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Abstract 

Background Alzheimer’s Disease (AD) is a progressive memory disorder that causes irreversible cognitive decline. 
Given that there is currently no cure, it is critical to detect AD in its early stage during the disease progression. 
Recently, many statistical learning methods have been presented to identify cognitive decline with temporal data, 
but few of these methods integrate heterogeneous phenotype and genetic information together to improve 
the accuracy of prediction. In addition, many of these models are often unable to handle incomplete temporal data; 
this often manifests itself in the removal of records to ensure consistency in the number of records across participants.

Results To address these issues, in this work we propose a novel approach to integrate the genetic data and the lon-
gitudinal phenotype data to learn a fixed-length “enriched” biomarker representation derived from the temporal het-
erogeneous neuroimaging records. Armed with this enriched representation, as a fixed-length vector per participant, 
conventional machine learning models can be used to predict clinical outcomes associated with AD.

Conclusion The proposed method shows improved prediction performance when applied to data derived 
from Alzheimer’s Disease Neruoimaging Initiative cohort. In addition, our approach can be easily interpreted to allow 
for the identification and validation of biomarkers associated with cognitive decline.

Keywords Alzheimer’s disease, Multi-modal, Longitudinal learning, Enrichment

Background
Alzheimer’s disease (AD) is a neurodegernative condition 
in which people suffer from the progressive deterioration 
of cognitive functions, such as memory, language, and 
judgment. The World Health Organization (WHO) pre-
dicts that AD will affect 75 million people by 2030 and 

132 million people by 2050 [1]. To address this major 
public health challenge, it is critical to detect AD at an 
early stage from both the therapeutic and research stand-
points. Recent works [2, 3] have analyzed the progression 
of AD through modeling and predicting clinical assess-
ments. Furthermore, in the last decade [3], rich neu-
roimaging measurements, such as magnetic resonance 
imaging (MRI), have been widely used to predict the clin-
ical outcomes associated with AD.

Despite these efforts, many existing approaches [3, 4] 
suffer from the following limitations. First, because a lot of 
models routinely carry out the learning tasks at each time 
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point of the AD progression separately, they cannot leveage 
the temporal relationships across the longitudinal records. 
Given that AD is a progressive neurodegenerative disorder, 
multiple consecutive records should be analyzed together 
for keeping track of the disease progression. Therefore, it is 
ideal that modern statistical learning techniques can study 
the temporal variations in the records that are consistent 
with how we expect a progressive disease to behave. Sec-
ond, temporal records are often missing at certain time 
points, which results in an inconsistent number of records 
per participant. This make it difficult to apply traditional 
statistical methods that work in the setting when the data 
at all time points provided. Third, current longitudinal 
methods [4, 5] tend to focus on measurements derived 
from MRI scans, such as FreeSurfer (FS) and voxel-based 
morphometry (VBM), rather than genotype information, 
such as single-nucleotide polymorphisms (SNPs). It is 
known [6] that genetic factors can be strong predictors of 
future cognitive decline, therefore it is important to inte-
grate longitudinal phenotype measurements with genetic 
data that remain constant when AD develops. Finally, the 
clinical outcomes of participants assessed from cognitive 
ability tests, such as Ray’s Auditory Verbal Learning Test 
(RAVLT), are often provided in resources such as the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI), which 
can be used as data labels for better predicting a future AD 
diagnosis. Therefore it is of great interest to explore how 
to use such labeled data to learn data representations with 
improved predictive power.

In an attempt to overcome the first limitation and 
uncover the temporal structure of brain phenotypes, 
several longitudinal prediction models [7, 8] have been 
proposed. However, these models represent the tempo-
ral imaging records as a tensor, which inevitably increase 
the complexity of the prediction problem and require 
that each participant has the same number of temporal 
observations. Since each participant must have the same 
number of observations, the user of these approaches 
must discard samples that have a number of records 
below a given threshold, which may potentially lose valu-
able information of the input data. Other approaches 
[9, 10] have relied on imputation techniques to estimate 
the missing records. Yet these imputation methods may 
incur undesirable artifacts, which may introduce biases 
into the final predictions of the longitudinal models.

To handle the longitudinal multi-modal prediction prob-
lem with incomplete temporal neuroimaging records, in 
this work we propose a semi-supervised learning method 
to learn participant-specific projections to enrich the 
multi-modal phenotypic measurements, which is an exten-
sion of our earlier short conference paper [11]. We ana-
lyze the consecutive imaging records simultaneously and 
learn a projection for each participant. To take advantage 

of temporal and modality relationships, we introduce 
trace-norm regularization over the concatenation of all 
participant-specific projections to maintain their global 
consistency. Furthermore, a structured sparsity-induced 
norm regularization is applied to learn the group-struc-
tured representations of genetic data, which are integrated 
with the enriched representations for imaging data. Finally, 
our model factorizes the enriched biomarker representa-
tions, available clinical scores, and genetic biomarkers of 
participants with the common participants representa-
tions. The aim of these factorizations is to extract the rep-
resentations for a participant shared across the different 
modalities. As a result, the learned projections from imag-
ing data are tightly coupled with the genetic modality and 
available clinical scores. Provided with the learned projec-
tions per-participant, we can transform the multi-modal 
representations extracted from phenotypes with varied 
data sizes and the measurements of the genetic biomark-
ers into an enriched biomarker representation with a fixed 
length. With a fixed-length vector per participant, we can 
freely make use of conventional machine learning models 
to predict clinical scores associated with AD.

Methods
In this section, first we will formalize the problem to 
learn a fixed-length biomarker representation for each 
participant. Then we will then gradually develop our 
learning objective. Finally, an efficient computational 
algorithm will be derived to solve our proposed objective.

Notations and problem formalization
Throughout this paper, we write matrices as bold uppercase 
letters and vectors as bold lowercase letters. The i-th row, the 
j-th column, and the element at i-th row and j-th column of 
the matrix M =

[

mi
j

]

 are denoted as mi , mj , mi
j , or eTi M , Mej , 

eTi Mej , respectively, where we define ej as the j-th column of 
the identity matrix I . When p ≥ 1 , the ℓp-norm of a vector 
v ∈ ℜd is defined as �v�p =

d
i=1 v

p
i

p
 . For a matrix M , 
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∑
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i

i
 . The Frobenius 

norm of M is defined as �M�F =

√

∑

n

i=1

∑

m

j=1
|mi

j
|2 . The ℓ2,1-

norm of M is defined as �M�2,1 =
∑

n

i=1

√

∑

m

j=1

∣

∣

∣
m

i

j

∣

∣

∣

2

=
∑

n

i=1

∥

∥mi
∥

∥

2

 . 
The trace norm of M is defined as �M�∗ =

∑min{n,m}

i=1 σi , 
where σi is the i-th singular value of M.

Given a neuroimaging dataset, phenotypic measure-
ments are usually described by the biomarkers extracted 
from brain scans. Mathematically, the medical records of 
the i-th participant in a studied cohort can be denoted as 
Xi = {Xi, xi} , where i = 1, 2, · · · , n indicates the index of 
participant. Here, Xi = [xi1, · · · , xini ] ∈ ℜd×ni collects 
the available medical records of the i-th participant from 
the baseline (first time point) to the second last visit, such 
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that the total number of the medical records of the i-th par-
ticipant is ni + 1. We note that ni varies across the dataset 
due to inconsistent/missing temporal records of the par-
ticipants. We use xi ∈ ℜd to denote the last medical record 
of the i-th participant and use X = [x1, · · · , xn] to sum-
marize these records of all the participants in the studied 
cohort. Because multiple types of biomarkers, such as VBM 
and FS markers, can be extracted from the set of brain 
scans, we concatenate the vector representations of these 
biomarkers as the phenotypic assessment of a participant. 
For example, in our study we write xij = [xVBMij , xFSij ] and 
xi = [xVBMi , xFSi ] , where 1 ≤ i ≤ n, 1 ≤ j ≤ ni . Because 
{xij}

ni
j=1 , together with xi , describe the temporal changes 

of the phenotypes of the i-th participant over time, Xi is a 
summarization of the dynamic measurements of the i-th 
participant, which is also broadly called as the longitudinal 
measurements in the literature of medical image comput-
ing [4, 7, 8, 12, 13]. To make use of Xi and xi together, we 
can use longitudinal enrichment to learn a fixed-length 
vector from them [14–17]. Specically, we learn a projection 
tensor W = {W1,W2, · · · ,Wn} ∈ ℜd×r1×n , by which we 
can compute the fixed-length biomarker representations 

WT ⊗ X = [WT
1 x1,W

T
2 x2, · · · ,W

T
n xn] ∈ ℜr1×n for the 

entire cohort, i.e., we project xi by Wi for the i-th partici-
pant by computing zi = WT

i xi ∈ ℜr1 . A schematic illustra-
tion of the projected (enriched) biomarker representations 
is shown in Fig. 1.

In addition to the phenotypic measurements used 
in a neuroimaging data set, genotypes of the same 
cohort may also be available, such as the SNP profiles 
of the participants, that can be represented by XSNP = 
[xSNP1 , · · · , xSNPn ] ∈ ℜdSNP×n , where xSNPi  is the vector 
representation of the SNP profile of the i-th participant. 
Here we note that XSNP is static that does not vary over 
time when AD develops.

Besides the input phenotypic (dynamic) and genotypic 
(static) data, the outputs of the prediction tasks are cogni-
tive status of the participants, which are usually assessed 
by the clinical scores of a set of cognitive tests. We use 
Yl ∈ ℜc×l to list the clinical scores of the first l partici-
pants at her or his last visit, where c is the total number 
of clinical scores in studied in our work. Here, without 
losing generality we consider the first l samples as the 
labeled data for training. Apparently, Yl can be used as 

Fig. 1 Illustration of original and enriched biomarker representations. The goal of the enrichment model is to learn the set of projections W 
and project the last record. As a result, the dimensionality of enriched representation r1 is much smaller than the dimensionality of original 
representation d 
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the labeled data to enable us to learn the data represen-
tation with supervision, which could potentially improve 
the predictive power of the learned data representations.

In the following subsection, we will develop our learning 
objective gradually.

Our objective
We start by learning the representations of the static genetic 
data to utilize the group structures of SNPs [18, 19]. Recent 
developments in high-throughput genotyping techniques 
allow new methods to investigate the effect on brain struc-
tures and functions of genetic variation. Many previous 
association studies treated the SNPs as independent units 
and ignored underlying relationships between the units. 
However, multiple SNPs from the same gene are naturally 
related so that such SNPs often jointly perform the genetic 
functionalities together. To incorporate the group structures 
associated with SNPs, we propose to learn the representa-
tions of the genetic data of a studied cohort by minimizing 
the following objective:

In Eq. (1), the first term factorizes XSNP into H0 and G0 , 
where H0 can be seen as the compressed view of the SNP 
features [20] and G0 describes the new representations of 
the n participants in the subspace spanned by H0 [21]. To 
find the group structure of SNPs, we leverage the linkage 
disequilibrium (LD)  [22] which defines the non-random  
association between alleles at various loci. Then we 
capture the group-wise sparsity in H0 by making use of 
the group ℓ2,1-norm ( G2,1-norm) regularization term 
�H0�G2,1

=
∑

K

k=1

∥

∥

∥
H

k

0

∥

∥

∥

2,1

 , where H0 = [H1
0;H

2
0, · · · ;H

K
0 ] con-

sists of K groups derived from the LD correlations of the 
SNPs [18, 19]. Here we choose to use the ℓ2,1-norm dis-
tances to improve the robustness of our model against 
outliers [23–26].

Next we study how to learn a vector representations 
with fixed length for every participant from their image 
data in varied sizes. While the genetic profiles of the par-
ticipants remain constant over time, the functions and 
structures of the brains of the participants change as 
AD progresses. Therefore AD progression is character-
ized by the longitudinal imaging records extracted from 
the multiple brain scans that change over time. However, 
the longitudinal imaging records pose a critical challenge 
to build the predictive models, because different partici-
pants may take the brain scans at different time and the 
number of brain scans of different participants are not 
same in general. To deal with this difficulty and summa-
rize the brain variations of every participant individually, 
we propose to learn a vector representation with the fixed 

(1)J0(H0,G0) = �XSNP −H0G0�2,1 + α�H0�G2,1
.

length from the image data of each participant {Xi , xi} 
with the varied size ni by computing zi = WT

i xi ∈ ℜr1.
First, to preserve as much dynamic information of Xi 

as possible, we propose to learn the projection Wi for the 
i-th participant by minimizing the following objective of 
the principal component analysis (PCA) [27]:

Here again we use ℓ2,1-norm objective in the PCA to 
enhance the robustness of the learned projection Wi 
against outlying samples which is unavoidable in the 
large dataset [23–26].

Second, besides using the projection learned from each 
individual participant separately, to maximize the con-
sistency across all the learned projections for the same 
cohort, we enforce the low-rank consistencies onto the 
learned projection matrices by introducing two trace-
norm regularization terms as following [7, 13, 17]:

where W(1) = [W1,W2, · · · ,Wn] ∈ ℜd×(r1×n) and W(2) =
[

W
T
1
,W

T
2
, · · · ,WT

n

]

∈ ℜr1×(d×n) are two unfolded matri-
ces of the local projection tensor W.

Finally, equipped with the learned representations 
for imaging features in multiple modalities and genetic 
features, we integrate them together to explore the full 
potential of an imaging-genetic dataset. First, we write 
the temporally enriched representations for image data 
together as Z = [z1, . . . , zn] = WT ⊗ X ∈ ℜr1×n . Follow-
ing the same idea as before, we factorize Z and align the 
factorized data representation with that learned from the 
static genetic data G0 by minizing the following objective:

where γ1, γ2, · · · , γ7 are hyperparameters of our learning 
model.

Now we can perform the association studies between 
the clinical scores and the new data representations 
learned from our model. Suppose that the clinical scores 
of Yl ∈ ℜc×l are obtained in c cognitive assessments for 
the l training samples, we use F = [Fl ,Fu] ∈ ℜc×n to 
denote our estimated clinical scores and use the con-
straint Fl = Yl to make use of the training data Yl , by 
which we can conduct the regression analyses by mini-
mizing the following objective:

(2)J1(Wi) =

∥

∥

∥
Xi −WiW

T
i Xi

∥

∥

∥

2,1

, s.t.W
T
i Wi = I.

(3)

J2(W) =

n
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∥
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Xi −WiW

T
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∥
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∥

2,1

+ β
(∥

∥W(1)
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∗
+

∥

∥W(2)
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∗
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,

s.t.W
T
i Wi = I,

(4)

J3(H0,H1,G0,G1,W) = γ1
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∥
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T
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Our new method is schematically illustrated in Fig. 2.

The solution algorithm
Although our objective in Eq. (5) has clearly motivated, it is 
difficult to solve in general, because it is non-smooth. Thus 
in this subsection we drive an efficient solution to optimize 
our objective. Using the optimization framework presented 
in the earlier work [28, 29] that proposed the iterative 
reweighted method to solve non-smooth objectives, we can 
solve Eq. (5) by an iterative procedure (Algorithm 1 in [28]) 
in which the key step is to minimize the following objective:

(5)

J (U,F,H0,H1,G0,G1,W) =

∥

∥

∥
F−UTG1

∥

∥

∥

2,1
+ γ1

n
∑

i=1

∥

∥

∥
Xi −WiW

T
i Xi

∥

∥

∥

2,1

+ γ2

∥

∥

∥
W

T ⊗ X −H1G1

∥

∥

∥

2,1
+ γ3�XSNP −H0G0�2,1 + γ4�G1 −G0�2,1

+ γ5�H0�G2
+ γ6

(∥

∥W(1)

∥

∥

∗
+

∥

∥W(2)

∥

∥

∗

)

+ γ7�U�1,

s.t. Fl = Yl , W
T
i Wi = I.

(6)

J
R(U,F,H0,H1,G0,G1,W) = tr((UTG1 − F)TD1(U

TG1 − F))

+ γ1

n
∑

i=1

tr((Xi −WiW
T
i Xi)

TD2,i(Xi −WiW
T
i Xi))

+ γ2tr((W
T ⊗ X −H1G1)

TD3(W
T ⊗ X −H1G1))

+ γ3tr((XSNP −H0G0)
TD4(XSNP −H0G0))

+ γ4tr((G1 −G0)
TD5(G1 −G0))+ γ5tr(H

T
0 D6H0)

+ γ6tr(W
T
(1)D7W(1))+ γ6tr(W

T
(2)D8W(2))+ γ7

c
∑

q=1

(uTq D9,quq),

s.t. Fl = Yl , W
T
i Wi = I,

Fig. 2 Overview of proposed semi-supervised learning framework to fully utilize the potential of a longitudinal AD dataset. We use factorization 
to extract the common representations of participants shared across genetic, image, and clinical scores data. As a result, the genetic and clinical 
scores data can be reflected in the learned projections W
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where D1,D2,i,D3,D4,D5,D9,q are diagonal matrices 
whose j-th diagonal element dj∗ of D∗ is as follows:

D6 is a block diagonal matrix, where k-th block (k-th  
group of SNPs) is 1

2
(

∥

∥

∥
Hk

0

∥

∥

∥

2

F
+ δ)−

1
2 Ik  . Ik ∈ ℜdk×dk  

is a identity matrix, and dk  denotes the number  
of rows (the number of SNPs) of k-th block of 
H0 = [H1

0;H
2
0; · · · ;H

K
0 ] , so that 

∑K
k=1 dk = dSNP . The 

dimensions of the matrices in Eq.  (7) are: 
D1 ∈ ℜc×c

, D2,i ∈ ℜd×d
, D3 ∈ ℜr1×r1 , D4 ∈ ℜdSNP×dSNP ,

D5 ∈ ℜr2×r2 , D6 ∈ ℜdSNP×dSNP , D7 ∈ ℜd×d
, D8 ∈ ℜr1×r1 ,

D9,i ∈ ℜr2×r2.
To minimize the smoothed objective Eq. (6), we use the 

Alternating Direction Method of Multipliers (ADMM), 
which is proposed in [30, 31]. By introducing two 
more constraints A = U and B(2) = W(2) ⇔ Bi = Wi 
( i = 1, 2, · · · , n ) to decouple the U and W , we rewrite 
Eq. (6) with the following equivalent objective:

where �1,�2,i,�3,�4,i are the Lagrangian multipliers for 
the constraints Fl = Yl , W

T
i
Wi = I, A = U, and Bi = Wi . The 

detailed algorithm to minimize Eq.  (8) is presented in 
Algorithm 1. In Algorithm 1, we use solution of Sylvester 
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equation, such that sylvester(P,Q,R) gives an unique and  
exact solution for X of equation PX + XQ = R . The time  

complexity of Algorithm 1 is O(nr1d
2(d + r1)) for each iter-

ation where the step 11 is the most dominant. The detailed 
derivation of Algorithm 1 is provided in the Appendix.

Algorithm 1 Solve minimization problem in Eq. (8)

Results
In this section, we introduce our experimental results 
about the clinical scores prediction task with the 
enriched biomarker representation and original bio-
marker representation to evaluate changes in the predic-
tion performance from enrichment. Then we analyze the 
AD risk factors identified by the learned projections.

Data preparation
We obtain the data used in our experiments from the 
ADNI database. We downloaded the MRI scans, SNP 
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genotypes, and the longitudinal scores of Rey’s Audi-
tory Verbal Learning Test (RAVLT) of 821 ADNI-1 par-
ticipants. We perform voxel-based morphometry (VBM) 
and FreeSurfer automated parcellation on the MRI data 
as described by [12] and extract mean modulated gray 
matter (GM) measures for 90 target regions of interest 
(ROI). We follow SNP quality control steps discussed in 
[32]. Among 821 ADNI-1 participants, 412 participants 
are selected on the basis of existence of MRI records at 
Month 0/Month 6/Month 12/Month 24. Then we inten-
tionally discard Month 24 scans with 50% probability to 
evaluate the learning capability of our model from lon-
gitudinal data with missing record. Our model learns the 
enrichment with the neuroimaging records from base-
line to the second last visit, and project the last record 
(Month 12 or Month 24 with 50% probability) to predict 
the clinical scores at the last time point.

Experimental settings
In our experiments, we aim to predict RAVLT clinical 
scores in the test set using two types of the inputs — the 
learned enriched representation and original represen-
tation of the most recent biomarkers. We use the dif-
ferent concatenations of SNPs, FS, and VBM modalities 
to assess the prediction performance of our model with 
diverse modalities. We split the dataset into a train-
ing and test set with a proportion of 80% and 20% each, 
therefore the number of participants is l = 323 in the 
training set and n− l = 89 in the test set. The SNPs and 
MRI images of all n participants and clinical scores of 
only the l participants in training set are provided for 
our model to learn enriched representation. To predict 
the n− l clinical scores in test set, we use the following 
conventional prediction models: Ridge linear Regression 
(RR), Convolutional Neural Network (CNN), and Sup-
port Vector Regression (SVR) which is the regression 
version of Support Vector Machine. We conduct a 5-fold 
cross-validation to search the set of best hyperparam-
eters for each conventional model.

We conduct a 5-fold cross-validation to search the set 
of best hyperparameters for each conventional model. 
However the naive grid search can be time consuming 
especially when the combination of many hyperparam-
eters is tuned. Instead of trying all the combinations of 
hyperparameters, we randomly choose the value from the 
grid of each hyperparameter. In order to increase the pos-
sibility of finding the better hyperparameters in the fewer 
searches, a randomly selected half of hyperparameters 
remain the best values found in the previous searches. In 
the 5-fold cross-validation, we search the best regulariza-
tion parameter of RR in {103, 102, 10, 1, 10−1, 10−2, 10−3} . 
For SVR, we fine tune the kernel function among sig-
moid and radial basis function and box constraints 

in {103, 102, 10, 1, 10−1, 10−2, 10−3} . We construct a 
1-dimensional CNN configured as follows: (1) a convolu-
tional layer with a window size of 5 × 16 (width × depth), 
followed by a rectified linear unit (ReLU) and a max pool-
ing layer with a window size of 1 × 2; (2) a convolution 
layer with a window size of 10 × 32, followed by a ReLU 
and a max pooling layer with a window size of 1 × 2; (3) 
three fully connected layers where the number of nodes 
and dropout rate for each layer are fine tuned by searching 
the grid of {20, 60, 120} and {0.3, 0.5, 0.7} each. The hyper-
parameters of our enrichment model are tuned as follow-
ing: γ1 = 10

−1
, γ2 = 10

−4
, γ3 = 10

−2
, γ4 = 10

−3
, γ5 =

10
−1

, γ6 = 10
−1

, γ7 = 10
−1

, ρ1 = 1.05, ρ2 = 1.05, ρ3 =

1.15, ρ4 = 1.15.

Experimental results
Original vs. enriched representation
In the experimental result reported in Fig.  3, we com-
pute the Root Mean Squared Error (RMSE) between the 
ground truth clinical scores and predicted clinical scores 
from both the original and enriched representations. The 
result reveals that the prediction from enriched represen-
tation are mostly more accurate (9.84% in average) than 
the predictions supplied from the most recent record of 
original representation. Interestingly, among the various 
concatenation of modalities of biomarker measurements, 
the performance improvements of our enriched repre-
sentation is larger when the many modalities are given. 
This indicates that our model fully utilizes the multi-
modal dynamic data. Especially, the error gap is small-
est when only SNPs are given. We suppose that this is 
because SNPs are static data which do not change along 
the time, genetic data is not able to provide the enough 
information about temporal variations of cognitive 
decline, while our model is designed to learn the tempo-
ral variations when dynamic data is given.

Identification of disease‑relevant biomarkers
In addition to the cognitive outcomes prediction task, we 
identify AD relevant biomarkers using the weights of the 
learned projections. Since p-th feature in the enriched 
representation eTp WT

i xi is weighted summation of the 
original biomarkers measurements, the weights summa-
tion in q-th row of the projection 

∑n
i=1

∥

∥

∥
eTq Wi

∥

∥

∥

1
 can be 

interpreted as AD relevance on the q-th biomarker.

Identified Neuroimaging Biomarkers In this aspect, we 
first identify the AD relevant imaging biomarkers, by 
plotting the weights of ROIs of VBM and FS in Fig.  4. 
These brain regions all appear in the medical literature 
associated with AD-related dimentia. For example, 
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participants with cognitive decline showed atrophy of 
the caudate nucleus [33]. The volume of thalamus was 
significantly reduced [34] in participants diagnosed as 
probable AD. Furthermore, it has been found that the 
thalamus region plays an important role in generating 

attention, and anterior thalamus is in charge of declara-
tive memory functioning [35]. The hippocampus is 
vulnerable to be damaged from AD [36] and has been 
shown to affect long-term memory and spatial navi-
gation in participants with AD. Finally, the amygdala 

Fig. 3 Comparison on prediction errors from original (blue) or enriched (orange) representation. The percentage % next to model name indicates 
the decreased amount in errors of predictions from the enriched representation. We also plot the standard deviation from 5-fold cross-validation 
at the head of each bar
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region, also identified by our approach, is also severely 
affected by AD [37] and is associated with emotional 
response and decision-making.

Identified Genotypic Biomarkers In addition, we iden-
tify AD relevant SNPs by plotting the weights on indi-
vidual SNPs and AlzGene group of SNPs in Figs.  5 and 
6. In Fig.  6, we download and use the AlzGene group-
ing information constructed by multiple genome-wide 
association studies listed on (http:// www. alzge ne. org/) 
[38]. The standard deviation of weights of SNPs in each 
AlzGene group is displayed as line length at the head of 
each bar. The top identified individual SNP, rs10779339, 
in Fig. 5 has been found to be related to cognitive decline 
[39]. Among the AlzGene groups in Fig. 6 the SNPs in the 
ACE (angiotensin-converting enzyme) group have been 
found to reduce the Amyloid Beta peptide (Aβ ) which 

is commonly observed in the progression of AD-related 
cognitive decline [40]. Furthermore, the APOE (apolipo-
protein E) gene, also identified by our approach is also 
involved in A β aggregation and clearance [41].

In summary, the complex relationships between cogni-
tive ability and identified biomarkers are clearly identified 
by our method and are well represented in previous AD 
research studies. This result supports the utility of our 
approach as a tool to discover and validate AD risk fac-
tors from multi-modal data.

Discussion
Because our enrichment model incorporates the genetic 
and phenotypic biomarkers, it is possible to learn the 
enrichment from the different multi-modal data to pre-
dict the different target labels. From the experimental 

Fig. 4 Visualization of weights distribution over the brain regions. The darker color indicates the larger weight on that region. The top four AD 
relevant regions are identified in FS: Right Caudate, Brodmann area 24, Left Thalamus, and Left Caudate, in VBM: Left Hippocampus, Left Amygdala, 
Left Thalamus, and Right Medial Orbito-frontal Cortex

Fig. 5 Weights on individual SNPs. The color of each bar denotes AlzGene group in Fig. 6

http://www.alzgene.org/


Page 10 of 13Seo et al. BMC Medical Informatics and Decision Making           (2024) 24:61 

results in Fig.  3, the prediction performance is further 
improved as the many modalities of data are given. For 
example, Diffusion Tensor Imaging (DTI) is an effec-
tive tool to investigate the white matter organization of 
the brain and AD progression  [42]. Compared to MRI, 
blood based biomarkers can be measured less costly and 
intrusive and A β levels in blood can aid in the early diag-
nosis of AD [43]. We can learn the projections for these 
additional modalities, and concatenate the projections 
in Eq.  (2) and Eq.  (5). While considering the complex-
ity of Algorithm 1 proportional to d3 and the increasing 
dimensionality d with the many modalities of measure-
ments, our model can be flexibly applied to the diverse 
datasets and prediction tasks.

Conclusion
Missing data is a major issue in longitudinal multi-modal 
healthcare datasets. This research aims to devise a novel 
methodology to learn a consistent length representation 
for all the participants in the ADNI dataset. The learned 
biomarker representation summarizes the genetic bio-
markers and their group structure, known clinical scores, 
and all the available records of longitudinal biomarkers 
on a per-participant basis. Our experiments show that the 
learned enriched representation outperforms the original 
measurement in predicting the clinical scores. Finally, the 
identified AD relevant biomarkers are in nice accordance 

with existing research findings, indicating the utility of our 
approach.

Appendix
In this section, we show how Algorithm 1 is derived from 
our smoothed objective Eq.  (6). ADMM solves convex 
optimization problems by breaking them into smaller 
pieces that are easier to handle. Specifically, given the fol-
lowing objective with the equality constraint:

Algorithm  2 solves the problem in Eq.  (9) by decou-
pling it into subproblems and optimizing each vari-
able while fixing others, where y is the Lagrangian 
multiplier to the constraint h. We extend Algorithm  2 
of two variables to Algorithm  1 of the set of variables 
{U,F,W ,H0,H1,G0,G1,A,B(2)} . To be specific, we 
earn a update equation respect to each variable in Algo-
rithm 1, by taking the derivation over a each variable and 
set it to zero matrix, while fixing other variables. For the 
step 2 in Algorithm 1, the derivative is:

For the step 3, the derivative is:

(9)min
x,z

f (x)+ g(z), s.t. h(x, z) = 0,

(10)
∂J ADMM

∂H1

= −2γ2D3(W ⊗ X −H1G1)G
T
1 .

Fig. 6 Weights on AlzGene groups. The number next to the AlzGene group name denotes the number of SNPs in that group
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Algorithm 2 The ADMM algorithm

For the step 4, the derivative is:

For the step 5, the derivative is:

For the step 6, the derivative is:

For the step 7 ( 1 ≤ p ≤ c ), the derivative is:

For the step 8 ( 1 ≤ p ≤ l ), the derivative is:

For the step 9 ( l + 1 ≤ p ≤ n ), the derivative is:

For the step 10, the derivative is:

(11)∂J ADMM

∂H0

= −2γ3D4(XSNP −H0G0)G
T

0
+ 2γ5D6H0.

(12)
∂J ADMM

∂G1

= AD1(U
T
G1 − F)+UD1(A

T
G1 − F)

+ 2γ4D5(G1 −G0)− γ2H
T
1
D3(W

T ⊗ X −H1G1).

(13)

∂J ADMM

∂G0

= −2γ3H
T

0
D4(XSNP −H0G0)− 2γ4D5(G1 −G0).

(14)

∂J ADMM

∂Bi

= γ6WiD8

− γ1(D2,i(Xi −WiW
T
i X

T
i )X

T
i + (D2,i(Xi −WiW

T
i X

T
i )X

T
i )

T )Bi

+ µ2,iWiW
T
i Bi − µ2,iWi +Wi�2,i + µ4,i(Bi −Wi +

1

µ4,i

�4,i).

(15)

∂J ADMM

∂ap
= (G1(G

T
1
U − FT )D1 − µ3U +�3)ep

+ 2γ7D9,iap + µ3ap.

(16)

∂J ADMM

∂fp
=

(

D1(U
TG1 − F)+D1(A

TG1 − F)

+ µ1(F− Y +
1

µ1

�1)
)

ep.

(17)

∂J ADMM

∂fp
= (D1(U

TG1 − F)+D1(A
TG1 − F))ep.

(18)∂J ADMM

∂U
= G1(G

T

1
A − F

T )D1 + µ3(A −U +
1

µ3

�3).

For the step 11 ( 1 ≤ p ≤ r1 ), the derivative is:

By setting the derivative of each step to zero matrix, 
the update equations in Algorithm 1 can be obtained.
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