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Abstract 

Deep learning has been increasingly utilized in the medical field and achieved many goals. Since the size of data 
dominates the performance of deep learning, several medical institutions are conducting joint research to obtain 
as much data as possible. However, sharing data is usually prohibited owing to the risk of privacy invasion. Federated 
learning is a reasonable idea to train distributed multicenter data without direct access; however, a central server 
to merge and distribute models is needed, which is expensive and hardly approved due to various legal regula‑
tions. This paper proposes a continual learning framework for a multicenter study, which does not require a central 
server and can prevent catastrophic forgetting of previously trained knowledge. The proposed framework contains 
the continual learning method selection process, assuming that a single method is not omnipotent for all involved 
datasets in a real‑world setting and that there could be a proper method to be selected for specific data. We utilized 
the fake data based on a generative adversarial network to evaluate methods prospectively, not ex post facto. We 
used four independent electrocardiogram datasets for a multicenter study and trained the arrhythmia detection 
model. Our proposed framework was evaluated against supervised and federated learning methods, as well as fine‑
tuning approaches that do not include any regulation to preserve previous knowledge. Even without a central server 
and access to the past data, our framework achieved stable performance (AUROC 0.897) across all involved datasets, 
achieving comparable performance to federated learning (AUROC 0.901).
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Introduction
With the importance of the size of available data in the 
deep learning process, multicenter study is one of the 
most common approaches in studies using medical data. 
However, using personal information in medical institu-
tions is mainly prohibited, and obtaining permission to 
access data requires several arduous procedures, such as 
approval of the institutional review board evaluating the 
potential risk of using data. Even though access to data is 
approved, sharing or taking out data is mostly precluded, 
and additional approval is required according to the 
bylaws of each institution. Thus, merging and training all 
involved data at once is practically difficult.
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Federated learning is one of the alternatives for decen-
tralized data [1–4]. In federated learning, models are 
distributed to be trained, aggregated periodically, and 
distributed again [5]. Federated learning only shares 
the weights of the trained model without direct access 
to data, alleviating the potential risk of privacy invasion 
caused by data sharing. Nevertheless, federated learn-
ing requires a central server which is challenging to con-
struct since there are various legal regulations regarding 
the server containing several institutions [6–9]. Assum-
ing the environment without a central server, executing 
federated learning is infeasible because automatically 
merging and distributing trained models until they con-
verge are not available.

As an alternative to federated learning, we propose a 
continual learning framework for a multicenter study. 
The goal of continual learning is gradually extending 
acquired knowledge without catastrophic forgetting [10, 
11]. Although continual learning intrinsically focuses 
on the problems with the sequential stream of data, we 
reduced the given distributed environment of a multi-
center study to the sequential tasks; the data from each 
institution is provided one by one, and the knowledge 
from the preceding trained model is retained by sup-
pressing catastrophic forgetting. In this way, the model 
is trained to fit all involved datasets. Continual learning 
can be executed without a central server and requires less 
communication compared to federated learning which 
needs a central server and communication until the 
model reaches a convergence state which is unclear when 
to reach.

Several magnificent continual learning methods have 
been developed; however, a major challenge in apply-
ing these methods to a multicenter study is selecting 
the most proper one for the specific and inaccessible 
preceding dataset. To our best knowledge, most studies 
proposing their continual learning methods evaluated 
the performance retrospectively. In other words, those 
studies compared their methods to the baselines using 
all datasets after all experiments were finished. However, 
access to only the current institution’s dataset is possible 
in a real-world setting, and it may be necessary to use a 
particular method that is suitable for the specific data, 
rather than relying on the state-of-the-art method.

Inspired by this issue, we focus on selecting a proper 
continual learning method for each institution in a mul-
ticenter study. All involved institutions are assumed 
to prohibit data sharing strictly and only allow shar-
ing parameters of the trained model. Under this cir-
cumstance, we propose an algorithm to choose the best 
among the concerned methods while training, not after. 
The main idea here is that the synthesized data from 
the generative adversarial network (GAN) is introduced 

to equivalently evaluate the performance of the model 
trained by each continual learning method. To alleviate 
the potential risk of privacy invasion caused by the fake 
data, we randomly paired patient demographic data to 
the generated ECG and increased the difficulty of patient 
identification. In experiments, we used four different 
openly accessible electrocardiogram (ECG) datasets: 
Shaoxing and Ningbo Hospital ECG Database [12], PTB-
XL [13], Georgia 12-Lead ECG Challenge Database [14], 
and China Physiological Signal Challenge in 2018 (CPSC 
2018) [15]. Our contributions are as follows:

• We propose an algorithm to select the most suitable 
continual learning method in a multicenter study 
under a segregated environment without access to 
preceding datasets. To our best knowledge, this is the 
first approach to compare continual learning meth-
ods in advance, not ex post facto.

• Under the real-world setting involving institutions 
with different data distribution and data collection 
equipment, we validated our proposed method using 
four independent real-world ECG datasets.

• We utilized the fake data based on GAN to equiva-
lently evaluate the model’s performance trained by 
each continual learning method. We mitigated the 
potential privacy risk of the fake data by randomly 
pairing demographic data to the generated ECG.

Related work
Federated learning
Federated Learning assumes that several mobile devices 
have privacy-sensitive data, and merging all data into sin-
gle storage for training is not allowed. Each device sends 
the trained model to the central server, and those mod-
els are merged and distributed to each device repeatedly 
[16]. Federated learning can be categorized into hori-
zontal and vertical federated learning; horizontal feder-
ated learning is introduced when datasets share the same 
feature space but are different in samples, and vertical 
federated learning is the opposite [17]. In this study, a 
horizontal federated learning setting is applied, assum-
ing that the size of input data from each institution is 
matched.

Continual learning
The goal of continual learning is to learn a new task while 
preserving pre-trained knowledge [10, 11]. However, as 
new tasks are added, it is inevitable to degenerate the 
performance of previously learned tasks. This phenom-
enon is called the stability-plasticity dilemma. Stability 
implies preserving previous knowledge, and plasticity 
implies integrating new knowledge [18, 19]. Continual 
learning methods are distinguished into three categories 
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which are (1) replay method, (2) regularization-based 
method, and (3) parameter isolation method. The replay 
method uses samples from previous data or synthesizes 
fake data to train the model with current task data. The 
primary considerations of the replay method are how 
many samples to store, which representative samples to 
choose, and how to synthesize data to retain the previous 
distribution [20–22]. Meanwhile, storing sampled data 
may cause privacy invasion. Compared with the replay 
method, the regularization-based method does not 
require previously sampled data. Instead, it uses the addi-
tional term in the loss function to maintain the weights 
of essential parameters from the previous model with-
out sampling past data [23–25]. Similarly, the parameter 
isolation method does not use sampled data. However, it 
differs from the regularization-based method because it 
fixes parameters allocated to each task. Thus, the number 
of all tasks should be defined in advance [26].

Generative adversarial network
To equivalently evaluate the stability of continual learn-
ing, this study introduces synthesized data of generative 
adversarial network (GAN). GAN was first introduced by 
Goodfellow et  al. in 2014 [27]. The GAN has two main 
components: generator and discriminator. The genera-
tor maps a random noise to the input space, and the dis-
criminator classifies whether the received data is real or 
synthesized. Despite the brilliant idea of the GAN, it is 
well-known to be hard to train because no converging 
point exists. Wasserstein GAN (WGAN) proposed by 
Arjovsky et  al., used the Wasserstein-1 distance defined 
as the distance between two different distributions [28]. 
With the WGAN setting, the discriminator does not clas-
sify samples as real or fake but is used to calculate Was-
serstein-1 distance. To apply Wasserstein-1 distance as 
a differentiable loss function, however, weight clipping 
is necessary to maintain the discriminator to be 1-Lip-
schitz. To deal with weight clipping, Gulrajani et  al. 
proposed WGAN with a gradient penalty (WGAN-GP) 
[29]. While most GANs focused on synthesizing images, 
Donahue et  al. presented GAN for audio (WaveGAN) 
[30]. WaveGAN introduced phase shuffle operation to 
distract the generator from learning trivial periodic fea-
tures of audio. Based on WaveGAN, Thambawita et  al. 
proposed an electrocardiogram (ECG) synthesizer, 
Pulse2Pulse, which follows the overall process of Wave-
GAN but modifies the architecture in accordance with 
the structure of the standard ECG waveform data [31].

Electrocardiogram
Electrocardiogram (ECG) is an essential test performed 
during a medical check and contains much informa-
tion about cardiac electrical activities [32]. Throughout 

medical checks, clinicians can determine potential 
heart conditions according to the basis of ECG infor-
mation. The conventional ECG is measured by mul-
tiple electrodes placed on a person’s limbs and chest. 
The channel of the ECG is determined according to 
the position of the used electrodes, and the ECG is 
composed of 12 channels (leads). Several studies have 
shown the potential of artificial intelligence-aided ECG 
analysis. Kwon et  al. and Lin et  al. showed significant 
performance in detecting imbalance of electrolytes, 
including potassium, sodium, and calcium, using ECG 
and deep learning methods [33, 34]. Also, Raghunath 
et  al. used a deep neural network (DNN) to predict 
mortality from 12-lead ECG [35]. Kiyasseh et  al. pro-
posed CLOCS, the novel contrastive learning method 
for the effective representation of ECG [36]. CLOCS 
showed state-of-the-art performance on the down-
stream task, arrhythmia (abnormality in a heartbeat) 
detection.

Preliminaries
Continual learning method candidates
As the basic idea of this study is to select an appropri-
ate continual learning method for the specific dataset, we 
considered three regularization-based continual learning 
methods as the candidates: Learning without Forgetting 
(LwF) [23], Elastic Weight Consolidation (EWC) [24], 
and Memory Aware Synapses (MAS) [25]. LwF preserves 
preceding knowledge by adding the knowledge distilla-
tion loss proposed by Hinton et  al. to the loss function 
[37]. The loss function for LwF is as follows:

where l is the number of labels, � is a hyperparameter set-
ting the importance of the old task, and yo′(i) , yo′(i) are 
the knowledge distillation applied currently recorded 
probabilities y(i)o  , ŷo(i) with a hyperparameter T :

EWC is an algorithm that retains important parameters 
close to their old values. To discover important parame-
ters that contain preceding information, EWC introduces 
the Fisher information matrix F  which is approximated 
from the Gaussian distribution of parameters. Accord-
ingly, the loss function for EWC is as follows:

(1)

L
∣∣∣= Lnew

(
Yn, Ŷn
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′(i)

)

(2)yo
′(i) =

(
y
(i)
o

)1/T

∑
j

(
y
(i)
o

)1/T , ŷo
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where LB(θnew) is the loss for the new task only, and θ 
is the weights of the model’s parameters. Fisher informa-
tion matrix is equivalent to the second derivative of the 
loss near a minimum and can be computed from first-
order Taylor expansion of the loss, so that easy to calcu-
late even for large models [38].

MAS also retains important parameters close to their 
old values, but instead of calculating gradients of the loss 
function, it uses the gradients of the squared �2 norm of 
output from the trained model. Thus, the importance 
weight �i for parameter θi is:

where M is trained model, xk is k-th data point, and N  is 
the number of data points. The loss function for MAS is 
equivalent to Eq. (3) by changing F  to �i as follows:

Arrhythmia detection model
In this study, each institution trains a model to detect 
arrhythmia based on ECG data, age, and sex. The model 
has three layers: an ECG waveform processing layer 
based on residual one-dimensional convolutional neu-
ral networks, a patient information processing layer that 
uses a multi-layer perceptron (MLP), and an arrhyth-
mia detection layer that uses another MLP to return the 
probability of arrhythmia based on the concatenated out-
puts of the previous two layers. The model’s architecture 
is shown in Fig. 1, and the detailed configuration of the 
model is described in Table 1. Note that this architecture 
was used in several studies using physiological signals 
[35, 39]. We empirically modified the architecture for 
arrhythmia detection.

Methods
In this section, we present a continual learning frame-
work for a multicenter study, as shown in Fig. 2. First, we 
present our continual learning method selection algo-
rithm in a segregated environment without access to 
any previous data. Then, we describe the process of con-
structing fake data using a GAN-based ECG synthesizer.

Framework notations
We represent each continual learning method as Ml 
for l ∈ {1, · · · , N} . Dk is the data of k-th institution. The 
model parameters trained by Ml and Dk are defined as 
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k . The best-performing model’s parameters are denoted 

as θ*k . Note that the initial state of the training model at 
the k-th institution is θ*k−1 . Sk is the synthesizer trained 
by Dk , and DSk is the fake data by Sk . For continual learn-
ing method selection, each θlk is evaluated by the accumu-
lated fake data 

{
DS1 , · · · , DSk−1

}
 . Every k-th institution 

transfers the selected model θ*k , and the accumulated fake 
data 

{
DS1 , · · · , DSk

}
 to the following institution.

Continual learning method selection
Some studies on continual learning have succeeded and 
advanced the field, but they measured their performance 
using all the data at once after finishing all their experi-
ments. This approach makes sense for determining the 
best method, but it’s not practical in real-world multi-
center studies where accessing past data is not permitted. 
Additionally, it’s hard to guarantee that a single method 
will work well for all the datasets involved.

Accordingly, we assume that there is a suitable con-
tinual learning method depending on the dataset. To 
find the most suitable one, the stability of candidate 
methods should be compared under the equivalent 

Fig. 1 The architecture of the arrhythmia detection 
model. The representations of ECG waveforms and patient 
information including age and sex are concatenated and pass 
through the arrhythmia detection layer to return the probability 
of arrhythmia
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condition without preceding data. In this study, the 
equivalent condition is fulfilled by the fake data, which 
is equally utilized to evaluate given methods, and the 
stability is defined as the performance of a method cal-
culated by the fake data.

The optimal hyperparameters of continual learning 
methods such as � in Eqs.  (1), (3), and (5) should also 
be determined without preceding data. We referred to 
the continual hyperparameter selection introduced by 
De Lange et  al. [10]. Our proposed continual learning 

Table 1 Configuration of arrhythmia detection model. n indicates the batch size

Kernel Size

ECG Processing Layer

 Input (n, 12, 5000)

 Block1 (stride = 2) (11, 12, 8 × 12 = 96) (n, 96, 1250)

 Block2 (stride = 2) (7, 96, 96) (n, 96, 313)

 Block3 (stride = 2) (5, 96, 96) (n, 96, 80)

 Block4 (stride = 1) (5, 96, 96)×2 (n, 96, 80)

 Block5 (stride = 1) (5, 96, 96)×2 (n, 96, 80)

 Block6 (stride = 1) (5, 96, 16 × 12 = 192) (n, 192, 40)

 Block7 (stride = 1) (5, 192, 192) (n, 192, 40)

 Block8 (stride = 1) (5, 192, 192) (n, 192, 40)

 Block9 (stride = 1) (5, 192, 32 × 12 = 384) (n, 384, 20)

 Block10 (stride = 1) (5, 384, 384) (n, 384, 20)

 Block11 (stride = 1) (5, 384, 384) (n, 384, 20)

Patient Information Processing Layer

 Input (n, 2)

 Dense1 (2, 32) (n, 32)

 Dense2 (32, 64) (n, 64)

 Dense3 (64, 64) (n, 64)

Arrhythmia Detection Layer

 Input (n, 384 × 20 + 64 = 7744)

 Dense1 (7744, 512) (n, 512)

 Dense2 (512, 256) (n, 256)

 Dense3 (256, 2) (n, 2)

Fig. 2 Flowchart of continual learning framework for a multicenter study
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method selection process in each institution is illus-
trated in Algorithm 1.

Algorithm 1 Continual learning method selection

The proposed algorithm consists of three steps: First, 
the previous model θ*k−1 is finetuned by Dk without any 
regulation to preserve previous knowledge, and the base-
line performance p* and the corresponding model hyper-
parameters h*k are returned. Second, the trained model 
parameters θlk for the corresponding continual learning 
method Ml are determined. In this step, the previous 
model θ*k−1 is trained by Ml . The continual hyperparam-
eters Hl are initially set to maximize stability and then 
alleviated by the decaying factor α until the performance 
of the current data meets the reference value, which is 
the dropped baseline performance (1− δ)p* , where δ is 
the performance drop margin. In the last step, each θlk is 

evaluated by the previously accumulated fake data DSk−1
 . 

Then the best-performing model’s parameters θ*k are 
selected and returned.

Fake data construction
This study mainly focused on comparing various continual 
learning methods in the process of multicenter study. In this 
context, to reflect reality, we assumed a precluded environ-
ment where access to other data is not available when only 
one data can be accessed for training models at one step, 
and we used the synthesized data as surrogate of real data 
for equivalent evaluation of the stability of the model trained 
by each continual learning method. As an ECG waveform 
synthesizer, Pulse2Pulse proposed by Thambawita el al., was 
used [31]. The original Pulse2Pulse generates an 8-channel 
ECG composed of lead I, II, and V1 to V6, and constructs 
the rest of the leads (III, aFR, aVR, aVL) by linear calcula-
tion of the eight leads. Since it was not verified whether the 
excluded leads (III, aFR, aVR, aVL) of all used datasets were 
calculated or directly measured, we modified the size of the 
layers of Pulse2Pulse’s generator and discriminator to syn-
thesize the full 12-lead ECG. Keeping the original setting of 
Pulse2Pulse, only the sizes of the discriminator’s input layer 
and the generator’s input and output layers were changed 
from 8 to 12. The training data were separated into groups 
with and without arrhythmia, and the generator was trained 
using the data from each group. To preserve the approxi-
mate age and sex distributions of the original data, we ran-
domly sampled data of age and sex from each group and 
randomly paired them to the synthesized waveforms of the 
corresponding group. Note that this process maintains the 
joint distribution of age and sex, not the complete distribu-
tion including waveforms. By this approach, we increased 
the difficulty of identifying individuals, ensuring that the 
synthesized ECG and corresponding demographic informa-
tion differed significantly from the original data. Meanwhile, 
even though some prior studies have explored human iden-
tification using ECG [40, 41], there is currently no standard-
ized technique for identifying individuals by ECG, and as 
pointed out by Thambawita et al., generating realistic syn-
thetic data can be an alternative solution to privacy issues 
[31]. In this way, our fake data construction process allevi-
ated the potential risk of privacy invasion.

Data and code availability
All datasets used for the development and validation 
of the proposed framework in this study are publicly 
available [12–15]. The code for ECG and demographic 
data preprocessing, model development, and all experi-
ments including arrhythmia detection and fake data 
construction is available in our source code repository 
at https:// anony mous. 4open. scien ce/r/ CLMS- FB72.

https://anonymous.4open.science/r/CLMS-FB72
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Experiments and results
Datasets
We conducted experiments using four publicly avail-
able ECG datasets (Shaoxing and Ningbo Hospital ECG 
Database, PTB-XL, Georgia 12-Lead ECG Challenge 
Database, and CPSC 2018) including arrhythmia labels 
[12–15]. Each 12-lead ECG was sampled with a fre-
quency of 500 Hz for 10 s. All datasets contain age and 
sex information. In this study, we used ECGs with ages 
between 18 and 100. The baseline characteristics of all 
datasets are shown in Table 2. The ECGs were filtered 
by 0.5 to 40  Hz using a fifth-order bandpass Butter-
worth filter and scaled to range from − 1 to 1. All data-
sets were randomly split into training, validation, and 
test sets according to an 8:1:1 ratio.

Training on a single domain
We first considered the effect of our continual learn-
ing framework on a single domain, as a “weak” multi-
center study. Training on a single domain assumes the 
plain condition that the datasets are collected from 
each site independently having different cohort distri-
butions, but the recording device and regional factors 
are shared. PTB-XL was used as a single domain and 
split into four non-IID (not independent and identically 
distributed) data because the arrhythmia of the dataset 
was most evenly distributed.

Non‑IID data generation
The splitting procedure is as follows: First, divide the 
dataset into four groups based on age 60 and sex [42]. 
Second, randomly subdivide each group into ten sub-
groups. Then for each group, randomly select three sub-
groups among ten subgroups, and distribute them to the 
other three groups except itself. In this way, four non-IID 
data corresponding to each site are generated, and the 
summary of baseline characteristics is shown in Table 3.

Training on multiple domains
Non-IID data from a single domain may reflect the 
segregated environment to some extent. However, a 

real-world multicenter study consists of more differ-
ent datasets in the aspect of the cohort distribution, the 
data collecting devices, the structure of databases, and 
other hardly explainable regional factors such as overall 
income level, ethnicity, and climate. Accordingly, we set 
the experiment on multiple domains as a “strong” multi-
center study, using four independently different datasets, 
PTB-XL ECG dataset (PTB-XL), Shaoxing and Ningbo 
Hospital ECG Database (Shaoxing), Georgia 12-Lead 
ECG Challenge Database (Georgia), and CPSC2018 
dataset (CPSC). As shown in Table  1, PTB-XL has a 
ratio of arrhythmia much different from the rest data-
sets. Regarding data devices, the PTB-XL dataset was 
recorded by devices from the Schiller AG, while the 
Shaoxing dataset was recorded by the GE MUSE ECG 
system. As to region, Georgia was collected in the USA, 
while Shaoxing and CPSC were collected in China.

Experimental details
Supervised learning
For the baseline of supervised learning, we trained the 
arrhythmia detection model using individual data from 
each site and all merged data. Cross entropy loss was 
to be minimized considering the class imbalance of the 
training set as follows:

where N is the number of training data, li is the loss of i-
th data, and yi is the label of i-th data. The training epoch 
was set to 100, and the model with the best validation 
area under the receiver operating characteristic curve 
(AUROC) was selected. The model was optimized by 
Adam [43], with a learning rate of 0.0001, and the batch 
size was set to 256.

Federated learning
FedAvg by McMahan et  al. was adopted as a baseline of 
federated learning [16]. The parameter averaging process is 
as follows:

ℓ
(
x, y

)
=

N∑

i=1

N
∑N

j=1 1
{
yj = yi

} li

Table 2 Baseline Characteristics of all datasets. The mean and 
standard deviation of age, the percentages of the male sex, and 
arrhythmia are presented

All Datasets Shaoxing PTB-XL Georgia CPSC

N 42,299 21,374 10,197 6696

Age 60.79 ± 16.41 59.82 ± 16.42 60.54 ± 15.4 61.18 ± 17.9

Male sex 18,445 (43.61) 10,152 (47.50) 4722 (46.31) 3092 (46.18)

Arrhythmia 34,689 (82.01) 11,996 (56.12) 8485 (83.21) 5876 (87.75)

Table 3 Baseline Characteristics of non‑IID groups of PTB‑XL. 
The mean and standard deviation of age, the percentages of the 
male sex, and arrhythmia are presented

PTB-XL Site 1 Site 2 Site 3 Site 4

N 5305 4740 5705 5624

Age 51.71 ± 14.98 51.0 ± 16.38 66.48 ± 12.71 68.14 ± 13.47

Male sex 1015 (19.13) 3619 (76.35) 1015 (17.79) 4503 (80.07)

Arrhythmia 2678 (50.48) 1897 (40.98) 3875 (67.92) 3546 (63.05)



Page 8 of 13Kim et al. BMC Medical Informatics and Decision Making           (2024) 24:67 

where wt denotes the merged data, wk
t  the updated 

parameter of k-th institution, K the number of involved 
institutions, n the total number of data, nk the number of 
data of k-th institution. We additionally conducted feder-
ated learning experiments with FedProx by Li et al. [44], 
which adds an L2 regularization term to the loss function 
L in the local training of FedAvg as follows [45]:

where µ is a hyperparameter that controls the 
regularization.

For every round, each site trained the model accord-
ing to the manner of supervised learning with 20 epochs, 
and the training was early stopped if there was no increase 
of the AUROC for more than five epochs. This process 
was repeated for 30 rounds, and the model with the best 
weighted average AUROC was selected. The formula for 
weighted average AUROC in this study is as follows:

where Ni denotes the number of data in the i-th institu-
tion, N the total number of data across all institutions.

Finetuning and continual learning
For finetuning and continual learning, the order of the 
sites should be considered. However, since there is no 

wt ←

K∑

k=1

nk

nw

k

t

∼

L← L+
µ

2
� wk

t − wt�
2
2

Weighted average AUROC =
∑

i

Ni

N
× AUROCi

standard ordering technique [10], we arbitrarily deter-
mined training order by sorting from small to large and 
vice versa based on each site’s dataset size (N in Tables 1 
and 2). For each site, the training epoch was set to 100, 
and the training process was early stopped if there was 
no increase in the AUROC for more than ten epochs. No 
regularization was applied to finetuning. Continual learn-
ing followed Algorithm 1, and LwF, EWC, and MAS were 
used as method candidates. For the hyperparameter of 
each method, � in Eqs. (1), (3) and (5) was used and ini-
tially set to 1, and T in Eq. (2) was set to 10, empirically. 
The decaying factor α and performance drop margin δ 
were also empirically set to 0.9 and 0.95, respectively.

Generative model training
To evaluate continual learning methods, we used syn-
thesized data from a generative model. As a generative 
model, we adopted the modified Pulse2Pulse to synthe-
size 12-lead ECGs. The training epoch was set to 2000, 
and the early stopping was activated if there was no 
decrease of the negative critic loss of WGAN-GP for 
more than 100 epochs [29]. The model was optimized by 
Adam [43], with a learning rate of 0.0001, and the batch 
size was set to 64. For the ECG synthesizer, the genera-
tor was trained once while the discriminator was trained 
for five epochs. The parameters of the first trained syn-
thesizer were transferred to the following site, and the 
parameters were used to initialize the new synthesizer to 
reduce the training time. Note that we only transferred 
the trained synthesizer with no previously sampled data. 
A sample of synthesized normal ECG is shown in Fig. 3. 
The comparison of ECG features extracted from the 

Fig. 3 A sample of synthesized normal 12‑lead ECG from PTB‑XL
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original and synthesized ECG is shown in Supplemen-
tary Table  1, confirming that our generator successfully 
addressed mode collapse [46].

Computational information
The total numbers of parameters and the floating-point 
operations (FLOPs) of the arrhythmia detection model, 
ECG generator, and ECG discriminator were 6,631,234, 
10,634,969, and 203,923,151 and 0.211G, 0.321G, and 
6.385G FLOPs, respectively. We utilized 2 AMD EPYC 
7763 CPUs and 1 NVIDIA RTX A6000 GPU for our 
implementation. For the arrhythmia detection task, we 
allocated 5473  MB GPU memory with a batch size of 
256 for training and achieved a training time of approxi-
mately 0.08 s per batch. During the ECG generating task, 
we allocated 21,569 MB GPU memory with a batch size 
of 64 and obtained a training time of 2.54 s per batch.

Experimental results
Performance on a single domain
The test performances of all methods on a single domain 
are presented in Table  4. Note that the overall AUROC 
was calculated by the weighted average AUROC 
described in Federated Learning section. We trained the 
model using all merged data assuming full accessibil-
ity, the performance of supervised learning for merged 
data showed consistently better performance than single 
supervised learning. The overall performance was best 
in our proposed framework with large-to-small order, 
resulting in an AUROC = 0.914, but since the data from 
all sites are derived from the identical dataset, PTB-XL, 
the performance difference between the methods was 
hypothesized not to be very large. Figure  4 shows the 
fluctuation of validation AUROC of all methods as the 

training process goes on. For continual learning method 
selection, the selection rates of LwF, EWC, and MAS 
throughout all experiments were 10.0%, 40.0%, and 
50.0%, respectively.

Performance on multiple domains
In Table  5, the test performances of all methods on 
multiple domains are presented. In supervised learn-
ing, the performance were improved by training with 
the merged data including each other, but the perfor-
mance on PTB-XL, which has a significantly differ-
ent arrhythmia ratio compared to the other datasets, 
became worse (AUROC 0.930 → 0.842). FedAvg and 
FedProx also showed weak performance on PTB-XL 
with an AUROC of 0.751 and 0.735, while the overall 
performance was best with an AUROC of 0.901 and 
0.900, respectively. Finetuning with small-to-large 
order showed the best performance for the Shaox-
ing dataset; however, this is because the model was 
trained by the Shaoxing dataset at last in this order. 
The result of the large-to-small order showed the best 
performance in CPSC2018 because of the same rea-
son. Among all methods, only continual learning with 
large-to-small order achieved AUROC over 0.87 on all 
datasets, with an overall AUROC = 0.897, which is only 
0.004 lower than the best score (FedAvg). The results 
of the small-to-large order showed relatively weak per-
formance than the large-to-small order like finetuning, 
but the decline in performance during the training was 
much smaller than finetuning. For all orders, continual 
learning maintained the performance of each site as 
training progressed by suppressing catastrophic forget-
ting, as shown in Fig. 5. For continual learning method 
selection, the selection rates of LwF, EWC, and MAS 

Table 4 Test performances of all methods on a single domain (PTB‑XL) are presented. The mean and standard deviation across five 
random seeds are shown. Bold reflects the method with the best performance. The overall performance is the weighted average 
AUROC by the number of data in each site. Bold is the best and underlined is the second best

Site 1 Site 2 Site 3 Site 4 Overall

Supervised (baseline)

 Single data 0.874 ± 0.010 0.902 ± 0.013 0.890 ± 0.003 0.894 ± 0.009

 Merged data 0.903 ± 0.013 0.935 ± 0.010 0.910 ± 0.009 0.911 ± 0.008 0.914 ± 0.010

Federated

 FedAvg 0.901 ± 0.003 0.917 ± 0.007 0.909 ± 0.006 0.915 ± 0.006 0.910 ± 0.005

 FedProx 0.902 ± 0.003 0.925 ± 0.004 0.906 ± 0.008 0.906 ± 0.004 0.909 ± 0.003

Finetuning

 Small to Large 0.899 ± 0.006 0.918 ± 0.003 0.903 ± 0.005 0.905 ± 0.004 0.906 ± 0.003

 Large to Small 0.889 ± 0.005 0.926 ± 0.005 0.898 ± 0.006 0.903 ± 0.004 0.903 ± 0.004

Continual

 Small to Large 0.894 ± 0.010 0.923 ± 0.009 0.907 ± 0.010 0.904 ± 0.010 0.906 ± 0.009

 Large to Small 0.903 ± 0.006 0.929 ± 0.011 0.916 ± 0.007 0.909 ± 0.006 0.914 ± 0.007
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throughout all experiments were 53.3%, 16.7%, and 
30.0%, respectively.

Discussion
In this study, we proposed a continual learning frame-
work for a multicenter study with a segregated envi-
ronment where data sharing is strictly prohibited. 

We focused on evaluating various continual learning 
methods without preceding data during the training, 
not after. The fake data was synthesized from a proper 
generative model to evaluate each continual learning 
method equivalently, and in this process, no raw data 
was shared. To mitigate the potential risk of privacy 
invasion, we randomly paired the sampled demographic 

Fig. 4 Validation AUROC of all methods on a single domain. (upper left) supervised learning, (upper right) federated learning, (lower left) continual 
learning (small to large), (lower right) continual learning (large to small). Results are averaged across five random seeds and the shaded part 
indicates one standard deviation

Table 5 Test performances of all methods on multiple domains are presented. The mean and standard deviation across five random 
seeds are shown. The overall performance is the weighted average AUROC by the number of data in each site. Bold is the best and 
underlined is the second best

Shaoxing PTB-XL Georgia CPSC Overall

Supervised (baseline)

 Single data 0.994 ± 0.001 0.930 ± 0.003 0.874 ± 0.008 0.867 ± 0.019

 Merged data 0.977 ± 0.003 0.842 ± 0.023 0.916 ± 0.002 0.924 ± 0.007 0.929 ± 0.005

Federated

 FedAvg 0.980 ± 0.004 0.751 ± 0.013 0.901 ± 0.007 0.876 ± 0.013 0.901 ± 0.003
 FedProx 0.984 ± 0.001 0.735 ± 0.010 0.906 ± 0.004 0.882 ± 0.007 0.900 ± 0.003

Finetuning

 Small to Large 0.994 ± 0.000 0.584 ± 0.017 0.829 ± 0.013 0.768 ± 0.017 0.845 ± 0.007

 Large to Small 0.839 ± 0.055 0.856 ± 0.024 0.874 ± 0.023 0.939 ± 0.003 0.856 ± 0.027

Continual

 Small to Large 0.935 ± 0.010 0.785 ± 0.023 0.876 ± 0.012 0.871 ± 0.013 0.883 ± 0.006

 Large to Small 0.908 ± 0.020 0.873 ± 0.026 0.896 ± 0.004 0.912 ± 0.007 0.897 ± 0.005



Page 11 of 13Kim et al. BMC Medical Informatics and Decision Making           (2024) 24:67  

data to the synthesized waveform, disturbing the origi-
nal data distribution. Our proposed framework with 
proper order (large-to-small) showed competitive 
performance (AUROC 0.897) compared to federated 
learning (AUROC 0.901) and successfully suppressed 
catastrophic forgetting regardless of the dataset. Beyond 
the performance, our framework has higher utility than 
federated learning since continual learning does not 
require a central server which is an essential compo-
nent of federated learning. The selection rates of method 
candidates (LwF, EWC, MAS) were not one-sided, and 
this verifies our assumption that a single method is not 
omnipotent for all involved datasets in a real-world set-
ting and there could be a proper method to be selected 
for specific data.

There are several future works to improve the study. 
We proposed the continual learning method selection 
process based on the fake data by a generative model. 
However, discovering and training a proper generative 
model for specific kinds of data requires a lot of effort. 
Towards the goal of equivalent evaluation of contin-
ual learning methods, considering more efficient and 
mathematically reasonable evaluation processes would 
be a future work. Continual learning methods usually 

have the additional term in loss function to control 
catastrophic forgetting. Thus, directly comparing these 
terms in a coordinated scale would reduce the evalu-
ation time without a generative model. On the other 
hand, there could be persistent privacy risks despite 
utilizing fake data, and thus, we plan to evaluate pri-
vacy invasion through reasonable metrics for privacy-
preserved fake data. Also, we performed experiments 
with orders from small to large and vice versa to set 
the order according to the criteria (despite weak sig-
nificance) instead of random ordering, because there 
is no standard ordering technique yet [10]. However, 
this approach might not be feasible if there are many 
sites or the sample size in each domain is similar or 
dynamic, and the other ordering techniques are to 
be further explored. Meanwhile, this study was per-
formed with standard 12-lead ECGs with a frequency 
of 500 Hz for 10 s, so the methods of the study should 
be validated by another format of ECG, such as Holter 
monitor records, overcoming diverse measurement 
environments simultaneously. Lastly, expanding con-
tinual learning method candidates and analyzing the 
impact of our framework on the other models, such as 
lightweight deep learning models, remains future work.

Fig. 5 Validation AUROC of all methods on multiple domains. (upper left) supervised learning, (upper right) federated learning, (lower left) 
continual learning (small to large), (lower right) continual learning (large to small). Results are averaged across five random seeds and the shaded 
part indicates one standard deviation
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