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Abstract 

Introduction Epilepsy is a disease characterized by an excessive discharge in neurons generally provoked with‑
out any external stimulus, known as convulsions. About 2 million people are diagnosed each year in the world. This 
process is carried out by a neurological doctor using an electroencephalogram (EEG), which is lengthy.

Method To optimize these processes and make them more efficient, we have resorted to innovative artificial intel‑
ligence methods essential in classifying EEG signals. For this, comparing traditional models, such as machine learning 
or deep learning, with cutting‑edge models, in this case, using Capsule‑Net architectures and Transformer Encoder, 
has a crucial role in finding the most accurate model and helping the doctor to have a faster diagnosis.

Result In this paper, a comparison was made between different models for binary and multiclass classification 
of the epileptic seizure detection database, achieving a binary accuracy of 99.92% with the Capsule‑Net model 
and a multiclass accuracy with the Transformer Encoder model of 87.30%.

Conclusion Artificial intelligence is essential in diagnosing pathology. The comparison between models is helpful 
as it helps to discard those that are not efficient. State‑of‑the‑art models overshadow conventional models, but data 
processing also plays an essential role in evaluating the higher accuracy of the models.
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Introduction
Epilepsy is a neurological disorder characterized by gen-
erating discharges in the nervous system without an 
external stimulus cause which produces convulsions or 
unusual behavioral moments and sometimes loss of con-
sciousness, affecting people of all ages and geographical 
locations. It is a common but stigmatized disease, mak-
ing its diagnosis and treatment challenging, especially in 
low-resource countries, and increasing mortality rates 
compared to developed countries [1]. This condition 
encompasses four main classes: focal, generalized, focal 
generalized, and unknown. It should be highlighted that 
recent studies have shown that epilepsy is not just sei-
zures; patients can also experience neuropsychiatric and 
neurobehavioral symptoms [2]. The symptoms of a sei-
zure can vary widely. Some people with epilepsy only 
stare briefly during a seizure, while others constantly 
move their arms or legs [3].

Epilepsy diagnosis and treatment pose unique chal-
lenges, especially in low-resource countries where stigma 
and lack of access to specialized care increase mortality 
rates. The interpretation of the electroencephalogram 
(EEG), crucial in diagnosis, is an intensive and variable 
process dependent on the specialist’s experience [4]. In 
this context, artificial intelligence (AI) and deep learn-
ing are promising solutions, particularly methods based 
on convolutional neural networks (CNN) that promise 
to analyze EEG data with greater precision and efficiency 
[5]. Despite advances in AI for the diagnosis of epilepsy, 
there is a significant gap in comparing different deep 
learning architectures with traditional machine learn-
ing techniques, which is crucial for identifying the most 
effective models. This study aims to fill this gap by com-
paring CNN-based methods and traditional machine 
learning techniques, seeking to improve the accuracy 
and efficiency of epilepsy diagnosis. The findings of this 
research could transform the diagnosis of epilepsy, offer-
ing faster and more precise methods and reducing the 
economic and social burden of this condition, especially 
in regions with limited access to neurology specialists.

In machine learning mechanisms, hyperparameters 
are adjusted [6]. A pipeline mechanism is used to mod-
ify these hyperparameters. It aims to chain together dif-
ferent steps in an organized manner to extract features 
and make adjustments to a model. Following this, a grid 
search is employed. This technique explores the best val-
ues and evaluates the model’s performance for each com-
bination of values [7].

In recent years, new deep-learning mechanisms have 
improved the model’s capacity. Suat Toraman discusses 
Capsule Neural Networks (Capsule-Net) and their role in 
enhancing the performance of image prediction models. 
Additionally, Toraman proposes a Capsule-Net model 

for predicting epileptic seizures along with 1D convolu-
tional networks [8]. More recently, Shuaicong Hu et  al. 
proposed a hybrid transformer model for classifying epi-
leptic seizures, which primarily consists of four blocks: 
Rhythm Embedding, Positional Encoding, Self-Attention, 
and Classifier [9].

Capsule-Net are a new type of machine learning (ML) 
architecture recently developed to overcome the dis-
advantages of CNNs. Capsule-Net is resistant to affine 
rotations and translations, which is useful when dealing 
with medical image datasets. In addition, Vision Trans-
former (ViT) based solutions have recently been pro-
posed to solve the long-term dependency on CNNs. 
Implementation to deep learning models with Capsule-
Net and Transformer Encoder offers improvements in 
performance and computational cost since Capsule-Net 
requires less training data compared to CNNs and Trans-
former Encoder models are more robust and have better 
performance. However, it has yet to be explored in the 
medical data field [10].

Yi Wei et al. [11] propose a Transformer model and a 
Capsule-Net to improve performance in emotion recog-
nition, the Transformer model is used to extract informa-
tion, and the Capsule-Net is used to refine the features, 
thus avoiding limitations that arise from CNNs, achiev-
ing excellent performance in this field of study. The com-
bination of these models served as a motivation for our 
research.

Considering that the purpose of this paper is to com-
pare models for the classification of electroencephalo-
grams, the main contributions are:

• The Capsule-Net model is modified and applied to 
signals or flat data, releasing the code to be replicated 
in other problems.

• State-of-the-art architectures were combined for 
the creation of new optimized models to achieve the 
best possible classification in addition to this, it is 
compared, and a verdict is given as to which of the 
models is the most efficient for the database used; 
however, like the modified Capsule-Net model, the 
repository is published for experimentation on other 
types of pathologies or with different databases.

• The optimization of the models improves code com-
pilation times, helping to reduce computational costs 
and giving way to the ease of doing multiple experi-
ments.

This paper is structured into key sections: “Introduc-
tion”, which sets the stage by providing a comprehen-
sive overview of the addressed ideas; “Related work”, 
exploring works related to the current study; “Materials 
and methods”, offering insights into the methodologies 
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employed; “Results”, presenting the outcomes of the 
study; “Discussion”, analyzing and interpreting the 
results; and “Conclusion”, summarizing the key findings 
and implications. Each section contributes to a compre-
hensive understanding of the research endeavor.

Related work
Epilepsy is a chronic brain disease that affects people of 
all ages. It is estimated that around 50 million people suf-
fer from this disease, making it one of the most common 
neurological diseases. The World Health Organization 
estimates that 70% of people with epilepsy can live sei-
zure-free if properly diagnosed and treated, so in recent 
years, new research has emerged to identify epilepsy 
using deep learning such as the case study conducted by 
Gaowei Xu et  al. [12]. Gaowei Xu et  al. implemented a 
one-dimensional convolutional neural network model of 
short-term memory (1D-CNN-LSTM) to analyze epilep-
tic seizures through EEG signals. They initially preproc-
essed and normalized the data, and then they created 
the CNN to extract the features from the data that pass 
to LSTM (Long Short-Term Memory) layers to extract 
the temporal features to finally introduce these outputs 
into fully connected layers, thus achieving an accuracy of 
99.39% in binary detection and 82% in multiclass detec-
tion, demonstrating the potential of deep learning mod-
els for epilepsy detection.

On the other hand, Mengnan Ma et  al. [13] used a 
combination of recurrent neural network (indRNN) and 
1D CNN to detect periods of interictal, preictal, and ictal 
epilepsy; thus, the 1D-CNN was used to extract the fea-
tures of the EEG signal while the indRNN was used to 
distinguish the categories based on the extraction of fea-
tures so with this combination a deep learning model was 
created for the spatiotemporal detection of the disease. In 
this model, in small sample datasets from the University 
of Bonn, the proposed method achieved 100% classifica-
tion accuracy and specificity in detecting all three classes.

Another research carried out by Rubén San-Segundo 
et  al. [14] used an EEG database from Bern-Barcelona 
[15] and the epileptic seizure recognition database [16]; 
However, the first contains data from two categories 
unlike the second, thus dividing into three classifications: 
healthy (Z), interictal (F) and ictal (S), several trans-
formations of the EEG signal with Fourier, Wavelet and 
decomposition were evaluated empirically, obtaining var-
ious scenarios for the detection of seizures, which gener-
ated the best results when using the Fourier transform. 
Accuracy increased from 99.0% to 99.5% for classifying 
non-seizure vs. seizure records, from 91.7% to 96.5% 
when differentiating between healthy, nonfocal, and sei-
zure records, and from 89.0% to 95.7% when considering 
adjustment, focal and seizure records.

Amirmasoud Ahmadi et al. [17] presented a new algo-
rithm for seizure classification using the wavelet packet 
transform (WPT) to identify the essential characteristics 
of the signal better. They used a public database from 
the Epilepsy Centre at Bonn University, which contained 
EEG signals from five healthy and five patients with epi-
lepsy. This dataset was divided into 17 subsegments 
that, in turn, were organized into WP trees. From these 
coefficients, they used statistical characteristics such as 
standard deviation (STD) and root mean square (RMS). 
Then, they used the Support vector machine (SVM) clas-
sifier for binary classification in seven cases. The best 
result was obtained by classifying class A (healthy person 
with open eyes) versus class E (epileptic seizure) with an 
accuracy of 99.64%, while for the binary classification of 
class E versus the remaining four classes, an accuracy of 
97.85% was obtained.

Lina Wang et  al. [18] initially performed a database 
treatment at the University Hospital Bonn, Germany, that 
contained data from 5 healthy patients and five patients 
with epilepsy, thus filtering the EEG signal with a method 
that eliminates noise using the wavelet threshold. They 
analyzed the signals in the time, frequency, and time-
frequency domains and performed a nonlinear analy-
sis using empirical modal decomposition (EMD). They 
implemented five algorithms, including K-nearest neigh-
bors (kNN) and SVM, the latter being the classifier with 
the highest accuracy since it obtained a value of 99.25% 
with the nonlinear multi-domain analysis with 10-fold 
cross-validation and a standard deviation of 0.28.

Shen et al. [19] propose a real-time approach to detect-
ing epileptic seizures using EEG. This approach com-
bines a tunable Q wavelet transform and a CNN. The 
authors extract spectral and time-domain features from 
the EEG, such as statistical moments and spectral power, 
and convert them into image-like data to feed the CNN. 
The proposed method was evaluated using the CHB-MIT 
database, and promising results were obtained. The accu-
racy was 97.57%, with a sensitivity of 98.90% and a false 
positive rate of 2.13%. In addition, the feasibility of imple-
menting this approach in real-time is highlighted, making 
it suitable for application in clinical settings for seizure 
detection.

Finally, a recent study by Chen et al. [20] proposes an 
automated method for detecting epileptic seizures in 
EEG signals using a CNN-based classifier and feature 
fusion and selection. The authors extract mixed features 
from EEG signals using discrete wavelet decomposition 
(DWT), including approximate entropy (ApEn), diffuse 
entropy (FuzzyEn), sample entropy (SampEn), and STD 
by using a random forest algorithm to select relevant fea-
tures and applying CNNs to classify epileptic EEG sig-
nals. Experimental results from reference datasets, such 



Page 4 of 23Holguin‑Garcia et al. BMC Medical Informatics and Decision Making           (2024) 24:60 

as Bonn EEG and New Delhi, demonstrate the efficacy 
of the proposed method. For the Bonn dataset’s interic-
tal and ictal classification tasks, the model achieves an 
accuracy of 99.9%, a sensitivity of 100%, an accuracy of 
99.81%, and a specificity of 99.8%. For the interictal-ictal 
case of the New Delhi dataset, the model achieves 100% 
classification accuracy, 100% sensitivity, 100% specificity, 
and 100% accuracy.

This research demonstrates the ability of the proposed 
approach to detect and classify EEG signals associated 
with epileptic seizures with high accuracy, which is of 
great relevance in the clinical detection of epilepsy. These 
studies are detailed in Table 1.

Materials and methods
Database
The epilepsy seizure recognition database [16] consists of 
5 individuals and 4097 data points of 23.5 seconds each. 
This database mixes each data point into 23 fragments 
with 178 data points per second. It is divided into five 
classes (a, b, c, d, e):

• Class (a) represents the recording of epileptic activity.
• Class (b) represents the EEG recording from the area 

where a tumor was present.
• Class (c) represents the healthy part of the brain after 

tumor localization.
• Class (d) represents the recording of the patient with 

closed eyes.
• Class (e) represents the EEG recording of the individ-

ual with eyes open.

It was decided to divide the database into two ways to 
compare the results obtained from the study and to have 
clear and precise information on how to classify the dif-
ferent brain activities corresponding to epilepsy disease. 
The original dataset has five folders with 100 records 
each from another patient, totaling 5 individuals/per-
sons. Each file is a recording of brain activity for 23.6 sec-
onds. The corresponding time series is sampled into 4097 
data points, but the dataset used was modified, dividing 
and mixing each data point 4097 into 23 chunks, each 
containing 178 data points per 1 second. We are leaving; 
as a result, 11500 pieces of information.

With this in mind, it was decided to split the dataset 
into two classifications, a binomial and a multinomial 
classification, looking for the best performance of the 
model when classifying the different signals.

Binary partition
With this dataset division, the work was divided into 
two phases: The first phase worked with only two 

classes in search of the best binomial classification. 
How the classes were divided in this phase was the fol-
lowing: The first class represented the brain activity 
when the epileptic seizure occurred (Class 1) with a 
total of 2300 samples, and the second one represents no 
epileptic activity (Class 0) with a total of 9200 pieces, in 
this class are grouped the other four classes of the orig-
inal dataset, being these four different classes where no 
epileptic seizure occurred. As shown in the Fig. 1.

Multiclass partition
The second phase was carried out in search of the 
best multinomial classification with the five original 
classes of the dataset. Each Class represents a different 
moment when the brain activity was recorded, Class 
(a) represents the recording of epileptic activity, Class 
(b) represents the EEG recording from the area where 
a tumor was present, Class (c) represents the healthy 
part of the brain after tumor localization, Class (d) rep-
resents the recording of the patient with closed eyes, 
Class (e) represents the EEG recording of the individual 
with eyes open. Each Class has a complete recording of 
2300 brain activity samples from the five folders, each 
with 100 patients.As shown in the Fig. 2.

Database preparation
As mentioned earlier, the database was divided into two 
and five classes. For two classes, standard normaliza-
tion was performed. For five classes, the following pre-
processing steps were carried out:

• Any:The database is without additional preprocessing.
• Scaling: Database with standard normalization.
• PCA: Principal Component Analysis (PCA) was 

performed on the database. It is a technique used 
to extract the most relevant features by finding 
the direction of the highest variability of the data, 
representing the data in a smaller dimension with-
out losing too much information [21]. For this, a 
standardization process is carried out, followed by 
a covariance matrix calculation, calculation and 
selection of vector components, and finally, a data 
projection. For this database, PCA was performed, 
which reduced the channels from 178 to 40 in the 
multiclass models, so the models with and without 
PCA were compared with the standard scaler.

• Scaling + PCA:The database underwent normaliza-
tion followed by PCA, just as the features were 
reduced from 178 to 40 when PCA alone was  
performed.
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Hyperparameters
Grid search
When we talk about Grid Search, we are talking about 
a very common or traditional method for hyperparam-
eter optimization, where a complete search is performed 
on the subset of data of the space bounded by the same 

hyperparameter of the model. This is because the param-
eter used for the model can sometimes include areas with 
fundamental or unbounded values. One of the big prob-
lems with the grid search is the need to apply a specific 
limit since it suffers in huge dimensional spaces. Still, its 
great advantage is the ease with which the process can be 

Fig. 1 Data ditribution of the binary partition of the database of patients with and without pathology

Fig. 2 Data distribution of the partition in 5 database classes, alphabetically distributed
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stopped since the values of the hyperparameters used by 
the model are independent of each other [22].

Pipeline
The term pipeline is used for objects capable of combin-
ing estimators and various transformers to create a com-
bined estimator [23]. It is also used to help optimize the 
data flow to the desired model, including several essential 
parameters for the proper functioning of the model, such 
as features, results, predictions, and raw data. The impor-
tance would be substantially improved performance and 
effectiveness, which is fundamental in developing many 
machine learning models.

This paper used a grid search and pipeline model to 
find the hyperparameters best fitting the machine learn-
ing models. These can be seen in the Table 2.

Batch normalization (BN)
For data normalization, the BN is used to normalize 
the features in each data map to have a mean of 0 and a 
variance of 1, allowing rescaling and retranslating of the 
distribution. This process in training allows for a higher 
learning speed [24] (see Eq. 1).

(1)BN (x, γ ,β) = β + γ
x − E[X]√
Var[X] + ε

Table 2 Hyperparameters achieved for the machine learning models after grid search and pipelines. We can see the models, the 
evaluated parameters chosen for both two classes and multiclass, and their descriptions

Algorithms Hyperparameter Two-class Multi-class Description

DTC criterion entropy gini Evaluates the quality of a division

max_depth None N/A Maximum depth of the tree

min_samples_leaf 4 2 Minimum number of samples required per leaf node

min_samples_split 10 10 Samples needed to split an internal node

MLP activation logistic relu Function that activates the hidden layer

hidden_layer_sizes (100,) (100,50) Number of neurons of the i‑th hidden layer

learning_rate constant constant Learning rate programming for weight updates

solver Adam Adam Solver for weight optimization

KNN algorithm auto auto Calculate nearest neighbors

leaf_size 1 1 Leaf size passed to BallTree or KDTree

n_neighbors 1 1 Number of neighbors

p 2 1 Indicates the power for the Minkowski metric

weights ‘uniform’ ‘uniform’ Used in prediction

SGDC alpha 0.001 0.01 Constant that multiplies the regularization term

loss ‘hinge’ ‘hinge’

max_iter 2000 1000 Number of epochs performed on training data

penalty ‘l2’ ‘l1’ Regularization term

weights ‘uniform’ ‘uniform’ Used in prediction

ETC min_samples_split 4 N/A Samples needed to split an internal node

n_estimators 150 300 Number of trees in the forest

random_state 20 20 Controls the bootstrapping of the samples

weights ‘uniform’ ‘uniform’ Used in prediction

SVM C 10 10 Regularization parameter

gamma ‘scale’ ‘auto’ Is a coefficient

kernel ‘rbf’ ‘rbf’ Is the type of kernel in use

RFC max_depth None None Maximum depth of the tree

min_samples_split 2 2 Samples needed to split an internal node

n_estimators 500 500 Number of trees in the forest

random_state 40 40 Controls the bootstrapping of the samples

GB learning_rate 0.1 0.1 Is a compensation between n_estimators and learning_rate

max_depth 5 7 Maximum depth of the regression estimators

n_estimators 200 200 The number of stages to be performed

random_state 40 10 At each iteration of reinforcement controls the seed
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Where:
γ = The re-scaling scalar.
β = re-translation scalar.
E[X] = expectation.
Var[X] = variance.

Scaled exponential linear unit (SELU)
It was proposed by Klambauer et al. in 2017 [25]; this is a 
nonlinear function that works linearly as long as the val-
ues are positive, but if otherwise, they are negative, it will 
behave exponentially. This allows the values to scale and 
propagate around the multiple layers of the neural network 
using its two constants � , which is a value around 1.0507, 
and α , which is the negative slope with an approximate 
value of 1.67326. Furthermore, this is considered a self-reg-
ulating function since, as the information flows through the 
network, the mean and variance remain stable, helping to 
improve the stability of the model [26] (see Eq. 2).

Dropout
The regularization method counteracts overfitting by 
temporarily deactivating randomly selected nodes and 
their connections. This prevents the neural network 
from excessively co-adapting and relying too heavily on 
specific features, limiting its ability to recognize only the 
training data. Dropout not only addresses overfitting but 
also contributes to developing more resilient networks. 
By forcing the network to operate with various samples, 
Dropout promotes robustness. This approach facilitates 
the averaging of predictions and reduces test time [27], 
as highlighted in Fig.  3, to mitigate overfitting in the 
network.

(2)SELU(x) = �
x if x > 0
α · (exp(x)− 1) if x ≤ 0

Fig. 3 Feature extraction model composed of convolutional layers followed by max pool and dropout. The convolutional layers are distributed: 2 
of 32, 2 of 64, 3 of 128, 3 of 256, and finally, 9 of 512 divided into blocks of 3
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Data balanced
Synthetic minority over‑sampling technique (SMOTE)
We have a very unbalanced data set in the binary classifi-
cation, so data balancing is performed with SMOTE. This 
works in such a way that synthesized data can be gener-
ated using similar neighboring samples and linear combi-
nations between them; this helps to increase the data of 
the minority class, allowing the model to learn the pat-
terns of the unbalanced course better [28].

Adaptive synthetic sampling (ADASYN)
It is used to create synthesized data from the minor-
ity class to balance the data. It focuses on generating 
synthesized data in feature regions where the minority 
class examples are few, helping the model better cap-
ture the class data with fewer data, and avoiding over-
generalization of the model [29]. Synthetic samples are 
created by selecting a minority example and randomly 
choosing some of its neighbors, for which their den-
sity is calculated. This is based on interpolation and 
employs straight-line or k-means techniques. Thanks 
to the relative density, more examples of the minority 
class are generated [29].

Table  3 compiles the best hyperparameters of the 
machine learning models obtained in the GridSearch 
and Pipeline process for data balancing with SMOTE 
and ADASYN.

Models
Machine learning models:
 

• The Extra Trees Classifier and the Random Forest 
Classifier (ETC and RFC): Are machine learning 
models that refer to decision trees and are used for 
classification and linear regression. However, they tend 
to overfit, which causes problems with new data [30]. 
The RFC randomly trains multiple decision trees using 
training data subsets to address this. Finally, a voting 
algorithm is applied to obtain the best results [31, 32]. 
The ETC adds randomness to the training process 
to increase diversity among the trees and improve 
the model’s performance [33].

• The Support vector machine (SVM): This model 
can solve linear and nonlinear classification and 
regression problems. It is particularly well-suited 
for small and moderately complex data sets. The 
fundamental concept behind SVM (Support Vector  
Machine) classification is to separate classes by 
maximizing the decision boundaries concerning 
the closest training patterns. Furthermore, it aims 
to maximize the distance from the nearest training 
pattern while introducing nonlinearity. SVMs [30] 

achieve linearly separated classes by utilizing kernel 
functions that modify or add features based on the 
training set.

• Gradient Boosting: Combines multiple weak learning 
models into a single robust model [34]. The general 
idea is that the Gradient Boosting (GB) training process 
starts with a simple base model and fits it to the train-
ing data. Then, the residuals of this first base model 
are calculated. A new weak model is trained using the 
residuals as the target in each subsequent iteration. 
This new model is added to the existing ensemble of 
models and fitted to the updated residuals [30].

• The Decision Tree classifier (DTC): Is based on a deci-
sion tree, which selects the most relevant features or 
attributes from the training set. In addition to this, 

Table 3 The best hyperparameters of the machine learning 
models were obtained for data balancing with SMOTE and 
ADASYN

Algorithms Hyperparameter SMOTE ADASYN

DTC criterion Entropy Entropy

max_depth None None

min_samples_leaf 1 1

min_samples_split 2 2

MLP activation relu relu

hidden_layer_sizes (100, 50) (100, 50)

learning_rate constant adaptive

solver adam adam

KNN algorithm auto auto

leaf_size 1 1

n_neighbors 1 1

p 2 2

weights uniform uniform

SGDC alpha 0.001 0.001

loss hinge hinge

max_iter 3000 3000

penalty elasticnet l2

ETC min_samples_split 2 2

n_estimators 150 300

random_state 40 50

SVM C 10 10

gamma scale auto

kernel rbf rbf

RFC max_depth None None

min_samples_split 4 4

n_estimators 150 150

random_state 30

GB learning_rate 0.1 0.1

max_depth 7 7

n_estimators 200 200

random_state 40 40
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additional criteria such as node stopping or pruning 
can be added to the decision tree [35].

• KNeighbors Classifier (KNN): In the case of the 
K-NN algorithm, the example data is represented in 
an n-dimensional space, where n is the number of 
attributes of the data. Each point in this n-dimen-
sional space is labeled with its corresponding class 
value. The fact is placed in this n-dimensional space 
to determine the classification of unclassified data, 
and the class labels of the k nearest k data points are 
observed. Typically, k is an odd number. The class 
that appears most frequently among the k nearest 
data points is taken as the class of the new data point. 
In other words, the decision is made by voting on the 
k neighboring points. One of the significant advan-
tages of this generic K-Nearest Neighbor algorithm 
for classification discovery is that it lends itself to 
parallel operations [36].

• Stochastic Gradient Descent(SGD): The SGD is a vari-
ant of the Gradient Descent algorithm. Still, unlike 
the latter, it does not use the entire training data set 
in each iteration but instead uses mini-batches to cal-
culate the gradient and adjust the model parameters. 
This decreases the computational burden. In addition 
to estimating its loss function, hyperparameters such 
as the learning rate and the number of mini-batches 
must be adjusted [37].

Convolutional neural network
The convolutional neural network is based on the pream-
ble that data have locally important patterns or features 
that can be extrapolated. There are multiple convolu-
tional neural networks; however, they mostly all follow 
the same structure. These consist of 3 layers: Convolu-
tional, which aims to learn the input feature represen-
tation; this is composed of several convolution kernels 
that map the different features; these are interconnected 
first to understand the input and then use the activa-
tion function. After this, we have the second layer fully 
connected, i.e., all neurons from the previous layer 
are directly related to the next one to generate general 
semantic information. Finally, we have an output layer for 

classification tasks that commonly has a softmax activa-
tion operator and an optimizer [38].

The following Eq. 3 denotes this:

Where: Ml represents each of the feature maps. Ml−1
i  is 

the pre-feuture map layer, Kl
i  is the kernel, b is the bias, * 

refers to convolution.
The neural network we use in this paper is described 

in Figs.  3 and 4. The 1D convolutional layers (Conv1D) 
comprise a kernel of size 3, padding same, and a selu acti-
vation method. In the output of each set, we have a 1D 
maxpole and a dropout 0. 5, the sets are ordered in such 
a way that we have two layers of 32 neurons, 2 layers of 
64 neurons, 3 layers of 128 neurons, 3 layers of 256 neu-
rons, and 6 layers of 512 neurons divided into groups of 
3. Connected to this last output, we have a Global Max 
pooling 1D that connects us with our fully connected 
dense layers. The neural network we use in this paper 
is described in Figs.  3 and 4. The 1D convolutional lay-
ers (Conv1D) are composed of a kernel of size 3, padding 
SAME, and a selu activation method, and in the output 
of each set, we have a 1D maxpole and a dropout 0. 5, the 
sets are ordered in such a way that These have a batch 
normalization method with a Selu activation method, so 
we have layers of 1024, 512, 256, 128, 128, 64, 32, and 16  
neurons. Finally, we have a classification layer of 5 neurons, 
one for each class, a softmax activation method, and an 
Adam learning rate optimizer of 0.001.

Capsule‑net
CNNs have limitations, such as the need for large amounts 
of training data, the inability to handle ambiguity and 
changes in object orientation, and the loss of information 
across layers. To overcome these shortcomings, Geoffrey 
E. Hinton proposed a new approach known as Capsular 
Neural Networks (Capsule-Net) described in Fig.  5.  
Capsule-Net implements groups of neurons called capsules, 
which encode spatial information and the probability of 
the existence of an object in an image.

(3)

Ml = pool

(

f

(

norm

(

n
∑

i=1

(

Ml−1
i ∗ Kl

i

)

+ bl

)))

Fig. 4 Dense layers are tightly connected with the selu activation method. They are arranged as follows: 1024, 512, 256, 128, 64, 32, 16, 5 of neurons
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Each capsule represents the instantiation parameters of 
a specific entity, such as an object or a part of an object. 
The length of a capsule’s vector indicates the probabil-
ity that the entity exists, while its orientation represents 
the instantiation parameters. In Capsule-Net, the model 
learns to represent an image inversely by examining it and 
attempting to predict the corresponding instantiation 
parameters. This is achieved by trying to reproduce the 
object the model thinks it has detected and comparing it 
to labeled examples in the training data, thus improving 
the ability to predict the instantiation parameters.

Active capsules at one level predict the instantiation 
parameters of higher-level capsules using transforma-
tion matrices. When several predictions match, a higher-
level capsule is activated. Unlike the max-pooling used 
in CNNs, Capsule-Net does not lose information about 
the exact position of the entity within a region, allowing 
higher-level capsules to cover larger regions of the image 
[39]. As one moves up the hierarchy, the lower-level 
capsules encode more basic information, such as simple 
geometric shapes and their spatial position. In contrast, 
the more complex capsules represent more structured 
geometries.

A key feature of Capsule-Net is its ability to handle spa-
tial and hierarchical relationships between entities in an 
image. Unlike CNNs, where features are combined using 
convolution and clustering layers, Capsule-Net allows 
lower-level capsules to interact and predict the proper-
ties of higher-level capsules using transformation matri-
ces. This architecture more effectively captures objects’ 
hierarchical relationships and geometry in an image, 
resulting in a more robust and complete representation 
of visual features. It first extracts learned features that 
are then fed into a fully connected neural network that 
produces a classification. The network can learn features 
by chaining convolutional blocks whose layers learn sim-
ple features, but as the blocks are usually routed with 
pooling, they significantly improve the classification by 
discarding unimportant activations, which makes the 
classifier robust to small transformations in the input 
data [40].

The algorithm for the Capsule-Net is the next: 

1. procedure ROUTING (Ûj|i, r, l)
2. for all capsule i in layer l and capsule j in layer 

(l + 1) : bij ← 0.

3. for r iterations do:
4. for all capsule i in layer l : Ci ← softmax(bi) ; 

where softmax is: cij = exp(bij)
∑

k exp(bik )

5. for all capsule j in layer (l + 1) : sj ←
∑

i cijÛj|i.
6. for all capsule j in layer (l + 1) : vj ← squash(sj) ; 

where squash is: vj = ||sj ||2
1+||sj ||2

sj
||sj ||

7. for all capsule i in layer 1 and capsule j in layer 
(l + 1) : bij ← bij + Ûj|i · vjreturnvj where 
sj =

∑

i cijÛj|i , Ûj|i = WijUi

The vector output vj of capsule j represents its resulting 
output, while sj represents the total input received by that 
capsule. In layers beyond the initial layer, the total input 
sj of a capsule is calculated as a weighted sum of the “pre-
diction vectors” Ûj|i from the capsules in the layer below. 
This is achieved by multiplying the output ui of a cap-
sule in the lower layer by a weight matrix Wij . The cou-
pling coefficients cij play a crucial role in determining the 
weights and are obtained through an iterative dynamic 
routing process [39].

The Capsule-Net was incorporated into the model as a 
subsequent layer to the convolutional and pooling layers, 
with dimensions adapted to facilitate efficient process-
ing of the capsule vectors. In the first step, an activa-
tion function is applied that normalizes and compresses 
the output values to ensure they are in an appropriate 
range. This compressed output is passed to the Capsule-
Net, where linear transformations generate a tensor in 
response.

Transformer encoder
Transformers consist of an encoder-decoder architec-
ture, where the encoder processes the input sequence 
and generates a representation, while the decoder gener-
ates the output sequence based on that representation. 
Each encoder and decoder layer of a transformer consists 
of multiple self-attenuating heads and feed-forward neu-
ral networks [41].

The key component of transformers is the attention 
mechanism, which allows the model to focus on differ-
ent parts of the input sequence when making predictions. 
This attention mechanism allows the transformers to 
capture contextual information from both preceding and 
following words in a sentence, leading to better under-
standing and representation of the input data [41].

Fig. 5 Capsule‑Net model. In the input, you have the convolutional 
layers denoted as conv caps
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Adequate transformer performance is due to the use 
of Attention, which allows the model to focus on the 
relationship to other words directly related to the text 
sequence in the input. Transformers are helpful in most 
NLP tasks, such as linguistic modeling and text classifi-
cation. There are different structures for different types 
of problems. The basic coding layer is a standard build-
ing block for these architectures, with various specific 
“heads” to apply depending on the problem being solved.

In the transformer, the Attention module repeats the 
computation several times in parallel. Each of these is 
referred to as an attention head. The Attention module 
splits its N query, key, and value parameters and passes 
each split independently through a separate header. 
These similar attention calculations are combined to pro-
duce a final attention score. This draws attention from 
multiple heads and allows the transformer to encode 
multiple conditions and nuances for each word [42].

Given the same set of queries, keys, and values, they 
were entering the practical application, opting for a 
model that combines knowledge of different behaviors 
of the exact attention mechanism to capture dependen-
cies of various ranks within a sequence. The attention 
mechanism must jointly use different representation sub-
spaces of queries, keys, and values; the latter are trans-
formed with independently learned linear projections. In 
the end, the results of the attention grouping are concat-
enated and transformed with another learned linear fore-
cast to produce the final result, where each of the outputs 
of the attention clustering is a head, resulting in the 
design known as multi-headed attention [42]. The model 
used in this article is shown in the Fig. 6. Equation 4 that 
describes it is represented taking into account that ‘Q’ is 
the vector that represents the current token and is used 
to calculate the following tokens, ‘K’ is the key, and ‘v’ is 
the value of the vector that contains relevant informa-
tion. ‘dk’ is an attention normalization constant.

Metrics
Tabares-Soto Et  al. explain the relevance of metrics in 
the evaluation of a model, highlighting the distinction 
between false positives (FP), false negatives (FN), true 
positives (TP), and true negatives (TN) [43–45]. The 
most important metrics are the following:

Accuracy
Accuracy is the fraction ranging from 0 to 1, representing 
the correct prediction percentage. To achieve this metric, 

(4)Attn(Q,K,V) = softmax

(

QKT

√

dk

)

V

the total correct predictions are divided by the total pre-
dictions made [44–48] (see Eq. 5).

Precision
This metric aims to identify the correct proportion of 
positive cases, including both false positives and true 
positives. It is calculated by dividing the number of true 
positives by the sum of true positives and false positives 
[44, 45, 48, 49] (see Eq. 6).

Recall
Also known as sensitivity, it shows the ability of the 
classifier to display correct predictions [44, 45, 48] (see 
Eq. 7).

(5)Accuracy = TP + TN

TP + TN + FP + FN

(6)Precision = TP

TP + FP

Fig. 6 Transformer Encoder. Transformer encoder input is the output 
of the CNN. The figure contains Multi‑Head Attention layers 
that weigh the relevance of each input vector. The MLP processes 
these representations of each vector. Residual Connections and Layer 
Normalization facilitate an efficient and stable flow of information. 
The output is a deep contextual representation of the input
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F1
F1 is a metric used to assess the model’s ability to accu-
rately identify positive and negative cases. This metric is 
sensitive to imbalance. It is calculated as the harmonic 
mean between precision and recall [44, 45, 48, 50] (see 
Eq. 8).

Support
This metric indicates the number of data in each test 
class.

Confusion matrix
The confusion matrix is the combination of the actual 
and predicted classes. The rows represent the envi-
sioned classes, and the columns represent the real 
class [44, 48].

Cross‑validation (CV)
Cross-validation is used to evaluate the performance of a 
model. It divides it into several subsets known as “folds” 
(k) of similar sizes, generating a process of interactions in 
the model in which data are obtained at the end of which 
an average is obtained [44, 48]. In this case, we used “ten 
folds”. Equation 9 represents it:

Model configuration
Convolutional neural network‑fully connected (CNNs‑Fully)
This is the combination of feature extraction Fig. 3 with 
a densely connected neural network Fig.  4. The input 
tensor of the convolutional neural network has a shape 
of (None, 178, 1), and the input tensor to the Fully con-
nected is (None, 2, 512). This changes when we apply 
PCA, as the input tensor for the convolutional network 
becomes (None, 40, 1), and the input to the Fully con-
nected is (None, 1, 512).

Convolutional neural network‑caps_net (CNNs‑capsule‑net)
Here we can see the main feature extraction base Fig. 3 
connected to the modified capsule for signal reading 
Fig. 5. The input tensor of the convolutional neural net-
work has a shape of (None, 178, 1), and the input tensor 
to the Capsule-Net is (None, 2, 512). This changes when 
we apply PCA, as the input tensor for the convolutional 

(7)Recall = TP

TP + FN

(8)F1 = 2x
Precision x Recall

Precision+ Recall

(9)Cross-Validation = 1

k

k
∑

i=1

Performancei

network becomes (None, 40, 1), and the input to the 
Capsule-Net is (None, 1, 512).

Convolutional neural network‑transformer encoder 
(CNNs‑Tf)
Characteristic extraction base Fig.  3 followed by the 
transformer encoder attention model Fig. 6. The input 
tensor of the convolutional neural network has a shape 
of (None, 178, 1), and the input tensor to the trans-
former encoder is (None, 2, 512). This changes when 
we apply PCA, as the input tensor for the convolutional 
network becomes (None, 40, 1), and the input to the 
transformer encoder is (None, 1, 512).

Convolutional neural network‑transformer encoder‑fully 
connected (CNNs‑Tf‑fully)
Characteristic extraction base Fig.  3 followed by the 
transformer care model Fig. 6 and the densely connected 
network model Fig.  4. The input tensor for the convo-
lutional neural network has a shape of (None, 178, 1), 
the input tensor for the transformer is (None, 2, 512), 
and the input tensor for the Fully Connected is (None,  
2, 512). This changes when applying PCA, as the input 
tensor for the convolutional network becomes (None, 
40, 1), the input to the Transformer Encoder is (None, 
1, 512), and for the Fully Connected, it is (None, 1, 512).

Convolutional neural network‑transformer encoder 
and capsule‑net (CNNs‑Tf‑capsule‑net)
Mainly the feature extraction layer Fig.  3, followed by 
the model attention transformer encoder Fig.  6, and 
finally, the modified capsule Fig. 5. The input tensor for 
the convolutional neural network has a shape of (None, 
178, 1), the input tensor for the transformer is (None, 2, 
512), and the input tensor for the Capsule-Net is (None, 
2, 512). This changes when applying PCA, as the input 
tensor for the convolutional network becomes (None, 
40, 1), the input to the Transformer Encoder is (None, 
1, 512), and for the Capsule-Net, it is (None, 1, 512).

Hardware and resources
The experiments used Google Colab, where specific 
computations were performed on the NVIDIA GP100GL 
[T4 PCIe 15GB] platform, equipped with 250W power, 
CUDA Version 10.1, and 12 GB of RAM.

Results
Iteration hyperparameters of the transformer model
To achieve the best possible results, the hyperparameters 
of the transformer encoder, such as the attention heads 
and the layers, were iterated to find the most optimal 
ones for each variation of the models. In Table 4, we can 
see the results of each interaction with their respective 
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results, where the best model was the encoder trans-
former model without any aggregate with 16 attention 
heads. This was possible because our database does not 
have a significant computational cost.

Binary classification
In the case of binary classification, whether the patient 
had epilepsy or not, we have the Table  5, which shows 
the data results without applying a balancing model. In 
Table  6, we have the results of the balanced data using 
SMOTE, and Table 7 have the result of the balanced data 
using ADASYN. These three tables are divided where the 
first column is the used model, then we have its accuracy, 

then its cross-validation, and finally, we have the model’s 
sensitivity for each class.

With the unbalanced data, we have very high results 
in most cases. However, it is essential to highlight that 
the worst model was machine learning, specifically the 
SGD, with an accuracy of 0.83 and equal cross-validation. 
However, the model correctly classifies patients with epi-
lepsy; however, in the other classes, it presents a failure. 
And as a classification model with higher accuracy, we 
have the transformer encoder model with an accuracy 
of 0.9974, a cross-validation of 0.998, and an accuracy in 
both classes of 0.998. It is also important to highlight that 
the best machine learning model was SVM with an accu-
racy of 0.9830 and a precision, although close, higher in 
the case of the data set of patients with the pathology.

On the other hand, in the balanced database, as in the 
unbalanced one, the worst model is the machine learning 
SDG; however, in this case, we have an accuracy of 0.669 
and a cross-validation of 0.54, showing that the model 
is not efficient for this classification problem. The best 
model was the Capsule-Net model, with an accuracy of 
0.992. The best machine learning model was KNN, with a 
remarkable cross-validation of 1.

Multiclase
Table  8 shows the results obtained from the models 
evaluated in the five classes of the database. All the mod-
els were evaluated in 4 different ways: the first is “Any”, 
which means the database without any process before 
entering the network; the second, “Scaling”, refers to the 
use of Standard Scaler; the third is with the use of PCA 
and finally the combination of standard scaler and PCA. 
We can see the hyperparameters used and its result.

Table 4 Interaction results on the hyperparameters of the 
encoder transformer model with its combinations

Algorithms Numheads Accuracy [%] Layers Accuracy [%]

CNN+Tf+Capsule-
Net

1 85.26 1 86.74

2 84.43 2 84.91

4 84.78 4 86.26

8 86.91 8 85.70

16 85.74 16 85.04

CNN+Tf 1 86.30 1 86.00

2 87.22 2 82.30

4 84.96 4 87.30

8 87.13 8 86.35

16 87.57 16 85.39

CNN+Tf+Fully 1 86.30 1 87.09

2 86.57 2 85.43

4 85.61 4 86.22

8 85.57 8 84.48

16 86.74 16 86.22

Table 5 Results of all binary classification models with their respective cross‑validation and their accuracy of the unbalanced database

Epileptic Without Epileptic
Accuracy [%] Cross Validation [%] Precision [%] Precision [%]

ETC 97.87 97.80 ± 0.5 96.60 98.20

RFC 98.13 98.00 ± 1.0 96.30 98.60

GB 97.43 97.40 ± 2.0 97.70 97.40

DTC 94.09 94.00 ± 1.0 85.70 95.60

MLP 98.13 98.00 ± 0.5 96.80 98.10

KNN 94.78 95.00 ± 0.4 99.10 94.00

SGD 83.87 83.90 ± 1.0 95.70 83.80

SVM 98.30 98.00 ± 0.3 96.70 98.70

CNN+Fully 99.61 99.00 ± 1.0 99.80 99.90

CNN+Capsule-Net 99.35 99.30 ± 1.0 98.10 99.70

CNN+TF 99.83 99.80 ± 0.3 99.80 99.80

CNN+Tf+FULLY 99.74 99.80 ± 1.0 99.60 99.80

CNN+TF+Capsule-Net 99.65 99.70 ± 1.0 99.60 99.70
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On the other hand, Fig.  7 we have the comparison 
between the models where the best machine learning 
model, the extra tree classifier, presents the lowest result; 
however, its accuracy in the class of patients with an epi-
leptic seizure stands out, but the best model is the Capsule-
Net, as in the binary model, where we have the highest 
accuracy in all classes and a more leveled confusion matrix.

Time of compilation
As the results of the best models are so close, it is essen-
tial to analyze other variables, such as compilation 
time and computational resource expenditure. Figure  8 
shows a bar chart comparing the compilation times of 

the best models, where it is evident that the model that 
takes less time to compile for 500 epochs is the Cap-
sule-Net model, the fully connected and Transformer 
Encoder+Capsule-Net models have the same time and 
the most delayed is the transformer encoder model. The 
compilation time is calculated during training by multi-
plying the duration of each epoch by the total number 
of epochs and finally dividing by 60 to convert from 
seconds to minutes.

Comparison with the state of the art
The results are compared with the state-of-the-art using 
the same database and division. This can be seen in Table 9.

Table 6 Results of all binary classification models with their respective cross‑validation and their accuracy of the balanced database 
using SMOTE

Epileptic Without Epileptic
Accuracy [%] Cross Validation [%] Precision [%] Precision [%]

ETC 98.42 98.40 ± 0.3 97.70 99.10

RFC 97.74 98.00 ± 1.0 96.40 99.10

GB 98.18 98.20 ± 1.0 97.50 98.80

DTC 93.51 93.00 ± 0.5 93.50 93.90

MLP 98.59 99.00 ± 0.1 98.00 99.60

KNN 99.59 100 ± 0.1 99.60 99.60

SGD 66.90 66.50 ± 1.0 93.60 60.50

SVM 98.32 98.50 ± 0.3 97.60 99.00

CNN+Fully 99.78 99.80 ± 0.1 99.80 99.80

CNN+Capsule-Net 99.92 99.90 ± 0.4 100 99.80

CNN+TF 99.76 99.80 ± 1.0 99.50 100

CNN+Tf+FULLY 99.57 99.40 ± 1.0 100 99.20

CNN+TF+Capsule-Net 99.89 99.90 ± 0.4 99.80 100

Table 7 Results of all binary classification models with their respective cross‑validation and their accuracy of the balanced database 
using ADASYN

Epileptic Without Epileptic
Accuracy [%] Cross Validation [%] Precision [%] Precision [%]

ETC 97.87 98.50 ± 1.0 98.90 96.80

RFC 97.04 96.00 ± 2.0 99.00 95.20

GB 98.18 98.20 ± 1.0 97.50 98.80

DTC 89.96 91.00 ± 3.0 89.50 90.40

MLP 98.60 98.70 ± 0.1 99.60 97.60

KNN 99.81 1.000 ± 1.5 99.60 99.60

SGD 61.44 62.50 ± 1.0 58.00 71.90

SVM 98.63 98.80 ± 0.5 99.70 97.60

CNN+Fully 99.40 99.50 ± 1 99.50 99.30

CNN+Capsule-Net 98.22 98.50 ± 0.4 98.40 98.10

CNN+TF 94.42 92.80 ± 2.0 90.70 99.00

CNN+Tf+FULLY 97.83 96.50 ± 1.0 99.9 97.90

CNN+TF+Capsule-Net 98.91 98.20 ± 1.0 99.10 98.70
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Table 8 Comparative table of the different models used for comparison. Each of these models was evaluated in 5 classes: Any, scaling, 
PCA, and scaling + PCA, the hyperparameters used, and, finally, their accuracy is mentioned

Algorithms Conditions 
on the 
dataset

Tuning Hyperparameters Cross Validation [%] Accuracy [%]

DTC Any criterion = gini, min_samples_leaf =2, min_samples_split = 10 48.00 ± 2.0 48.74

Scaling 48.00 ± 2.0 49.43

PCA 55.00 ± 2.0 53.61

Scaling + PCA 54.00 ± 1.0 54.91

MLP Any activation = relu, hidden_layer_sizes = (100,50), learning_rate = 
constant, solver = Adam

30.00 ± 1.0 52.65

Scaling 69.00 ± 1.0 72.39

PCA 37.00 ± 1.0 59.09

Scaling + PCA 69.00 ± 1.0 71.22

KNN Any algorithm = auto, leaf_size = 1, n_neighbors= 1, p = 2, weights = 
‘uniform’

56.00 ± 1.0 54.26

Scaling 56.00 ± 1.0 54.30

PCA 57.00 ± 1.0 57.65

Scaling + PCA 57.00 ± 1.0 57.61

ETC Any n_estimators = 300, random_state = 20, weights = ‘uniform’ 72.00 ± 1.0 73.48

Scaling 72.00± 1.0 73.48

PCA 75.00 ± 1.0 75.87

Scaling + PCA 76.00 ± 1.0 76.39

SVM Any C = 10, gama = ‘scale’, kernel = ‘rbf’ 20.00 ± 1.0 19.96

Scaling 64.00 ± 1.0 64.30

PCA 19.00 ± 1.0 20.70

Scaling + PCA 70.00 ± 1.0 71.09

RFC Any max_depth = None, min_samples_split = 2, n_estimators = 500, 
random_state = 40

73.00 ± 1.0 73.26

Scaling 73.00 ± 1.0 73.22

PCA 74.00 ± 1.0 73.48

Scaling + PCA 74.00 ± 2.0 73.39

GB Any  learning_rate = 0.1, max_depth = 7, n_estimators = 200, random_
state = 10

69.00 ± 1.0 69.22

Scaling 0.69 ± 1.0 69.26

PCA 72.00 ± 1.0 72.61

Scaling + PCA 71.00 ± 1.0 71.74

CNN+Fully Any optimizer=Adam(lr=0.001), epochs=500, batch_size=128 79.00 ± 2.0 83.83

Scaling 85.00 ± 1.0 85.04

PCA 55.00 ± 4.0 60.52

Scaling + PCA 72.00 ± 3.0 72.04

CNN+Capsule-Net Any  num_caps = 16, optimizer=Adam(lr=0.001), epochs=500, batch_
size=128

79.00± 2.0 73.30

Scaling 86.00 ± 1.0 87.13
PCA 56.00 ± 3.0 56.65

Scaling + PCA 72.00 ± 3.0 74.30

CNN+Tf Any NUM_HEADS = 16, NUM_LAYERS= 2, epochs=500, batch_size=128 79.00 ± 2.0 74.48

Scaling 86.00 ± 2.0 88.34
PCA 48.00 ± 1.0 49.35

Scaling + PCA 72.00 ± 2.0 67.39

CNN+TF+Fully Any NUM_HEADS = 16, NUM_LAYERS= 1, epochs=500, batch_size=128 75.00 ± 1.0 76.74

Scaling 85.00 ± 1.0 85.91

PCA 57.00 ± 2.0 56.22

Scaling + PCA 75.00 ± 1.0 75.00
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Gradient-weighted class activation mapping (GradCam)
GradCam, this method interprets convolutional neural  
network models by visually presenting the input regions 
the model deems most crucial for making predictions. 
It relies on calculating the gradient of the predicted 
class score concerning the feature maps of the final 

convolutional layer. These maps are then globally averaged 
to derive weights multiplied by their respective inputs, 
resulting in a map highlighting the importance of the 
input variable [51]. The Grad-CAM for this issue can be 
observed in Fig. 9, which pertains to patients with epileptic 
seizures, and Fig. 10 illustrates the remaining patients.

Table 8 (continued)

Algorithms Conditions 
on the 
dataset

Tuning Hyperparameters Cross Validation [%] Accuracy [%]

CNN+Tf+Capsule-Net Any  NUM_HEADS = 8, NUM_LAYERS = 1,num_caps = 16, epochs=500, 
batch_size=128

79.00 ± 2.0 80.83

Scaling 86.00 ± 1.0 85.09

PCA 53.00 ± 2.0 57.78

Scaling + PCA 71.00 ± 2.0 72.35

ETC

CNN

CNN+Capsule-
Net

CNN+Tf

Clasification report Confusion matrix Curva ROC

Fig. 7 Comparative table of the metrics of the best model for multi‑class classification of machine learning, the CNN, the tf, and the caps‑net. In this 
one, we can see the first column, the classification report, the second, the confusion matrix, and the third, the ROC curves
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Feature importance
Understanding the significance of features is a fundamen-
tal technique in interpreting ML models. It enhances our 
comprehension of the model’s functioning and assists in 
recognizing biases and crucial features. This approach is 
essential as artificial intelligence models have grown pro-
gressively complex and challenging to interpret, mainly 
owing to scientific advancements [52] (see Fig. 11).

Discussion
Epilepsy is a severe disease that, due to lack of knowl-
edge, has been cataloged as a taboo and considered less 
important than it is, worsening the patient’s quality of life 
and even causing death. However, an accurate and quick 
treatment can help the patient have a relatively everyday 
life, so it is essential to use new technologies to achieve a 
more efficient process.

Table 9 Comparison of the accuracy in relation to the state of the art

Algorithms Authors Multiclass 
accuracy

Binary accuracy Time of compilation 
[Min]

Parameters 
[millions]

1D‑CNN‑LSTM Gaowei Xu et al. [12]. 82.00 99.39 266 2.23

CNN+Capsule-Net Proposed model 87.00 99.92 8 5.04

CNN+Tf Proposed model 88.00 99.76 25 22.82

Fig. 9 GradCam of the EEG from class (a), i.e., patients with an epileptic seizure, in each convolutional layer 32, 64, 128, 256, 512 that can be seen 
on the y‑axis

Fig. 8 Bar chart of the compilation times in minutes of the four best models
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Fig. 10 GradCam of the EEG from classes (b), (c), (d), (e), i.e., patients without an epileptic seizure, in each of the convolutional layers 32, 64, 128, 
256, 512 that can be seen on the y‑axis

Fig. 11 The 30 most crucial points in the EEG, representing the key features for the ETC (Event‑Triggered Control)
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It is common to use an electroencephalogram for 
diagnosing pathology since its cost can be meager com-
pared to other medical imaging methods. This opens 
the possibility of using artificial intelligence methods 
with electroencephalogram databases. However, there 
are very few public databases, so it is necessary to 
explore all options. In this case, different ways of pro-
cessing the database were used to find the best result by 
evaluating them in other traditional and state-of-the-
art models.

For traditional machine learning models, their effi-
ciency is directly related to the tuning of their hyper-
parameters. Here is where the pipeline and grid search 
algorithms that we observe in Table  2 are essential to 
efficiently search for the best combination for the eval-
uation of each of the database partitions observed in 
Figs. 1 and 2.

As shown in Fig.  1, the model of two classes, i.e., of 
patients with epilepsy against the rest of the categories, 
is unbalanced. To correct this problem, we used synthetic 
data using algorithms such as SMOTE and ADASYN in 
the tuning of hyperparameters in the ML models we can 
see in Table  3 that the hyperparameters for each of the 
types of data balancing do not have a natural significant 
variation, so it can be decided to use one or the other.

Directly in the state-of-the-art algorithms, we can 
observe in the “Models” section and in the “Model con-
figuration”  section, it is evident that they all have fea-
ture extraction using CNN as their origin. Experiments 
obtained the best layers and activation methods. In the 
case of convolutional layers, we can observe in Fig.  3 
the most efficient activation method for this database is 
selu. Modifying the capsule initially designed for reading 
images generates an essential contribution to the state of 
the art. It is necessary to emphasize that according to the 
author of the original capsule, the max pool can generate 
problems and worsen the accuracy. In the case of these 
signals, we have an improvement when using the global 
max pooling, possibly because we are working with sig-
nals and not with images.

Continuing with state-of-the-art, as briefly mentioned 
in the “Introduction” section, the combination of mod-
els has been the latest trend for classification problems; 
however, the state-of-the-art does not report combina-
tions associated with this pathology, nor to this specific 
database, experimentation with the variety of models to 
use the best features of each one is an important contri-
bution presented in this paper.

Now focusing directly on the results obtained in this 
article, Table 4 shows the interaction of the hyperparam-
eters of the encoder transformer model with its different 
variations. It is essential to highlight that by using flat 
data, the expenditure in computational resources is not 

so high, which makes it possible to increase the number 
of heads of attention and experimentation without hav-
ing problems due to the lack of powerful graphics cards.

In binary classification based on whether the patient 
has epilepsy or not, we can observe that, although state-
of-the-art models show higher efficiency, there is no 
significant difference among all models based on their 
standard deviation or cross validation of unbalanced 
data, as seen in Table 5. This difference is much smaller 
when the data is balanced, as shown in Tables  6 and 7. 
However, the metrics improve when we have balanced 
classes. This indicates that synthesized data effectively 
increases the system’s signal recognition capacity. Among 
the balancing methods, SMOTE and ADASYN, SMOTE 
proves to be more efficient and achieves better metrics, 
achieving an accuracy of 99.92% in the capsule net model 
and 99.59% in the KNN model. However, since they are 
synthetic data, validating again with data from another 
database is necessary.

Entering directly into the five database classes, we can 
observe in Fig.  2. As mentioned at the beginning of the 
discussion, database processing plays a fundamental role 
in finding the best model. As seen in Table 8, processing 
the database is necessary since the unprocessed database 
yields meager results, ranging from 20% to 69% in ML 
models and from 76% to 88% in DL models. Analyzing the 
variability of PCA components does not show an improve-
ment in the results obtained. This may be because each 
point in the EEG contributes information and variability 
to the model. When analyzing the results in ML models 
using PCA, we obtain results ranging from 19% to 75%. 
Despite SVM presenting the worst results, applying PCA 
in DL models improves the performance of ML models 
and demonstrates superior metrics.

Now, standard scaling is the one that best fits the 
majority of the database, where we see that both ML 
and DL models show a significant improvement in their 
metrics, except for some cases like ETC, where the best 
option is to apply PCA and standard scaling. However, 
machine learning models could be more efficient for 
classifying the five classes in this problem, with the best 
results observed in decision tree models like ETC with 
73.48% accuracy. Nevertheless, they need to catch up 
compared to DL models such as CNN+TF, which shows 
88.34% accuracy, or the CNN+Capsule-Net model, 
which shows 87.13% accuracy, with lower standard devia-
tion and compilation time. In this case, individual mod-
els perform better than combining them, as in the case 
of CNN+TF+Capsule-Net, which proves to be inferior 
to the personal evaluation of each one, achieving only 
85.09% accuracy.

In Fig. 7, where we can compare the best ML and state-
of-the-art models, we can see that the state-of-the-art 
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models are much more efficient. However, a constant 
is demonstrated in all models, and EEGs related to 
brain tumors, classes b and c, have a problem with 
classification.

In addition to the above, we can use GradCam from the 
convolutional layers for better interpretability, as shown 
in Figs. 9 and 10. These visually depict the waveform and 
its behavior in the final or convolutional layers. Addition-
ally, we can observe the feature extraction graph in Fig. 11, 
where graphically, it is evident that most of the features or 
points in the EEG are crucial for classification. This may 
be a reason why PCA does not yield good results.

Finally, looking for the best model, the difference 
between the two best models, CNNs+Capsule-Net 
and CNNs+Transformer Encoder, is only one percent-
age point. Still, the Capsule-Net has a lower stand-
ard deviation, achieving a more stable result. Besides 
that, Fig.  8 shows that the compilation time and, conse-
quently the computational resource expenditure when 
using CNNs+Capsule-Net is three times less than when 
using the CNNs+Transformer Encoder model conclud-
ing that the best classification model is the proposed 
CNNs+Capsule-Net model modified for signals achiev-
ing an accuracy of 87.30% and a standard deviation of ± 
1%. However, the state-of-the-art is surpassed with both 
models, Furthermore, the compilation time is significantly 
shorter, even with more parameters. This is due to the effi-
ciency of the models and their parallel processing, unlike 
LSTMs that operate sequentially as shown in Table 9.

The creation of diagnostic tools with the help of artifi-
cial intelligence is an innovative field in medical technol-
ogy. Tools such as classification models applied to medical 
services can make treatments more assertive and faster, as 
doctors would have an additional tool to confirm or reject 
a diagnosis. This can reduce time-consuming and costly 
processes in developing countries, impacting the directly 
affected users. Artificial intelligence and diagnostic tools 
have the potential to save lives.

Conclusion
The use of artificial intelligence models for diagnosing 
pathologies has experienced significant growth in the 
last decade, making it essential to find the model that 
best suits each studied disease. In the case of epilepsy 
using electroencephalographic signals, the difference 
between models is minimal, so it is crucial to analyze 
other aspects, such as computational resource expendi-
ture and compilation time. Regarding machine learn-
ing models, compilation times are minimal due to their 
high optimization. However, the results are much lower 
when classifying multiple types of electroencephalo-
grams, possibly due to the reduced data. The metrics are 
significantly lower. The ML models, such as ETC or RFC, 

generally show the best results for this issue. Specifically, 
concerning state-of-the-art models, it can be concluded 
from this analysis that the best model for classifying elec-
troencephalograms is the CNNs+Capsule-Net model. It 
achieves accuracy only one percentage point below the 
transformers model but with a lower standard deviation 
and, most importantly, half the compilation time.

Suggestions for future research
For future work, evaluating the proposed models with 
new data and different signal acquisition methods is 
advisable to verify their suitability for deployment in a 
hospital setting. This is why a repository with the codes is 
included so that experiments can be replicated and even-
tually improved.
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