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Abstract 

Background Pre-operative risk assessment can help clinicians prepare patients for surgery, reducing the risk of perio-
perative complications, length of hospital stay, readmission and mortality. Further, it can facilitate collaborative 
decision-making and operational planning.

Objective To develop effective pre-operative risk assessment algorithms (referred to as Patient Optimizer or POP) 
using Machine Learning (ML) that predict the development of post-operative complications and provide pilot data 
to inform the design of a larger prospective study.

Methods After institutional ethics approval, we developed a base model that encapsulates the standard manual 
approach of combining patient-risk and procedure-risk. In an automated process, additional variables were included 
and tested with 10-fold cross-validation, and the best performing features were selected. The models were evalu-
ated and confidence intervals calculated using bootstrapping. Clinical expertise was used to restrict the cardinality 
of categorical variables (e.g. pathology results) by including the most clinically relevant values. The models were 
created with logistic regression (LR) and extreme gradient-boosted trees using XGBoost (Chen and Guestrin, 2016). 
We evaluated performance using the area under the receiver operating characteristic curve (AUROC) and the area 
under the precision-recall curve (AUPRC). Data was obtained from a metropolitan university teaching hospital 
from January 2015 to July 2020. Data collection was restricted to adult patients undergoing elective surgery.

Results A total of 11,475 adult admissions were included. The performance of XGBoost and LR was very similar 
across endpoints and metrics. For predicting the risk of any post-operative complication, kidney failure and length-
of-stay (LOS), POP with XGBoost achieved an AUROC (95%CI) of 0.755 (0.744, 0.767), 0.869 (0.846, 0.891) and 0.841 
(0.833, 0.847) respectively and AUPRC of 0.651 (0.632, 0.669), 0.336 (0.282, 0.390) and 0.741 (0.729, 0.753) respectively. 
For 30-day readmission and in-patient mortality, POP with XGBoost achieved an AUROC (95%CI) of 0.610 (0.587, 0.635) 
and 0.866 (0.777, 0.943) respectively and AUPRC of 0.116 (0.104, 0.132) and 0.031 (0.015, 0.072) respectively.

Conclusion The POP algorithms effectively predicted any post-operative complication, kidney failure and LOS 
in the sample population. A larger study is justified to improve the algorithm to better predict complications 
and length of hospital stay. A larger dataset may also improve the prediction of additional specific complications, 
readmission and mortality.
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Introduction
The adoption and deployment of electronic health records 
(EHRs) has facilitated the accessibility of large patient 
datasets. Machine learning (ML) has succeeded in diverse 
arenas, demonstrating an ability to operate on large and 
complex datasets. At the intersection of EHR data and 
the progress of ML, is an opportunity to develop tools for 
personalised medicine. Currently, the most common ML 
applications in medicine are in imaging [1, 2]. An upcom-
ing frontier is surgical risk prediction [3].

Surgery is often the only option to alleviate disability 
and reduce the risk of death from common conditions. 
Millions of people annually undergo surgical treatment, 
and surgical interventions account for an estimated 13% 
of the world’s total disability-adjusted life years (DALYs). 
Even in the most advanced hospital systems, there is a 
high mortality and complication rate [4, 5], risks of direct 
harm to patients and high financial costs. The WHO rec-
ognises these issues as major worldwide health burdens 
[6]. Fortunately, a substantial number of these complica-
tions are preventable [7].

Pre-operative risk assessment allows clinicians to 
mitigate adverse outcomes, better inform patients and 
their families about surgical outcomes and risks and 
plan post-operative care [8, 9]. The first generation of 
risk calculators exists, such as the American College of 
Surgeons National Surgical Quality Improvement Pro-
gram (NSQIP) [10] and the Surgical Outcome Risk Tool 
(SORT) [11]. They are based on linear statistical tech-
niques and are designed to use a low number of input 
parameters to be convenient for manual data entry. 
These approaches do not exploit the data available in 
modern EHR systems. Additionally, most provide mor-
tality risk only. There are also manual risk assessments 
such as American Society of Anesthesiologists (ASA) 
Physical Status Classification [12] that are effective but 
subjective. It is often difficult for clinicians to find the 
data and calculate the score manually; therefore, they are 
rarely used [13].

In recent years, more sophisticated algorithms have 
been developed using ML. They typically predict a wider 
range of outcomes than traditional risk calculators and 
incorporate a larger set of input features made available 
by EHR data. The most common prediction outcomes are 
mortality and post-surgical complications such as acute 
kidney injury, delirium, deep vein thrombosis, pulmo-
nary embolism and pneumonia. ML can be more effec-
tive than traditional methods [13] such as ASA, CCI, 
POSSUM [14] and NSQIP [15] and can be more effective 

than human experts [16]. Various techniques have been 
used such as deep learning [17, 18], logistic regression 
[19, 20], generalised additive models (GAMs) [5] and 
decision trees [15, 21–25]. Further, some studies focus on 
harmonising EHR data [17], testing existing approaches 
on suitability for local populations [3, 19] or predicting 
the use of the readmission prevention clinic [21].

Most of the studies in the literature cited above, focus 
on the prediction of mortality and complications; how-
ever, additional endpoints are clinically meaningful. 
Some studies such as [17, 25], utilise sequences of vital 
sign measurements, unstructured notes and radiological 
images, but in many hospitals, those data are not practi-
cally obtainable.

Study aims
This study aims to use readily available EHR data to 
develop interpretable ML risk prediction algorithms to 
standardise and improve clinical decision-making. The 
target endpoints are length-of-stay (LOS), complications, 
unplanned 30-day readmission and in-patient mortality. 
Our definition of readily available EHR data is patient 
history, excluding unstructured notes and radiological 
imaging. The algorithms should be interpretable as the 
ultimate objective is to provide information that is under-
standable, actionable and trusted in a clinical setting.

Method
Study design
This was a single-centre cohort study with retrospec-
tive data collection in adult patients (aged ≥ 18 years) 
who underwent any elective surgical procedure at Austin 
Health between 1st January 2015 and 31st July 2020. Aus-
tin Health is a university teaching hospital in Australia, 
with a high volume of surgeries across multiple sub-
specialities that are performed annually. We restricted 
cases to elective surgery, which comprises ∼85% of surgi-
cal cases in Australia [26] and where there is the great-
est opportunity to mitigate risk, based on perioperative 
risk prediction. Currently risk predictors such as ASA 
and NSQIP are standard tools used by perioperative phy-
sicians to assess risk in elective surgery patients. First 
and foremost, elective surgery affords time for a thor-
ough pre-operative evaluation and optimisation of the 
patient and the opportunity to choose many factors that 
influence their care, such as theatre location (ICU avail-
ability), blood availability, and many others. In addition, 
predictions have operational utility, for example for plan-
ning and scheduling to ensure higher patient throughput.
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We developed risk assessment models for the target 
endpoints following the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines for risk prediction [27].

Our approach was to begin with a base model that 
emulates a standard approach internationally for surgical 
risk assessment, exploiting two key dimensions: patient-
risk and procedure-risk. Each was derived from clinical 
expertise provided by perioperative clinicians with at 
least 10-years of postgraduate experience and familiar-
ity with risk stratification for surgical morbidity. The next 
step was to iteratively add features to the base model, 
resulting in a unique set of features for each model.

Model development
We evaluated our method with two model types. First, 
logistic regression (LR) (using scikit-learn [28]), a widely 
accepted and relatively straightforward linear approach, 
which served as a baseline. Second, we compared to 
extreme gradient-boosted decision trees (XGBoost, using 
the XGBoost package [29]), a more complex algorithm 
that is capable of capturing non-linear decision bounda-
ries and interactions between features. XGBoost models 
are interpretable and among the best performing for tab-
ular data.

There are four main stages to the method. The Data 
source provides data forPre-processing that reduces 
dimensionality and transforms relational data into a tab-
ular form suitable for algorithm consumption.Feature 
selection selects a subset of features to optimise predic-
tion scores for each endpoint. Finally, anEvaluation of 
the models is performed with bootstrapping. The pipe-
line is illustrated in Fig. 1 and elaborated below.

Data source
The Data Analytics and Research Evaluation (DARE) 
Centre provided a data extract from the Austin Health 

Cerner EHR system. A total of 11,475 unique admis-
sions were included, covering all elective adult surgical 
procedures.

The raw data includes:

• patient demographic details (age, weight, height, gen-
der)

• procedures performed (primary/scheduled and 
other)

• other procedural information (including details of 
the admission and episode)

• pathology results
• medications prescribed during admission
• comorbidities: diagnoses using the International 

Classification of Diseases (ICD-10-AM, 9th Edition)
• Charlson comorbidity index (CCI) derived from the 

ICD codes
• complications, indicated by ICD codes

Pre‑processing
After filtering and cleansing the data, we derived fea-
tures from raw values: body mass index (BMI) and the 
two features used for the base model, namely estimates of 
patient-risk and procedure-risk (“Study design” section). 
The process is illustrated in Fig. 2.

Patient-risk is a proxy for ASA [12]. It is an ordinal 
numerical value calculated through the patient’s diagno-
ses (using ICD codes). Each ICD code was scored by a 
clinician as either included or excluded from patient risk 
(score of 0 or 1). In addition, codes that represented ‘can-
cerous’ or ‘cardiopulmonary and vascular’ were scored 
higher (score of 2). The total of the ICD risk scores attrib-
utable to a patient admission was used to calculate the 
patient-risk.

Procedure-risk is an ordinal categorical value cal-
culated using a clinically determined risk rating (low, 

Fig. 1 Data processing pipeline
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medium or high) of the scheduled surgical procedure, 
which was estimated as the earliest non-preparatory 
procedure.

We reduced dimensionality where possible to reduce 
overfitting and improve interpretability. We grouped pro-
cedure names by anatomical region. Although all patient 
episodes are elective, the individual procedures can be 
varying levels of elective or emergency, referred to as pro-
cedure type. The procedure type was reduced to a binary 
category. For laboratory results, we selected a priori eight 
clinically relevant variables, namely haemoglobin, albu-
min, creatinine, urea, international normalised ration, 
platelet count, activated partial thromboplastin time, and 
estimated glomerular filtration rate. We grouped patient 
medications by therapeutic class. Finally, very infrequent 
categories were grouped into an ‘other’ bucket. Dimen-
sionality reduction is summarised in Fig. 2.

Categorical data was one-hot encoded. Where there 
were one-to-many relationships (such as admission to 
medications) the reduction methods were chosen to pro-
vide the most clinically relevant summary.

Missing categorical data were treated as legitimate 
input by creating a ‘missing’ category. Missing numerical 
data were imputed with XGBoost’s in-built mechanism 
and by using the median for LR. For LR, numerical data 
was standardized (using scikit-learn’s StandardScaler). 
Class balancing was achieved by applying a higher weight 
to under-represented classes.

See Supplementary Materials, Section  1 for more 
details on pre-processing.

Feature selection
Highly correlated (or collinear) features were removed 
due to their redundancy. We used the variance infla-
tion factor method for multi-collinearity analysis with 
a threshold of 10 [30, 31]. Variables with very low vari-
ance were removed by detecting features where the ratio 
between the highest occurring value and the second 

highest was greater than 19, a large threshold to avoid 
losing valuable information [32].

After training and scoring the base model consisting of 
patient-risk and procedure-risk (“Study design” section), 
an automated iterative process added and tested new fea-
tures. Each available feature was individually added to the 
model and evaluated using area under the receiver oper-
ating characteristic curve (AUROC) with 10-fold cross-
validation. The feature that achieved the highest gain in 
score was added to the selected feature set and the search 
restarted. The remaining features were re-tested in sub-
sequent iterations, after which the composition of the 
selected feature-set had changed. The process continued 
until all features were used and then the model with the 
highest score was selected.

Hyperparameter tuning then took place to optimise 
results (see Supplementary Materials, Section 2).

Predicted outcomes
Length-of-stay (LOS) was framed as multiclass classifi-
cation. We identified three dominant groupings through 
visual inspection of the distribution (see Fig.  3) and 
defined them by ordering and then segmenting the data 
into three equally sized buckets. The resulting groups 
were ‘low’ ( ≤ 31 hours), ‘medium’ (31 – 117 hours), and 
‘high’ ( ≥117 hours), equating to one night, two to four 
nights and five nights or more. The ranges were vali-
dated through clinical review. There was a classifier for 
each bucket and the prediction was the classifier with the 
highest confidence. The labels (low, medium and high) 
do not describe clinical significance, which depends 
on the procedure type. For example, ‘medium’ duration 
may be considered prolonged for a simple procedure, 
whereas ‘medium’ may be expected for a more complex 
procedure.

Unplanned 30-day readmission (hereafter abbreviated 
to ‘30-day readmission’), in-patient mortality and the 
presence of complications (as indicated by the ICD code) 
were explicitly labelled in the dataset.

Fig. 2 Dimensionality reduction and calculated features
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Evaluation
The final score and confidence intervals were calculated 
with non-parametric bootstrapping using 1,000 itera-
tions. For each iteration the training set size was the same 
as the whole dataset. As bootstrapping involves sampling 
with replacement, this resulted in approximately 70% 
unique samples for training, leaving the left-out 30% for 
testing.

Performance metrics
Several metrics were used to assess and measure per-
formance: area under the receiver operating character-
istic curve (AUROC), area under the precision-recall 
curve (AUPRC) and F1 (FBeta, where beta = 1). AUROC 
is most common in related literature. A drawback of 
AUROC is that it can be misleading on extremely rare 
classes such as mortality and readmission. In such cases, 
it can achieve an artificially high score because the true 
negatives dwarf the false positives1. AUPRC is more 
informative with extremely rare labels [14, 33]. It indi-
cates the trade-off between precision (the proportion of 
true positives of all predicted positives), also referred to 
as positive predictive value (PPV), and recall (the propor-
tion of true positives of all positives). F1, the harmonic 
mean of precision and recall, is also suitable for rare 
classes. We used micro-averaging to calculate the area 
under the curve for multiclass predictions.

In addition to the single metric derived from the ‘area’ 
under the respective curves AUROC and AUPRC, we 
also inspected the profiles of the curves, showing how 
they perform at different operating points.

Interpretability
To visualise the relative importance of features for each 
model, we utilised two methods. The first was XGBoost 
feature importance, based on the average gain of splits 
per feature. The other was SHapley Additive exPlana-
tions (SHAP) [34] which uses cooperative game theory to 
assign partial credit to the input variables for the model’s 
output. Both methods indicate feature importance from 
different perspectives. XGBoost feature importance gives 
direct insight into the internal structure of the learned 
trees and provides a single absolute value for impor-
tance. SHAP treats the model as a black box and bases 
the importance on the observed behaviour of the model. 
The plots are more informative, showing the distribution 
of observed values and the corresponding directionality 
of the impact on the model.

To visualise the features’ influence on specific predic-
tions for individual patients, we used SHAP. We plotted 
typical true positives for each of the effective models to 
demonstrate how SHAP can be used to help make spe-
cific predictions actionable.

The predictions combined with visualisations could 
allow clinicians to understand the most important fea-
tures in general, while providing per-patient feedback 
on the key features contributing to a prediction. Conse-
quently, clinicians can take appropriate actions to address 
patient or procedure factors to minimise risk.

In addition, the predictions together with visualisa-
tions could enable hospitals to improve decision making, 
such as pre-admission patient optimization or capacity 
planning i.e. booking theatres or hospital resources. For 
example, if a patient is expected to have a longer than 
expected length-of-stay, the hospital administration 

Fig. 3 Length-of-stay: Training data are segmented into 3 classes, to cast predicting length-of-stay as multiclass classification. There is a clear 
periodicity around whole days. The x-axis is truncated at 200 hours to provide detail in the most interesting range. The trend continues past 200 
hours with a steady monotonic decrease in magnitude

1 False Positive Rate is FP/(FP+TN). If FP is high, but TN is very large, the 
denominator remains high and the rate low.
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could anticipate that they would take up a hospi-
tal bed for a period longer than typical for the relevant 
procedure.

Results
Data characteristics
A total of 11,475 adults were included. There were 41 
(0.36%) occurrences of in-patient mortality and 941 
(8.2%) occurrences of 30-day readmissions. There were 
4,351 (37.92%) complications. The number of occur-
rences of low, medium and high LOS were 3,868 (33.7%), 
3,790 (33.0%) and 3,817 (33.3%), respectively. The data 
characteristics are presented in Table 1.

Accuracy
The results are summarised in Tables  2 and 3, and the 
ROC and PR curves are shown in Figs.  4 and 5. We 
selected only those specific complications with an ade-
quate number of positive examples to make training 

feasible (above a threshold of 100 (0.8%), including kid-
ney failure, arrhythmia, delirium and heart failure. Other 
complications such as cardiac or respiratory arrest, liver 
failure, pulmonary embolism, and respiratory failure did 
not have sufficient data points.

For predicting the risk of any post-operative compli-
cation, kidney failure and LOS, XGBoost achieved an 
AUROC (95%CI) of 0.755 (0.744, 0.767), 0.869 (0.846, 
0.891) and 0.841 (0.833, 0.847) respectively and AUPRC 
of 0.651 (0.632, 0.669), 0.336 (0.282, 0.390) and 0.741 
(0.729, 0.753), respectively; LR achieved an AUROC 
(95%CI) of 0.747 (0.735, 0.76), 0.883 (0.863, 0.901) and 
0.822 (0.815, 0.829) respectively and AUPRC of 0.646 
(0.628, 0.665), 0.308 (0.258, 0.363) and 0.719 (0.707, 0.73), 
respectively. Refer to the  table for full results of other 
specific complications.

For 30-day readmission and in-patient mortal-
ity, XGBoost achieved an AUROC (95%CI) of 0.61 
(0.587, 0.635) and 0.866 (0.777, 0.943), respectively and 

Table 1 Data characteristics: The first column shows the number of affirmative cases for binary fields and the number of unique 
values for multivalue categorical fields. The second column shows the number of admissions with a valid value (e.g., if height is 
missing, it is deemed invalid). Empty cells denote N/A

# Affirmative / # Categories # Valid values Median Mean (SD)

Demographics
M 6,234 (54.33%) 11,475 (100.00%)

F 5,241 (45.67%) 11,475 (100.00%)

Age 11,475 (100.00%) 62.00 59.24 (17.81)

Height 4,958 (43.21%) 167.00 166.01 (14.63)

Weight 6,920 (60.31%) 81.00 84.13 (21.46)

Derived features
BMI 4,931 (42.97%) 29.38 32.10 (14.09)

Procedure-risk 11,475 (100.00%) 1.00 1.63 (0.71)

Patient-risk 11,475 (100.00%) 3.00 4.06 (3.13)

Other
Emergency procedure 1,416 (12.34%) 11,475 (100.00%)

Categorical fields
Procedures 911

Medication 923

Pathology 75

Table 2 Performance of risk models

Prediction # Cases (prevalence) Model AUROC (95% CI) AUPRC (95% CI) F1 Value (95% CI)

In-patient mortality 41 (0.36%) XGBoost 0.866 (0.777, 0.943) 0.031 (0.015, 0.072) 0.057 (0.000, 0.167)

Logistic regression 0.914 (0.811, 0.956) 0.044 (0.019, 0.114) 0.044 (0.028, 0.063)

30-day readmission 941 (8.20%) XGBoost 0.610 (0.587, 0.635) 0.116 (0.104, 0.132) 0.122 (0.078, 0.156)

Logistic regression 0.622 (0.599, 0.645) 0.130 (0.113, 0.149) 0.189 (0.171, 0.206)

Length-of-stay N/A XGBoost 0.841 (0.833, 0.847) 0.741 (0.729, 0.753) 0.666 (0.654, 0.678)

Logistic regression 0.822 (0.815, 0.829) 0.719 (0.707, 0.730) 0.646 (0.634, 0.658)
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AUPRC of 0.116 (0.104, 0.132) and 0.031 (0.015, 0.072), 
respectively; LR achieved an AUROC (95%CI) of 0.622 
(0.599, 0.645) and 0.914 (0.811, 0.956), respectively and 
AUPRC of 0.13 (0.113, 0.149) and 0.044 (0.019, 0.114), 
respectively.

On visual inspection, the ROC curves provide reasona-
ble operating points for all models. Inspection of the pre-
cision-recall (PR) curves also shows some models have 
effective operating points; although the endpoints with 
extremely rare positive examples do not, including read-
mission, mortality, and the specific complications other 
than kidney failure. For LOS, accuracy was consistently 
higher for the two ends of the spectrum (low and high) 
compared to medium which experienced more class 
overlap than low or high.

The performance of XGBoost was very similar to 
LR, and there was no clear winner across metrics or 
endpoints.

Interpretability
For simplicity, we used one model type to explore inter-
pretability. We chose XGBoost, as the performance of 
XGBoost and LR was comparable, and XGBoost is capa-
ble of finding more complex relationships which may 
be relevant for other datasets. The selected features and 
their importance are shown for the effective models: 
complications in Fig. 6, kidney failure in Fig. 7 and LOS 
in Fig. 8. For terminology used in the figures, please refer 
to Table 4.

For all the models and visualisation methods, proce-
dure-risk and features representing the patient’s health 
(CCI summaries and patient-risk) are amongst the top 
factors. Patient-risk and CCI represent the patient’s over-
all health. Although patient-risk is derived from more 
specific and diverse comorbidities than CCI, the feature 
importance plots showed that across the cohort, CCI was 
an important factor particularly in the age-adjusted CCI 

[35], and comparable to patient-risk. However, patient-
risk and CCI are both valuable as they contain different 
information, as illustrated in the example of a specific 
patient high LOS, Fig.  10, where patient-risk and CCI 
have an opposing influence.

In addition to procedure-risk and patient health, 
there are other important features. For any complica-
tion (Fig.  6), XGBoost shows significant tree splits for 
some specific procedure groups: diabetes, total medica-
tion dosages and use of analgesics. The SHAP features 
are largely aligned, with differences in the relative values. 
For kidney failure (Fig. 7), related morbidities (diabetes, 
cancer) and pathology results (albumin, creatinine, urea, 
activated partial thromboplastin time and haemoglobin) 
are also important. For length-of-stay (Fig.  8), the fea-
tures had differing importance to the individual mod-
els (low, medium and high), although many features are 
unimportant for all models. Compared to the other mod-
els, specific procedure groups are relatively important.

Feature importance in specific predictions using SHAP 
plots is shown for correct predictions of a) kidney fail-
ure (Fig. 9) and b) ‘high’ LOS for a procedure that typi-
cally has a medium-term LOS (Fig. 10). The purpose is to 
show how SHAP can provide a convenient interpretation 
of the important factors for a given prediction.

Discussion
Key findings
In this single-centre cohort study in adult surgical 
patients, we developed effective pre-operative risk assess-
ment algorithms (POP) using machine learning, provid-
ing pilot data to inform the design of a larger prospective 
study. We found that POP algorithms were effective for 
predicting post-operative complications and LOS. How-
ever, a larger study is justified to further improve the 
algorithm for predicting specific complications, readmis-
sion and mortality.

Table 3 Performance of risk models for complications

Prediction # Cases (prevalence) Model AUROC (95% CI) AUPRC (95% CI) F1 Value (95% CI)

Any complication 4,351 (37.92%) XGBoost 0.755 (0.744, 0.767) 0.651 (0.632, 0.669) 0.621 (0.602, 0.639)

Logistic regression 0.747 (0.735, 0.760) 0.646 (0.628, 0.665) 0.629 (0.615, 0.644)

Heart failure 116 (1.01%) XGBoost 0.835 (0.773, 0.887) 0.101 (0.055, 0.181) 0.141 (0.097, 0.190)

Logistic regression 0.878 (0.834, 0.915) 0.101 (0.058, 0.184) 0.087 (0.071, 0.104)

Delirium 303 (2.64%) XGBoost 0.827 (0.793, 0.857) 0.139 (0.099, 0.187) 0.189 (0.153, 0.225)

Logistic regression 0.873 (0.851, 0.896) 0.181 (0.134, 0.233) 0.169 (0.150, 0.187)

Arrhythmia 341 (2.97%) XGBoost 0.794 (0.764, 0.822) 0.122 (0.092, 0.165) 0.148 (0.129, 0.169)

Logistic regression 0.831 (0.800, 0.859) 0.156 (0.121, 0.204) 0.155 (0.138, 0.171)

Kidney failure 505 (4.40%) XGBoost 0.869 (0.846, 0.891) 0.336 (0.282, 0.390) 0.326 (0.293, 0.359)

Logistic regression 0.883 (0.863, 0.901) 0.308 (0.258, 0.363) 0.285 (0.262, 0.309)
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Fig. 4 Receiver operating characteristic and precision-recall curves – readmission, mortality and length-of-stay. The mortality curves appear 
stepped due to the fact that there are only 7 positive samples
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The performance of logistic regression (LR) and 
XGBoost models was similar, with no clear winner across 
endpoints and metrics; suggesting that for this set of fea-
tures, a linear decision boundary is sufficient and there 
are no significant relationships between features. It is 
possible that with more patients and/or more features 
(such as patient notes and imaging), non-linear methods 
such as XGBoost would outperform LR. For simplicity, 
we focus on one model type, XGBoost, in the interpret-
ability results and for the remainder of the Discussion. 
We chose XGBoost as it is more capable and has superior 
ease-of-use.

Comparison to other methods
Comparing accuracy to other models in the literature is 
very difficult for several reasons. The quality and struc-
ture of different datasets vary greatly, cohort differences 
can influence results [36] and endpoints are often defined 
differently (e.g., 24 hours after admission compared to 
immediately before surgery). Moreover, the choice of 
performance metrics also varies. However, considering 
the difficulties, it can be useful to compare results to pro-
vide some context.

One of the studies that we compared to is  Rajkomar 
et al. [17]. Beyond tabular EHR data, they used additional 

Fig. 5 Receiver operating characteristic and precision-recall curves – complications. The mortality curves appear stepped due to the fact that there 
are only 7 positive samples
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data sources including radiological imaging, unstruc-
tured notes, vital sign measurements, time-series embed-
ding to handle these data streams, as well as ensembling 
of complementary models. While we consider it to be the 
‘gold-standard’, and therefore present it as context, we do 
not aim to match their scores. Our study investigates the 

feasibility of risk predictions with more limited and com-
monly available data sets.

In studies with similar objectives to ours, authors com-
pared LR and variations of Boosted Decision Trees such 
as XGBoost (as well as other algorithms) [14, 15, 25]. 
In general, the Boosted Decision Tree algorithms were 

Fig. 6 Feature importance for any complication: XGBoost gain (left) and SHAP (right), where each dot represents one sample, the colour indicates 
the value and the position on the x-axis indicates the impact (positive or negative) on model output. Refer to Table 4 for terminology

Fig. 7 Feature importance for kidney failure: XGBoost gain (left) and SHAP (right), where each dot represents one sample, the colour indicates 
the value and the position on the x-axis indicates the impact (positive or negative) on model output. Refer to Table 4 for terminology
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Fig. 8 Feature importance for length-of-stay using XGBoost gain. Refer to Table 4 for terminology
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superior to LR, although similarly to our results, Corey 
et al. [15] found LR and XGBoost had very similar perfor-
mance. Where Boosted Decision Trees had an advantage, 
it could be due to the difference in available features or 
in the methodology used in feature selection. The model 
development pipeline in our study selected the most suit-
able features for each algorithm, and as a result they may 
use different features to predict any particular label. In 
addition, there were differences in the set of predicted 

Table 4 Feature-name terminology

Term Meaning

DCCI Diagnosis via Charlson Comorbidity Index

DCCI_Score_A Age adjusted DCCI score [35] at admission

DCCI_Total_A Raw total DCCI score at admission

PGRP Procedure group

RESULT Pathology test result

THCL Medication (therapeutic class)

Fig. 9 SHAP visualisation for a specific patient’s risk of kidney failure. This is a True Positive (TP) prediction with a probability of 0.87. The length 
of the bar indicates the influence of that feature on the prediction. The colour indicates whether the influence is positive (red) or negative (blue). 
The grey value to the left of the feature name is the value of that feature for this patient

Fig. 10 SHAP visualisation for a specific patient’s length-of-stay. This is a True Positive (TP) prediction of a high length-of-stay, with a probability 
of 0.72. The length of the bar indicates the influence of that feature on the prediction. The colour indicates whether the influence is positive (red) 
or negative (blue). The grey value to the left of the feature name is the value of that feature for this patient
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outcomes; compared to mortality, ICU admission, and 
complications [14, 15, 25] our successful models also 
included length-of-stay. Regardless of which algorithm 
performed the best, these studies supported our findings 
that Machine Learning models can provide useful – and 
in the case of [25], interpretable – predictions, to assist 
clinical decision making.

Comparison to standard risk predictors
Standard risk predictors, such as ASA or CCI provide 
one score that captures patient risk. Such a score can 
be used to predict ‘general’ outcomes, such as the use of 
ASA to predict mortality and ICU Admission, but has 
been found to be less effective than ML approaches [14]. 
Moreover, it is not clear how to directly translate the 
score into more specific outcomes such as length-of-stay 
or specific complications. Such outcomes could provide 
additional administrative or clinical insights to assist with 
patient management and decision making.

However, standard risk predictors can be used as fea-
tures, as we did in this study. Feature importance analy-
sis showed that CCI and patient-risk (a proxy metric for 
ASA) are indeed significant contributors to model pre-
diction. Other features, such as pathology results or med-
ication classes, are also identified by the model as adding 
predictive value.

Evaluation metrics
The standard practice for evaluating risk prediction algo-
rithms is the ROC curve. Using ROC, all of our models 
appear to be effective. They have a good profile with via-
ble operating points, and relatively good AUROC. How-
ever the results using the PR curves reveal a different 
story. AUPRC for readmission and mortality is very low, 
and there are no satisfactory operating points on the pro-
file. The results confirm that ROC can be misleading for 
rare classes as suggested by [14] (and discussed in “Evalu-
ation” section). They demonstrate the importance of met-
rics that are insensitive to rare classes, such as AUPRC 
or FBeta for clinical algorithms. We used a relatively 
small dataset (see “Limitations” section). With more data 
and therefore more positive examples, the performance 
is likely to improve, as measured by both AUROC and 
AUPRC.

LOS prediction
LOS classification was very effective. There is LOS data 
for every admission, providing ample training signal, 
which is reflected in the ROC and PR curves. LOS pre-
dictions have both clinical and operational decision mak-
ing benefits. From a clinical perspective, a prolonged 
or ‘longer than expected’ stay prediction could prompt 
closer attention. From an operational perspective, these 

predictions could be used for scheduling to optimise for 
ward utilisation and selection of appropriate sites.

To the best of our knowledge, other ML risk predic-
tors did not consider LOS, except [17]. They predicted 
‘prolonged length-of-stay’, defined as ‘at least 7 days’, 
whereas POP predicts multivalue LOS: low, medium 
or high. Predicting multivalue LOS makes it possible to 
have a dynamic definition of ‘prolonged’ that depends 
on factors such as procedure and patient. For example, a 
medium stay (two to four nights) prediction could trigger 
‘prolonged’ for short-stay surgery (1 night) and healthy 
patients. Secondly, a more granular prediction allows 
better operational planning. Our accuracy, measured 
using AUROC, was comparable to [17], 0.841 compared 
to 0.85 and 0.86 (for two hospital sites respectively), 
despite fewer data types and a much smaller dataset. 
Unfortunately AUPRC was unavailable for comparison to 
gain a fuller picture.

Complication prediction
Results for predicting any complication were promising, 
with both AUROC and AUPRC having viable operating 
points. Of all the complications, four had adequate posi-
tive examples to train the models. These had reasonable 
ROC curves, but precision and recall showed that only 
kidney failure, which is less rare than the others, was a 
viable model.

In a clinical setting, positive predictions could be used 
as a general indicator that there is morbidity, and investi-
gations are warranted. An example of an operating point 
for kidney failure is approximate recall of 12%, and preci-
sion of 62%. Out of 100 patients with kidney failure, the 
model will identify approximately 12. Of those, approxi-
mately 62% (7.4) will actually develop kidney failure 
(true positives). If the information is presented so that it 
doesn’t give a false sense of security if not shown, then it 
can pick up when there is a case, aiding clinical care.

The results compare favourably to similar studies, 
despite a much smaller dataset (“Limitations”  section). 
Across specific complications, and using AUROC, POP 
XGBoost models scored 0.794 – 0.869 compared to 0.820 
– 0.940 [5], 0.772 – 0.909 [15] and 0.88 – 0.89 [17]. For 
any complication, POP XGBoost scored 0.755 compared 
to 0.829 – 0.836 in [15]. Again, PR results are unavailable 
for a more complete comparison. Precision (referred to 
as PPV or positive predictive value) was reported in [5], 
which showed the same pattern as POP with rare classes 
(i.e., the rarer classes generally have lower precision).

Interpretability
The introduction of ML often leads to improved per-
formance, but it can come at the cost of interpretability. 
We used XGBoost and SHAP feature importance plots. 
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They are intuitive and build trust in the model, helping to 
make it understandable and actionable.

The relative importance of features learned by the algo-
rithm aligns with clinical practice. For example, the high 
importance of procedure information combined with 
patient health is commonly used to assess the risk of 
surgery. Alignment with clinical practice provides confi-
dence that learning is effective and generalisable. Addi-
tionally, the relative weighting of feature importances 
can provide new insights into the relationship between 
features and outcomes. Although not causative, it indi-
cates a relationship, and warrants further investigation. A 
better understanding of the factors, especially modifiable 
ones, could impact clinical practice.

The first type of visualisation is the feature importance 
of the model in general, indicating systematic relation-
ships across samples in the dataset. The other type of 
visualisation was feature importance for specific predic-
tions, which highlights factors for individual patients. 
This information can provide an opportunity for more 
personalised risk mitigation.

We now explore kidney failure as a case study. The 
model highlighted comorbidities (Fig. 7) that align with 
current knowledge. Several pathology results are also 
considered important; for example, some known to be 
related to renal function such as creatinine and urea, and 
others that are generally indicative of post-operative out-
comes such as albumin [4], pathology related to coagula-
tion (INR, APTT, PLT) [37, 38] and heamaglobin (Hb) 
[39, 40]. Some procedure groups were protective: ‘trans-
urethral resection of the prostate’ (TURP), likely because 
it improves renal function; and ‘nose and facial sinus 
surgery’, likely because it is very low risk. The impor-
tance of ‘total knee replacement’ is unexpected, and war-
rants further investigation; for example, the underlying 
cause may be tourniquet time, length of surgery or even 
anaesthetic type.

Surprisingly, diabetes is protective. We hypothesise 
that patients with this condition are more actively man-
aged, so it is not picked up by the model, which learns 
from raw correlations. Alternatively, it could be due to 
conflating factors, which may have a higher than usual 
impact on results due to the small number of posi-
tive samples. It is also the likely explanation for a simi-
larly protective effect in the model for any complication 
(Fig.  6). It would be beneficial to repeat the study after 
gathering a larger sample size, and a more thorough 
investigation that includes causal analysis is an impor-
tant topic for future work.

Understanding the expected and unexpected features 
may allow for patient-specific pre-operative intervention 
to minimise post-operative complications. For exam-
ple, by optimising HbA1c in diabetics, being aggressive 

in comorbid management such as blood pressure opti-
misation, and shortening tourniquet time in knee 
replacements.

It is possible that the patient with kidney failure (Fig. 9) 
could have been missed, because they do not have diabe-
tes and it was a low-risk procedure. However, the patient 
suffered post-operative kidney failure and POP XGBoost 
predicted it with 84% confidence. High creatinine and 
comorbidity burden are the most significant contribu-
tions. The high creatinine confirm that this patient likely 
has impaired renal function, and the prediction could 
lead to pre-surgical intervention including more inten-
sive management of medications, ensuring the patient 
is well hydrated, selecting more appropriate anaesthesia 
type, and optimisation and monitoring of renal perfusion.

Another case study is LOS. The patient underwent a 
knee-replacement procedure, which is usually a medium 
LOS. However, POP XGBoost correctly identified this 
patient as having a high LOS (above five nights) and the 
SHAP plot (Fig.  10) provides visibility into the reasons. 
The most significant indicators are comorbidities, a high 
number of prescribed medications and the procedure 
itself. As a result of the prediction and indicators, the 
patient could be booked in for a longer stay and more 
intensive management.

Most of the studies reviewed, consider interpretabil-
ity of models to be important for clinical practice, chose 
algorithms that support it [15] and additionally inves-
tigated and reported interpretability results [5, 13, 14, 
21, 25, 41, 42]. Lee et  al. [42] used a GAM-NN for the 
benefit of neural networks and the interpretability of 
GAMs–there is a neural network for each input feature 
(or group of features), and they are linearly combined for 
classification.

However, most studies did not consider which fea-
tures contributed to specific predictions. Bihorac et  al. 
[5] used an approach, where the feature importance was 
“based on how different she or he is from the patient with 
an ‘average’ risk”. The reason for the prediction must be 
inferred indirectly, but the method could be applied to 
any model. Rajkomar et al. [17] used deep learning neural 
networks, where interpretability is more of a challenge. 
They showed a proof-of-concept of how it can be done. 
Active research is taking place to improve interpretability 
of deep learning models [43]. The SHAP plots that were 
demonstrated here, can be used with any model.

Limitations
The dataset was relatively small for this type of algo-
rithm. For context, other studies cited in this paper range 
between 51,457 patients [16] to 99,755 [15] admissions 
and [17] 216,221 admission. We expect the performance 
to improve with more data, particularly for specific 
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complications, readmission and mortality, as there were 
very few positive examples to learn from in our study.

In addition to the small dataset, a possible contribu-
tor to rare cases is missing or incorrect classifications. 
For example, ICD codes, which represented complica-
tions, are known to be incomplete. The outcomes may be 
captured in unstructured data, such as patient notes, but 
these data were unavailable.

The booked procedure is an important factor for pre-
dicting risk, according to both clinical practice and the 
models’ feature importance. However, the booked pro-
cedure was not explicitly labelled and was therefore esti-
mated (see “Pre-processing” section), resulting in errors 
that were difficult to quantify.

Data for patient height and weight were sparse, but 
these fields are considered to be important patient 
health factors. Likewise, there were many cases of miss-
ing medication therapeutic class, leading to information 
loss when grouping medications by this variable. Obtain-
ing additional data in these respects is likely to improve 
performance.

The dataset did not extend beyond discharge, restrict-
ing mortality to in-patient mortality. In comparison, 
most risk calculators predict mortality at various stages 
after discharge such as 30-day and 60-day mortality. This 
is clinically important and there would be more examples 
which would improve the model.

To the authors’ knowledge, there were no shifts to clini-
cal practice over the data collection period (5 years, from 
2015 to 2020). However, it is possible that there were sub-
tle changes that would influence the results, in particular 
the length-of-stay.

Future work
In future, well-known applied ML techniques for medical 
risk prediction could be used to improve the initial results; 
for example, class balancing and model ensembling [44] 
and data augmentation [18]. There is also scope to explore 
alternative feature engineering, such as using additional 
derived features regarding previous admissions, other 
encoding methods for categorical variables, learning a 
lower dimensional space for categorical features using 
decision trees [5], and including additional categories for 
tests and medications that were ignored in this study.

Another major area of interest is continual risk assess-
ment throughout the admission, including in the post-
operative period up until discharge. Only a few related 
studies considered risk assessment after surgery [17, 21, 42]. 
It is important because decisions are made throughout the 
admission and post-surgical care also has the potential to 
help avoid complications, readmission and mortality.

In future work, the length-of-stay could be converted to 
an assessment of ‘prolonged’ relative to expectations for 

specific procedures for additional clinical and operational 
benefits (“LOS prediction” section). Also, there is a possi-
bility of including the type of procedure as a variable when 
segmenting LOS to derive the predicted ranges.

A key part of our method was to encapsulate clinical 
expertise by feature engineering patient-risk and pro-
cedure-risk, derived in a manual process. It would be 
interesting to learn those features in an additional pre-
processing step with the potential benefits of time-saving, 
adaptability and accuracy. One possibility for patient-risk 
is to use predicted ASA (as done in [45]), provided that 
ASA targets are available in the training data.

Likewise, the patient’s disease state could be learnt 
from other variables such as lab results, thus augmenting 
the use of ICD codes alone; which are subject to human 
error and can be incomplete, reducing training quality.

This paper is focussed on elective surgery, as described 
in “Study design” section. Risk prediction is also benefi-
cial for emergency cases; for planning post-surgical care 
and assisting with selection of intra-operative monitor-
ing. Our method could be tested in this setting.

Conclusions
In this study, we developed novel algorithms (POP) that 
exploit tabular EHR data to predict surgical patient out-
comes. The algorithms were effective for post-operative 
complications and LOS in this patient population, but 
ineffective for predicting readmission and mortality due 
to extremely rare cases. The results reinforce the impor-
tance of using metrics that are suitable for rare cases, 
which is uncommon in other surgical risk prediction 
studies. A larger study is justified to improve the algo-
rithms in better predicting complications and length 
of hospital stay. A larger dataset may also improve the 
prediction of readmissions and mortality, which were 
extremely rare. Together with interpretable feature 
importance plots, surgical risk predictions provide clini-
cally relevant information, that may help to mitigate risks 
and improve patient outcomes.
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