane (217 images), echogenic plane (258 images), gall-
bladder plane (332 images), longitudinal kidney plane 
(622 images), cord insertion sagittal plane (215 images), 
transabdominal cord insertion plane (250 images). Fig-
ure 3 presents a sample image from each view plane.

As it can be easily seen, the dataset is unbalanced, 
but this is a common scenario encountered in clinical 
practice. Since this is an ongoing study, the doctors are 
recording images from the classes that have fewer sam-
ples. All data was processed and artefacts and text were 
removed. This task was performed using CV2 and Keras-
OCR. Using Optical Character Recognition, the text was 
detected in images and removed. Around each text, the 
algorithm created a bounding box containing its coor-
dinates. The boxes had masks applied onto, which the 
algorithm inpainted with the surrounding pixels. Figure 4 
shows an image before and after this preprocessing step.
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A data generator was used to create more samples in 
the dataset. In this way, the overfitting effect is avoided. 
Each image was transformed using shear rage = 0.2, 
zoom range = 0.2, rotation range = 20, width shift 
range = 0.1, height shift range = 0.1, brightness range 
∈ [0.7, 1.4] . The images were then resized to 224 × 224 
px. As the project progresses, images are dynamically 
added to the dataset, as more and more ultrasounds 

are performed. The version of the dataset is no longer 
available. Permission on the up-to-date version of the 
second trimester fetal morphology dataset is available 
upon request.

Using LabelStudio (https:// label stud. io/), the doc-
tors have labeled each anatomical structure that can be 
assessed in each view plane. Thus, the following organs 
have been labeled in each view-plane:

Fig. 3 Sample image from each class: 3 vessels plus bladder plane; abdominal circumference plane; anteroposterior kidney plane; bladder plane; 
echogenic plane; gallbladder plane; longitudinal kidney plane; cord insertion sagittal plane; transabdominal cord insertion plane

Fig. 4 On the left we have an unprocessed image with text and calipers, on the right we have the same image without the text and calipers, which 
have been removed with CV2 and Keras OCR

https://labelstud.io/
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 a). 3 vessels and bladder view plane: bladder, vessels;
 b). abdominal circumference plane: aorta, confluence, 

rib, spine, stomach;
 c). anteroposterior kidney plane: basin, kidney;
 d). bladder plane: bladder;
 e). echogenic plane: intestines;
 f ). gallbladder plane: gallbladder;
 g). longitudinal kidney plane: kidney;
 h). cord insertion sagittal plane: intestines, wall_and_

cord;
 i). transabdominal cord insertion plane: wall_and_

cord.

Results
Our study was three-fold: a). to find out which DL per-
forms better at extracting features from images and use 
it to transform the image dataset into feature vector data-
set; b). to find out which clustering techniques clusters 
best the feature vectors and use it to classify the data; c). 
to apply YOLO8 to segment the images clustered in the 
previous step.

YOLO is short for You Only Look Once. YOLO has 
the ability to perform real-time object detection by just 
one step through the neural network, making it fast as 
well as efficient. Traditional CNNs use complex multi-
stage pipelines, making the computational load signifi-
cantly higher. Clustering methods are also computational 
expensive when dealing with high-dimensional feature 
spaces. Since, our aim is creating an autonomous tool 
for the morphology scan that can be used in real-time 
by the medical professionals, we needed to use a method 
that offered substantial speed improvement, so we chose 
YOLO. YOLO is able to detect and localize objects, by 
providing bounding boxes around the regions of interest 
(ROI), whereas clustering focuses on grouping pixels with 
similar properties. Lastly, YOLO is more accurate than 
clustering since it is a supervised learning technique.

In this section, we will cover the experimental results 
obtained by the DL competitors when applied to extract 
features from images, followed by the experimental 
results obtained by the clustering competitors when 
applied to cluster the feature vectors extracted by the best 
DL. We have used the following setting for the experi-
ments: the dataset was divided into training and test-
ing and hold out the images from one patient for testing 
purposes. This setting was proposed and used in order to 
avoid potential information leakage.

We have performed power analysis to compute how 
many independent computer runs are needed to achieve 
a statistical power of 95% with type I error α = 0.05. 
The power analysis revealed that we need a sample size 
of 50 independent computer runs, therefore all the DL 

algorithms have been run for 50 times in a complete 
tenfold cross-validation cycle. In Table 1 we present the 
performance results of the 5 DLs in terms on average 
accuracy (ACA) over 50 computer runs and SD.

From Table 1, we can see that the best performing DL 
was DenseNet121, followed by ResNet50 and Incep-
tionV3. VGG16 performed the poorest. Looking at the 
SD, we can see that even if the performances differ in 
terms of accuracy, all models are robust, the SD ranging 
between 1.60 and 2.03.

Since the performance of AI algorithms cannot be 
compared only by comparing accuracies, we have contin-
ued our statistical analysis with the data screening pro-
cess, necessary if we wish to apply one-way ANOVA. The 
data screening process involved performing Anderson–
Darling and Jarque–Bera tests for verifying the normal-
ity of the sample data, and Levene and Brown-Forsythe 
tests for verifying the equality of variances. Both Ander-
son–Darling and Jarque–Bera tests revealed that the 50 
independent computer runs samples are normally dis-
tributed (p-level > 0.05). In terms of the equality of vari-
ances, even if in some cases (DenseNet121 vs. VGG16, 
and DenseNet121 vs. VGG19, ResNet50 vs. VGG16, and 
ResNet50 vs. VGG19) the tests showed that the samples 
do not have equal variances (p-level < 0.05), we can make 
use of the fact that we have the same number of observa-
tions in our samples (50 independent computer runs) and 
presume that the variances are equal, and proceed with 
applying one-way ANOVA and post-hoc Tukey test.

One-way ANOVA test results are: sum of squares =  
54,812, degrees of freedom = 4, mean squares = 10,384, 
F-value = 2076.3, and p-level = 0.000 (contrast quad-
ratic polynomial) [25]. From these results it is clear that 
there are significant differences between the DLs’ perfor-
mances, the only thing remaining to be discovered being 
between which DL are those differences. The post-hoc 
Tukey test showed that there are significant statistical 
differences between all models except DenseNet121 and 
ResNet50 (p-level > 0.05).

Taking into consideration the results of the statistical 
analysis, we decided to continue our experiment using 
DenseNet121. The next step in our AI powered decision 

Table 1 Performance of DL algorithms (average accuracy (ACA) 
and standard deviation (SD)

Model ACA SD

VGG-16 68.23 1.99

VGG-19 74.12 2.03

ResNet50 89.23 1.88

DenseNet121 93.11 1.60

InceptionV3 81.23 1.87
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support system was to cluster the feature vector extracted 
by DenseNet121 using k-means, mean-shift clustering, and 
GMM. We have used the same sample size, 50 independ-
ent computer runs, for building the performance samples 
of the three clustering methods. The clusters’ performances 
in terms of ACA and SD are displayed in Table 2.

From Table 2, we see that the best performing cluster-
ing in mean-shift clustering reaching an average accu-
racy of 92.95%, and a SD of 2.14, proving its robustness. 
GMM method obtained an average accuracy of 89.56% 
with a 2.01 SD. K-means performed the poorest, having 
an accuracy below 70%.

The data screening process showed that all perfor-
mances samples are governed by the Normal distribu-
tion, except k-means (p-level < 0.05). However, because 
the sample size is large enough (> 30 samples) the dis-
tribution tends to have a ‘normal’ shape, even if it is not 
governed by the Normal distribution [26]. The proof of 
this assumption can be found in the Central Limit The-
orem, and also in the t-table, where if look at the t val-
ues for 30 degrees of freedom, we see that they become 
almost equal to the z statistics value.

Having these prerequisites checked, we proceeded with 
applying one-way ANOVA and post-hoc Tukey. The results 
of one-way ANOVA are sum of squares = 37,231, degrees 
of freedom = 2, mean squares = 7251, F-value = 627.2, and 
p-level (contrast quadratic polynomial) = 0.000. The post-
hoc Tukey revealed that there are significant differences 
between all models. After performing this statistical analy-
sis, we concluded that the most suited clustering algorithm 
for this case is mean-shift clustering.

Besides the overall accuracy of the system, it is 
important to see the performance of differentiating 
between view planes per view plane. Hence, Fig. 5 pre-
sents the confusion matrix. We can see that most view 
planes are differentiated with accuracies, except echo-
genic. The clinical explanation for this fact is that the 
differences between the echogenic view plane and sag-
ittal view plane is the presence of the wall and cord, 
otherwise the images are almost identical.

The next natural step before applying YOLO8 to seg-
ment the anatomical organs, is to ask ourselves why 
not use YOLO8 for view plane differentiation. Hence, 
we have made a quantitative comparison between our 

framework and YOLO8 performances on a hold-out 
test set. Taking into account the hypothesis of Wolp-
ert and Macready, that there is ‘no-free-lunch’, we have 
considered our framework and YOLO8 as the ‘restau-
rants’, and the performance as the ‘dish’. In our case, 
the framework obtained better results when it came to 
view-plane differentiation of the fetal abdomen. Table 3 
presents their performance in terms of ACA and SD.

The final aim of our study was to apply YOLO8 to 
segment the anatomical organs, after clustering the 
view planes. Thus, after establishing which standard 
view plane we are dealing with, we applied YOLO8 and 
segmented the organs. Figure 6 shows the segmentation 
confusion matrices obtained for each view plane.

After training the AI model on the training data, we 
have quantitatively assessed the organ detection perfor-
mance on real-time video ultrasounds (Fig. 7). We have 
measured the performance of the system using preci-
sion, recall, F1-score, Jaccard Index, and Probabilistic 
Rand Index. An important step in detecting the organs 
represents differentiating between the view planes, 
because many organs look the same, for example the 
bladder, the gallbladder and the stomach are repre-
sented by a black circle, hence without a proper plane 
detection, the system cannot differentiate between 
them. Therefore, the first step of the system, the clus-
tering process, is needed.

In Table  4, we present the performance scores of 
YOLO8 for organ segmentation in real-time ultrasound 
movie. Additionally, the confusion matrix for the detec-
tion of each organ is presented in Fig.  6. The reported 
results for this experiment give us an indication of how 
the framework performs in a real scenario, that we 
observe in clinical practice. From Fig. 6 and Table 4, we 
see that the all the classes are differentiated very good, 
except the echogenic view plane. Regarding the organs, 
we have a very high detection rate, F1-score equal or 
above 0.9, for vessels, bladder, gallbladder, wall and cord 
(sagittal plane), a high detection rate, F1-score between 
0.8 and 0.9, for stomach, intestines, kidney, intestines, 
and a fair detection rate, F1-score between 0.7 and 0.8, 
for rib and wall and cord (transversal plane). These 
accuracy levels are good in clinical practice, taking into 
account the fact that by breathing and moving the fetus 
changes the view planes instantly. Therefore, the most 
important part is to correctly differentiate between the 
view planes, before proceeding to segmenting the organs.

Discussion
The above study was three-fold: a) to determine which 
DL algorithm is best suited to extract features from 
images for the clinical case in question, b) to determine 
which clustering technique groups best the extracted 

Table 2 Performance of clustering algorithms (average accuracy 
(ACA) and standard deviation (SD)

Model ACA SD

k-means 68.93 3.02

Mean-shift 92.95 2.14

GMM 89.56 2.01
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features, and c) to segment the anatomical organs in 
each classified view-plane using YOLO8. Having five 
state-of-the-art DL algorithms we have applied them on 
our dataset to extract the features from images. After 
benchmarking the DL algorithms, we have established 

that the best suited for this case is DenseNet121. We 
have applied three clustering techniques to group the 
feature vectors obtained after using DenseNet121. After 
benchmarking the clustering methods, we concluded 
that mean-shift clustering performed the best. We have 
used DenseNet121 and mean-shift clustering on a hold-
out test and classified the images from one patient into 
the nine standard view planes of the fetal abdomen. Once 
we had the images classified, we applied YOLO8 and 
segmented the organs in each view plane. This AI pow-
ered decision support system proved to be efficient when 
applied onto this dataset. The AI system can be applied 
on other data after retraining.

Fig. 5 Confusion matrix for clustering view planes using the proposed framework

Table 3 Comparison between the proposed framework and 
YOLO8 for image classification

Model ACA SD

Proposed framework 88.88 2.02

YOLO8 83.20 1.98
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Fig. 6 Confusion matrices for segmentation: 3 vessels plus bladder plane; abdominal circumference plane; anteroposterior kidney plane; bladder 
plane; echogenic plane; gallbladder plane; longitudinal kidney plane; cord insertion sagittal plane; transabdominal cord insertion plane
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Fig. 7 Automated segmentation of organs per view plane using Yolo: 3 vessels plus bladder plane; abdominal circumference plane anteroposterior 
kidney plane; bladder plane; echogenic plane; gallbladder plane; longitudinal kidney plane; cord insertion sagittal plane; transabdominal cord 
insertion plane

Table 4 Detailed classification per organ using real time ultrasound movie

View plane Organ Precision Recall F1‑score Jaccard Index Probabilistic 
Rand Index

3 vessels plus bladder Bladder 0.891 0.882 0.886 0.883 0.850

Vessels 0.923 0.942 0.931 0.933 0.921

Abdominal circumference Aorta 0.660 0.656 0.759 0.753 0.723

Confluence 0.792 0.799 0.796 0794 0.764

Rib 0.742 0.701 0.733 0.731 0.702

Spine 0.755 0.748 0.754 0.746 0.721

Stomach 0.861 0.872 0.870 0.869 0.812

Bladder Bladder 0.988 0.976 0.978 0.979 0.934

Echogenic Intestines 0.862 0.894 0.890 0.875 0.864

Gallbladder Gallbladder 0.981 0.975 0.987 0.980 0.964

Longitudinal kidney Kidney 0.832 0.876 0.871 0.846 0.852

Cord insertion sagittal Intestines 0.833 0.803 0.822 0.832 0.819

Wall and cord 0.911 0.906 0.909 0.901 0.899

Transabdominal cord insertion Wall and cord 0.763 0.733 0.744 0.759 0.745
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The proposed AI powered decision support system 
is a promising step forward to signaling birth defects 
automatically. The system is able to detect correctly 
the view plane and the organs in that view plane. We 
proposed an intelligent tool that can assist unexperi-
enced sonographers in performing second trimester 
fetal morphology scans. It should be noted that the 
system detected correctly the view planes and organs 
when applied on real time ultrasound movie. Future 
work will focus on another AI component of the sys-
tem which will perform anomaly detection on the seg-
mented organs. We have demonstrated the framework’s 
ability for a real-time localization of the abdomen view 
planes, and for a real-time localization of the organs in 
these planes.

Our approach is up-front and adaptable in different 
characteristics:

• We proposed a statistical benchmarking analysis that 
provided a good discrimination between the DL and 
clustering methods.

• The AI powered decision support system is easy to 
use and understand.

• The system is flexible and can be adapted to other 
clinical cases.

Conclusions
We have proposed an AI powered decision support 
system that benchmarks different DL algorithms in the 
task of extracting features from 2D ultrasound scan 
images regarding second trimester fetal morphology. 
The extracted feature vectors are then clustered using 
three different clustering techniques. The results of the 
clustering process are once again statistically analyzed 
and the best performing method is used in the testing 
phase. We have compared our framework with YOLO8 
on hold-out test images and demonstrated that our 
method outperforms YOLO8 in view plane classification 
on this particular dataset. Finally, YOLO8 was used to 
segment the organs on real-time ultrasound movie. The 
results of the systems are promising, and the design is 
straightforward.

Future work might lie in:

• Extending the study to other body zone: skull, limbs, 
etc.

• Using other DL and clustering algorithms.
• Designing an engine control unit that runs the AI 

system on a whole fetal morphology scan.
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